首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ammonium at low concentrations caused a rapid and effective inhibition of nitrate utilization in the light by the cyanobacterium Anacystis nidulans without affecting the cellular level of nitrate reductase activity. The inhibition was reversible, and the ability of the cells to utilize nitrate was restored immediately after ammonium had been exhausted. The inhibitory effect was dependent on consumption by the cells of the added ammonium which was rapidly incorporated into amino acids. In the presence of L-methionine-d,l-sulfoximine (MSX) or azaserine, inhibitors of the glutamine synthetase-glutamate synthase pathway, ammonium did not exhibit any inhibitory effect on nitrate utilization. Ammonium assimilation, rather than ammonium itself, seems to regulate nitrate utilization in A. nidulans. Short-term inhibition by ammonium of nitrate utilization and its prevention by MSX were also demonstrated in the filamentous cyanobacteria Anabaena and Nostoc.Abbreviations MSX L-Methionine-d-l-sulfoximine  相似文献   

2.
The incubation of the cyanobacteriumAnacystis nidulans withL-Arg,L-Lys orL-Orn, but neither with the correspondingD-isomers nor with other twentyL-amino acids, resulted in the production of large amounts of ammonium which accumulated in the outer medium. Relevant properties of thisin vivo ammonium production activity have been studied in cell suspensions treated with the glutamine synthetase inactivatorL-methionine-D,l-sulfoximine (MSX) to prevent assimilation by the cells of the resulting ammonium. In addition to its specificity for the basicL-amino acids, the system exhibited a set of properties (K m value for substrates, requirement of oxygen which is taken up stoichiometrically with the production of ammonium, inhibition by o-phenanthroline and divalent cations) all of which are shared by a peculiarL-amino acid oxidase recently isolated fromA. nidulans. The data strongly suggest the participation of this enzyme in the production of ammonium from basic amino acids byA. nidulans, an activity that could account for the ability of this cyanobacterium to use arginine as a nitrogen source.Abbreviations DCCD N,N-dicyclohexylcarbodiimide - FCCP carbonyl cyanide p-trifluoromethoxy-phenylhydrazone - MSX L-methionine-D,l-sulfoximine  相似文献   

3.
In phototrophically grown Chlamydomonas cells, ammonium strongly inhibited the utilization of nitrate or nitrite. Under darkness, or in the presence of an uncoupler or inhibitor of the non-cyclic photosynthetic electron flow, the utilization of nitrate, nitrite or ammonium was suppressed. l-Methionine-d,l-sulfoximine (MSX) or azaserine, which blocks the assimilation of ammonium, inhibited the consumption of nitrate, but not nitrite, by the cells. Ammonium produced an immediate inhibition of the permease for nitrate in Chlamydomonas growing with nitrate, while ammonium-grown cells lacked this permease. The synthesis of nitrate-reductase activity was dependent on an active permease. In N-starved Chlamydomonas cells, previously treated with MSX, the permease for nitrate was insensitive to inhibition by ammonium, and a significant amount of nitrate reductase was synthetized. These cells photoproduce ammonium by reducing nitrate. Nitrogen-repleted cells, treated with MSX, actively photoproduced ammonium by reducing nitrite, but not nitrate.Abbreviations DCMU N-(3,4-dichlorophenyl)N,N-di-methyl-urea - PCCP Carbonylcyanid-p-trifluoromethoxy-phenylhydrazone - Mops 2-(N-morpholino)propanesulfonic acid - MSX l-Methionine-d,l-sulfoximine  相似文献   

4.
Addition of NH4Cl at low concentrations to Azotobacter chroococcum cells caused an immediate cessation of nitrate uptake activity, which was restored when the added NH 4 + was exhausted from the medium or by adding an NH 4 + assimilation inhibitor, l-methionine-dl-sulfoximine (MSX) or l-methionine sulfone (MSF). In the presence of such inhibitors the newly-reduced nitrate was released into the medium as NH 4 + . When the artificial electron donor system ascorbate/N-methylphenazinium methylsulfate (PMS), which is a respiratory substrate that was known to support nitrate uptake by A. chroococcum while inhibiting glutamine synthetase activity, was the energy source, externally added NH 4 + had no effect on nitrate uptake. It is concluded that, in A. chroococcum cells, NH 4 + must be assimilated to exert its short-term inhibitory effect on nitrate uptake. A similar proposal was previously made to explain the short-term ammonium inhibition of N2 fixation in this bacterium.Abbreviations MOPS morpholinopropanesulfonic acid - MSX l-methionine-dl-sulfoximine - PMS N-methylphenazinium methylsulfate - MSF l-methionine sulfone  相似文献   

5.
Phaeodactylum tricornutum Bohlin grew well withL-methionine-DL-sulfoximine (MSX) as sole nitrogen source. Such growth helps to explain the lack of effect of MSX on ammonium assimilation by this organism. Methylammonium inhibited growth with nitrate or MSX as sole nitrogen source but not growth on ammonium. Methylammonium could not be metabolised byP. tricornutum but was accumulated in the cells, the concentration factor sometimes approaching 25,000. Ammonium addition, but not that of MSX or nitrate, displaced methylammonium from the cells and this displacement was followed by resumption of growth. Both methylammonium and ammonium inhibited the uptake of nitrate and nitrite by the cells but inhibition by methylammonium, in comparison with that by ammonium, required a higher concentration and a longer time to develop. Inhibition by methylammonium is shown to be associated with its accumulation by the cells. Methylammonium also prevented the disappearance of nitrate from the interior of the cells (presumably by nitrate assimilation) whereas ammonium did not. It is concluded that methylammonium and ammonium differ in the ways in which they inhibit nitrate metabolism inP. tricornutum.Abbreviation MSX L-methionine-DL-sulfoximine  相似文献   

6.
Anti-glutamine synthetase serum was raised in rabbits by injecting purified glutamine synthetase (GS) of the phototrophic bacterium Rhodopseudomonas capsulata E1F1. The antibodies were purified to monospecificity by immunoaffinity chromatography in GS-sepharose gel. These anti-GS antibodies were used to measure the antigen levels in crude extracts from bacteria, grown phototrophically with dinitrogen, nitrate, nitrite, ammonia, glutamate, glutamine or alanine as nitrogen sources. The amount of GS detected by rocket immunoelectrophoresis was proportional to Mn2+-dependent transferase activity measured in the crude extracts. Addition of GS inhibitor l-methionine-d,l-sulfoximine (MSX) to the actively growing cells promoted increased antigen levels, that were not found in the presence of glutamine or chloramphenicol. The ammonia-induced decrease in GS relative levels was reverted by MSX. GS levels remained constant when phototrophically growing cells were kept in the dark.Abbreviations GS glutamine synthetase - MOPS 2-(N-morpholine) propane sulfonate - MSX l-methionine-d,l-sulfoximine  相似文献   

7.
Rhodobacter capsulatus strains E1F1 and B10 and Rhodobacter sphaeroides DSM 158 did not use hydroxylamine as nitrogen source for growth but metabolized it mainly through the glutamine synthetase reaction. Hydroxylamine had a high toxicity for cells growing either under phototrophic or dark-aerobic conditions. l-methionine-d,l-sulfoximine partially inhibited hydroxylamine uptake and increased the inhibition time of nitrogenase activity by this nitrogen compound. Nitric oxide was also a powerful inhibitor of nitrogenase in intact cells of R. capsulatus. Since low amounts of NO were produced from hydroxylamine, short-term inhibition of nitrogenase in the presence of this compound could be mediated in vivo by nitric oxide.Abbreviations GS glutamine synthetase - MSX l-methionine-d,l-sulfoximine - MTA mixed alkyltrimethylammonium bromide  相似文献   

8.
The cyanobacterium Anabaena variabilis showed a pH dependent uptake of ethylenediamine. No uptake of ethylenediamine was detected at pH 7.0. At higher pH values (e.g. pH 8.0 and pH 9.0) accumulation did occur and was attributed to diffusion of uncharged ethylenediamine in response to a pH gradient. A biphasic pattern of uptake was observed at these higher pH values. Treatment with l-methionine-d,l-sulphoximine (MSX) to inactivate glutamine synthetase (GS) inhibited the second slower phase of uptake without any significant alteration of the initial uptake. Therefore for sustained uptake, metabolism of ethylenediamine via GS was required. NH 4 + did not alter the uptake of ethylenediamine. Ethylenediamine was converted in the second phase of uptake to an analogue of glutamine which could not be detected in uptake experiments at pH 7.0 or in uptake experiments at pH 9.0 following pretreatment of cells with MSX. Ethylenediamine treatment inhibited nitrogenase activity and this inhibition was greatest at high pH values.Abbreviations EDA 1,2-diaminoethane (ethylenediamine) - GS glutamine synthetase - HEPES 4-(2-hydroxyethyl)-1 piperazine ethanesulphonic acid - MSX l-methionine-dl-sulphoximine - membrane potential - Tricine N-tris(hydroxymethyl) methylglycine  相似文献   

9.
In the presnet studies with whole cells and extracts of the photosynthetic bacterium Rhodopseudomonas capsulata the rapid inhibition of nitrogenase dependent activities (i.e. N2-fixation acetylene reduction, or photoproduction of H2) by ammonia was investigated. The results suggest, that the regulation of the nitrogenase activity by NH 4 + in R. capsulata is mediated by glutamine synthetase (GS). (i) The glutamate analogue methionine sulfoximine (MSX) inhibited GS in situ and in vitro, and simultaneously prevented nitrogenase activity in vivo. (ii) When added to growing cultures ammonia caused rapid adenylylation of GS whereas MSX abolished the activity of both the adenylylated and unadenylylated form of the enzyme. (iii) Recommencement of H2 production due to an exhaustion of ammonia coincided with the deadenylylation of GS. (iv) In extracts, the nitrogenase was found to be inactive only when NH 4 + or MSX were added to intact cells. Subsequently the cells had to be treated with cetyltrimethylammonium bromide (CTAB). (v) In extracts the nitrogenase activity declined linearily with an increase of the ration of adenylylated vs. deadenylylated GS. A mechanism for inhibition of nitrogenase activity by ammonia and MSX is discussed.Abbreviations BSA bovin serum albumine - CTAB cetyltrimethylammonium bromide - GOGAT l-glutamine: 2-oxoglutarate amino transferase - GS glutamine synthetase - HEPES N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid - MSX l-methionine-d,l-sulfoximine  相似文献   

10.
When N2-grown cells ofAnabaena cylindrica were exposed to ammonia (50 M to 5 mM) in the dark, the size of the ATP pool was reduced by 40% within 1 min, but restored after 5 or 6 min. The decrease in ATP was accompanied by increases in ADP and AMP, while the total adenylate content remained unaltered. The ammonia-induced change in the ATP pool was completely eliminated when algal cells were treated withl-methionine-dl-sulfoximine, an inhibitor of glutamine synthesis. These results suggest that ammonia is rapidly assimilated through the pathway mediated by glutamine synthetase accompanied by reduction of the ATP pool.Abbreviations GS Glutamine synthetase - MSX l-methionine-dl-sulfoximine - CCCP carbonyl cyanidem-chlorophenyl-hydrazone  相似文献   

11.
We present evidence, for the first time, of the occurrence of a transport system common for amino acid methionine, and methionine/glutamate analogues l-methionine-dl-sulfoximine (MSX) and phosphinothricin (PPT) in cyanobacterium Nostoc muscorum. Methionine, which is toxic to cyanobacterium, enhanced its nitrogenase activity at lower concentrations. The cyanobacterium showed a biphasic pattern of methionine uptake activity that was competitively inhibited by the amino acids alanine, isoleucine, leucine, phenylalanine, proline, valine, glutamine, and asparagine. The methionine/glutamate analogue-resistant N. muscorum strains (MSX-R and PPT-R strains) also showed methionine-resistant phenotype accompanied by a drastic decrease in 35S methionine uptake activity. Treatment of protein extracts from these mutant strains with MSX and PPT reduced biosynthetic glutamine synthetase (GS) activity only in vitro and not in vivo. This finding implicated that MSX- and PPT-R phenotypes may have arisen due to a defect in their MSX and PPT transport activity. The simultaneous decrease in methionine uptake activity and in vitro sensitivity toward MSX and PPT of GS protein in MSX- and PPT-R strains indicated that methionine, MSX, and PPT have a common transport system that is shared by other amino acids as well in N. muscorum. Such information can become useful for isolation of methionine-producing cyanobacterial strains.  相似文献   

12.
The intracellular ratio of 2-oxoglutarate to glutamine has been analyzed under nutritional conditions leading to different activity levels of nitrate-assimilating enzymes in Phormidium laminosum (Agardh) Gom. This non-N2-fixing cyanobacterium adapted to the available nitrogen source by modifying its nitrate reductase (NR; EC 1.7.7.2), nitrite reductase (NiR; EC 1.7.7.1) and glutamine synthetase (GS; EC 6.3.1.2) activities. The 2-oxoglutarate/glutamine ratio was similar in cells adapted to grow with nitrate or ammonium. However, metabolic conditions that increased this ratio [i.e., nitrogen starvation or l-methionine-d,l-sulfoximine (MSX) treatment] corresponded to high activity levels of NR, NiR, GS (except in MSX-treated cells) and glutamate synthase (GOGAT; EC 1.4.7.1). By contrast, metabolic conditions that diminished this ratio (i.e., addition of ammonium to nitrate-growing cells or addition of nitrate or ammonium to nitrogen-starved cells) resulted in low activity levels. The variation in the 2-oxoglutarate/glutamine ratio preceded the changes in enzyme activities. These results suggest that changes in the 2-oxoglutarate/glutamine ratio could be the signal that triggers the adaptation of P. laminosum cells to variations in the available nitrogen source, as occurs in enterobacteria.Abbreviations Chl chlorophyll - GOGAT ferredoxin-dependent glutamate synthase (EC 1.4.7.1) - GS glutamine synthetase (EC 6.3.1.2) - MSX l-methionine-d,l-sulfoximine - NiR nitrite reductase (EC 1.7.7.1) - NR nitrate reductase (EC 1.7.7.2) - TP total protein This work has been partially supported by grants from the Spanish Ministry of Education and Science (DGICYT PB88-0300 and PB92-0464) and the University of the Basque Country (042.310-EC203/94). M.I.T. was the recipient of a fellowship from the Basque Government.  相似文献   

13.
l-Methionine-dl-sulfoximine (MSX) stimulated nitrate uptake but inhibited14CO2 fixation and O2 evolution inAnabaena doliolum. Nitrate uptake was inhibited by ammonium (NH 4 + ) in the absence of MSX, but not in the presence of MSX. Glutamine or a derivative of it appears to be the actual negative effector of nitrate utilization. In presence of nitrate, MSX-treated cells ofA. doliolum evolve more O2 than do untreated cells. Our results suggest a close relation between photoassimilation of carbon and utilization of nitrogen.  相似文献   

14.
Incubation in the dark of photoautotrophically grown N2-fixing heterocystous cyanobacteria leads to a loss of nitrogenase activity. Original levels of nitrogenase activity are rapidly regained upon re-illumination of the filaments, in a process dependent on de novo protein synthesis. Ammonia, acting indirectly through some of its metabolic derivatives, inhibits the light-promoted development of nitrogenase activity in filaments of Anabaena sp. ATCC 33047 and several other cyanobacteria containing mature heterocysts. The ammonia-mediated control system is also operative in N2-fixing filaments in the absence of any added source of combined nitrogen, with the ammonia resulting from N2-fixation already partially inhibiting full expression of nitrogenase. High nitrogenase levels, about two-fold higher than those in normal N2-fixing Anabaena sp. ATCC 33047, are found in cell suspensions which have been treated with the glutamine synthetase inhibitor l-methionine-d,l-sulfoximine or subjected to nitrogen starvation. Filaments treated in either way are insensitive to the ammonia-promoted inhibition of nitrogenase development, although this insensitivity is only transitory for the nitrogen-starved filaments, which become ammonia-sensitive once they regain their normal nitrogen status.Abbreviations Chl chlorophyll - EDTA ethylenediaminetetraacetic acid - MSX l-methionine-d,l-sulfoximine  相似文献   

15.
Urate was taken up at a negligible rate by Chlamydomonas reinhardtii cells grown on ammonium and transferred to media containing urate plus ammonium or urate plus chloral hydrate or cycloheximide. Addition of ammonium to cells actively consuming urate produced a rapid inhibition of urate uptake whereas the intracellular oxidation of urate was unaffected. Methylammonium but not glutamine or glutamate inhibited urate uptake. Addition of l-methionine-dl-sulfoximine to cells actively consuming urate provoked ammonium excretion, which was accompanied by a rapid inhibition of urate uptake. In cells growing on urate and exhibiting noticeable levels of nitrite-reductase activity, nitrite caused a sudden inhibition of urate uptake whereas nitrate required a time to induce nitrate reductase and to exert its inhibitory effect on uptake. The urate-uptake system did not require urate for induction since the urate-uptake capacity appeared in nitrogen-starved cells. From these results it is concluded that, in Chlamydomonas reinhardtii, ammonium inhibits urate uptake and also acts as co-repressor of the uptake system.  相似文献   

16.
Addition ofl-methionine-dl-sulphoximine to cells ofCyanidium caldarium brings about a loss of glutamine synthetase activity. Concomitantly ammonia assimilation is prevented.Under physiological conditions nitrate reductase [NAD(P)H: nitrate oxidoreductase EC 1.6.6.2] is reversibly converted into an inactive enzyme upon addition of ammonia. In the presence of methionine sulphoximine, when glutamine synthetase activity is lost, nitrate reductase is no longer inactivated by ammonia. It is suggested that ammonia itself is not the actual effector of nitrate reductase inactivation.Concomitantly with the failure of nitrate reductase to undergo ammonia-inactivation, in the presence of methionine sulphoximine nitrate reduction is an uncontrolled process, thus, in media with nitrate ammonia continues to be produced and excreted into the external medium at a constant rate.Abbreviations NR Nitrate reductase - GS Glutamine synthetase - GOGAT Glutamate syntase - MSX l-methionine-dl-sulphoximine  相似文献   

17.
Singh  Surendra  Bisen  P. S. 《Current microbiology》1994,29(6):319-322
The role of intracellular glutamine concentration in the regulation of14C-glutamine uptake was studied in a diazotrophic cyanobacteriumAnabaena 7120. The uptake pattern was found to be biphasic, consisting of a rapid first phase lasting up to 60 s followed by a slower second phase. Azaserine, which could not inhibit in vitro and in vivo glutamine synthetase (GS) activity effectively, inhibited the14C-glutamine uptake. Glutamine uptake was also not significantly affected when glutamate, methylglutamate, aspartate, arginine, lysine, hydroxylysine, ornithine, and GS inhibitor,L-methionine-DL-sulfoximine (MSX) were simultaneously available during uptake assay, suggesting that glutamine uptake takes place via a general amino acid permease which does not, however, transport basic and acidic amino acids. The azaserine-treated cells had increased and decreased levels of glutamine and glutamate, respectively, suggesting that the increased intracellular glutamine level is responsible for the inhibition of14C-glutamine uptake and provides evidence here for the role of an intracellular glutamine pool in the regulation of14C-glutamine uptake inAnabaena 7120.  相似文献   

18.
The photosynthetic purple non-sulfur nitrate-assimilating bacteriumRhodobacter capsulatus E1F1 has an adaptive nitrate reductase activity inducible by either nitrate or nitrite and molybdenum traces. Nitrate reductase induction by nitrate did not occur in media with nitrate and ammonium, which showed no effect if nitrite was the inductor instead of nitrate or in the presence ofl-methionine-dl-sulfoximine (MSX) plus nitrate. In vivo, tungstate inhibited nitrate reductase activity, and this was not recovered upon addition of molybdenum unless de novo protein synthesis took place. Nitrate reductase was also repressed in nitrogen-starved cells or after the addition of azaserine to cells growing phototrophically with nitrate. Moreover, higher rates of nitrate reductase induction and nitrite excretion were found in illuminated cells grown with nitrate under air than in those grown under argon.  相似文献   

19.
Summary Ethylenediamine (EDA) is toxic to the cyanobacterium Anabaena variabilis and inhibits nitrogenase activity. The inhibition of nitrogenase was prevented by pretreatment of cells with l-methionine-d,l-sulphoximine (MSX). Mutant strains of Anabaena variabilis (ED81, ED92), resistant to EDA, had low levels of glutamine synthetase (GS) biosynthetic activity compared with the wild type strain. ED92 had a low level of GS protein whereas ED81 had a similar level to that of the parent strain as estimated using antibodies against GS. Both strains fixed N2 and liberated NH4 + into the media. Following immobilization of the mutant strains, sustained photoproduction of NH4 + was obtained in air-lift reactors at rates of up to 50 mol NH4 + mg chl a–1 h–1, which were comparable to the rates obtained when immobilized cyanobacteria were treated with MSX.Abbreviations EDA 1,2-diaminoethane (ethylenediamine) - GS glutamine synthetase - MSX l-methionine-d,l-sulphoximine  相似文献   

20.
Anabaena azollae, a presumptive isolate from Azolla filiculoides, was immobilized in polyurethane foam, hydrophilic polyvinyl foam and alginate. When viewed by low-temperature scanning electron microscopy a thick mucilage layer covered the surface of both cells and matrix; this closely resembles the mode of attachment of the symbiont Anabaena in the Azolla leaf cavity. The heterocyst frequency of the immobilized A. azollae doubled relative to free-living cells and reached a level of 14–17%. Immobilization induced increases in both hydrogen production via nitrogenase or hydrogenase and in the rates and stabilization of acetylene reduction (N2-fixation). Ammonia production by immobilized cells with L-methionine-D,L-sulfoximine (MSX) is greater than that of freeliving cells. Immobilized cells without MSX were, however, able to excrete ammonium at lower rates thus emulating the characteristic of the symbiotic cyanobacteria (A. azollae) in the leaf cavity of Azolla.Abbreviations Chl chlorophyll - GS glutamine synthetase - MSX L-methionine-D,L-sulfoximine - SEM scanning electron microscopy - PU polyurethane - PV polyvinyl  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号