首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Production of cellulase by Trichoderma.   总被引:6,自引:0,他引:6  
The cellulase complex in T. viride is inducible. For large-scale enzyme production the fungus should be cultured on media containing cellulose. The cellulase enzymes are respressible. To produce and maintain best cellulase yields cultural conditions which lead to carbohydrate consumption in excess of cellular needs should be avoided. With the present mutant (QM9414) extracellular enzyme preparations having 1.6 FP units/ml and 1.6 mg protein/ml have been obtained within four to five days in submerged fermentation. Such preparations are capable of producing a 5% sugar solution when mixed with 10% ball milled cellulose and incubated 24 hr at 50 degrees C. Further improvements of cellulase yields are being sought by continued mutagenesis and increased nutrient levels in the growth medium.  相似文献   

2.
The production of the extracellular nuclease secreted by Staphylococcus aureus (Foggi strain) was studied in a fermentor in an attempt to improve yield and allow large-scale production of the enzyme. In shake flask cultures, 600 units/mL of the enzyme were produced routinely. However, only 450 units/mL of the enzyme at best were obtained in a small-scale fermentor (3 L). The supplementation of the air supply to the fermentor with carbon dioxide [20% (v/v)] increased levels of enzyme in the culture medium to 770 units/mL. Subsequently, this result was reproduced in larger fermentors (10 and 150 L). The possible mechanisms of the effect of carbon dioxide upon the growth of Staphylococcus aureus (Foggi) and the production of the enzyme are discussed.  相似文献   

3.
D-Hydantoinases (E.C.3.5.2.2) are commercially valuable enzymes involved in the production of D-amino acids. However, commercial exploitation of the biological process is rare, mainly because sufficient details are not available on the efficient production of these enzymes by microorganisms. In the present study, Agrobacterium radiobacter was used as the source of D-hydantoinase and its production was optimized with inexpensive carbon and nitrogen sources. The four media components selected to study their effect on biomass and/or enzyme activities were molasses, ammonium nitrate, sodium di-hydrogen orthophosphate, and manganese chloride. With the use of an empirical modeling technique (response surface method), we have optimized both biomass and enzyme production in this organism, with a minimal number of batches. Experiments were performed with optimized media components to validate the model. The maximum level of enzyme and biomass obtained was 35 U/mL and 1.69 mg/mL, respectively. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 148-154, 1997.  相似文献   

4.
Summary A β-galactosidase from Thermotoga maritima produced galacto-oligosaccharides (GOS) from lactose by transgalactosylation when expressed in Escherichia coli. The enzyme activity for GOS production was maximal at pH 6.0 and 90 °C. In thermal stability experiments, the enzyme followed first-order kinetics of pH and thermal inactivation, and half-lives at pH 5.0, pH 8.0, 80 °C, and 95 °C were 27 h, 82 h, 41 h, and 14 min, respectively, suggesting that the enzyme was stable below 80 °C and in the pH range of 5.0–8.0. Mn2+ was the most effective divalent cation for GOS production. Cu2+ and EDTA inhibited more than 84% of enzyme activity. GOS production increased with increasing lactose concentrations and peaked at 500 g lactose/l. Among tested enzyme concentrations, the highest production of GOS was obtained at 1.5 units enzyme/ml. Under the optimal conditions of pH 6.0, 80 °C, 500 g lactose/l, and 1.5 units enzyme/ml, GOS production was 91 g/l for 300 min, with a GOS productivity of 18.2 g/l · h and a conversion yield of GOS to lactose of 18%.  相似文献   

5.
Steam-exploded aspen has been examined as a candidate feedstock for both cellulose production and enzymatic hydrolysis of wood. Batch and fed-batch cultivation methods were evaluated and compared with previous experiments using ball-milled, crystalline cellulose (Solka Floe). Batch cultivation of Trichoderma reesei Rut C-30 on 9 wt% water-washed aspen yielded enzyme productivities and activities comparable to those obtained on Solka Floe (40 FP IU/L-h; 7. 5 FP IU/mL). Fed-batch cultivation of Rut C-30 resulted in higher enzyme productivities and tilers than batch cultivation (50 FP IU/L-h; 15 FP IU/mL). However, the overall enzyme production performance was lower than on Solka Floe at comparable cellulose feeding rates and concentrations. This may be due to the accumulation of steam explosion by-products and lignin in the fermentor.The hydroiysis of water-washed steam-exploded aspen was performed at different enzyme loadings and wood concentrations. Glucose production, using 10 and 15wt% suspension, showed that while glucose concentration increased with wood load, the yield of glucose derived from cellulose decreased. With 10wt% suspensions, it was possible to obtain a cellous conversion to glucose above 95%. Low cellulose levels in the hydrolyzates indicated that the filter paper activity ratios (approximately 1.5), a significant result since the fungus was grown exclusively on wood. mIt also suggested that the observed yield decrease is more likely to be caused by glucose than cellobiose inhibition of the enzymes.  相似文献   

6.
Production of pectinase bySclerotium rolfsii was studied under submerged conditions. A 7.1-fold increase in the production of pectinase was obtained by optimizing the culture conditions. Pectinase was obtained in good yields only when pectin was used as carbon source, best at initial pH between 6 and 7. The enzyme was not induced on sorbose, lactose, mannitol, glycerol, maltose, fructose or raffinose and growth was poor on these substrates. Incorporation of corn-steep liquor in the medium containing pectin increased the production of the enzyme by 45%. Maximum yield of pectinase obtained was 500 nkat/mL.  相似文献   

7.
The anaerobic fungus Neocallimastix sp. strain L2, isolated from the feces of a llama, was tested for growth on a range of soluble and insoluble carbohydrate substrates. The fungus was able to ferment glucose, cellobiose, fructose, lactose, maltose, sucrose, soluble starch, inulin, filter paper cellulose, and Avicel. No growth was observed on arabinose, galactose, mannose, ribose, xylose, sorbitol, pectin, xylan, glycerol, citrate, soya, and wheat bran. The fermentation products after growth were hydrogen, formate, acetate, ethanol, and lactate. The fermentation pattern was dependent on the carbon source. In general, higher hydrogen production resulted in decreased formation of lactate and ethanol. Recovery of the fermented carbon in products at the end of growth ranged from 50% to 80%. (Hemi)cellulolytic enzyme activities were affected by the carbon source. Highest activities were found in filtrates from cultures grown on cellulose. Growing the fungus on inulin and lactose yielded the lowest cellulolytic activities. Highest specific activities for avicelase, endoglucanase, β-glucosidase, and xylanase were obtained with Avicel as the substrate for growth (0.29, 5.9, 0.57, and 13 IU · mg−1 protein, respectively). Endoglucanase activity banding patterns after SDS-PAGE were very similar for all substrates. Minor differences indicated that enzyme activities may in part be the result of secretion of different sets of isoenzymes. Received: 10 July 1996 / Accepted: 22 July 1996  相似文献   

8.
The use of sugarcane bagasse and grass as low cost raw material for xylanase production by Bacillus circulans D1 in submerged fermentation was investigated. The microorganism was cultivated in a mineral medium containing hydrolysate of bagasse or grass as carbon source. High production of enzyme was obtained during growth in media with bagasse hydrolysates (8.4 U/mL) and in media with grass hydrolysates (7.5 U/mL). Xylanase production in media with hydrolysates was very close to that obtained in xylan containing media (7.0 U/mL) and this fact confirm the feasibility of using this agro-industrial byproducts by B. circulans D1 as an alternative to save costs on the enzyme production process.  相似文献   

9.
A wild strain of schizophyllum commune (Fr:Fr:) isolated in Bangladesh produced cellulase and xyianase in high yields as well as the exobiopolymer schizophyllan. It was found experimentally that concentrations of 4% Avicel, 3.5% peptone, and 0.5% Ca(NO(3))(2).4H(2)O were optimal for growth and product formation. Bacto-peptone was found to be the most suitable substrate of a number of casein, mycological, and meat peptone preparations for enzyme production. Young plate-culture inocula (4 days) were found to be better than comparatively aged fungal cultures (14 days). With the optimized medium, 5 units filter paper (FP) cellulase, 1244 units xylanase, 108 units beta-glucosidase, and 65 units of carboxymethyl (CM) cellulase per mL culture filtrate were obtained in shake flasks. In a laboratory fermentor the respective enzyme activities were 4.5 units FP-cellulase, 1200 units xylanase, 100 units beta-glucosidase, and 60 units CM-cellulase per mL culture filtrate. A biopolymer, reported to be active against can cerous cells, was an additional product in addition to the enzymes.  相似文献   

10.
Polyurethane foam and nylon-web carriers were compared for simultaneous production of endo-1, 4-β-glucanase and xylanase by immobilizedTrichoderma reesei on a medium based on lactose (27 g/l), cellulose (3 g/l) and sorbose (0.3 g/l). Nylon sheet with 1.2 cm2 carrier surface/ml medium was superior to the others, and it was selected for further studies. The carbon source had a marked effect on enzyme production by the immobilized fungus. With pure cellulose (10 g/l) as substrate, the maximum endoglucanase activity was 690 nkat/ml and xylanase activity 4800 nkat/ml. Supplementation with 0.5 g/l of sorbose resulted in an increase in both endoglucanase and xylanase activities in all media studied. A more detailed study on the effect of sorbose on a lactose(7 g/l)-and cellulose(3 g/l)-based medium revealed a clear optimum sorbose concentration of 1.5 g/l, with a maximum endoglucanase activity of 660 nkat/ml, xylanase activity of 3670 nkat/ml, and filter-paper activity (overall cellulolytic activity) of 2.0 filter-paper units/ml. However, the addition of 1.5 g/l sorbose to the pure-cellulose(10 g/l)-based medium resulted in a slight decrease in the enzyme production.  相似文献   

11.
Strains of Trichoderma, particularly T. reesei and its mutants, are good sources of extracellular cellulase suitable for practical saccharification. They secrete a complete cellulase complex containing endo- and exo-glucanases plus β-glucosidase (cellobiase) which act syngergistically to degrade totally even highly resistant crystalline cellulose to soluble sugars. All strains investigated to date are inducible by cellulose, lactose, or sophorose, and all are repressible by glucose. Induction, synthesis and secretion of the β-glucanase enzymes appear to be closely associated. The composition and properties of the enzyme complex are similar regardless of the strain or inducing substrate although quantities of the enzyme secreted by the mutants are higher. Enzyme yields are proportional to initial cellulose concentration. Up to 15 filter paper cellulase units (20 mg of cellulase protein) per ml and productivities up to 80 cellulase units (130 mg cellulase protein) per litre per hour have been attained on 6% cellulose. The economics of glucose production are not yet competitive due to the low specific activity of cellulase (0.6 filter paper cellulase units/mg protein) and poor efficiency (about 15% of predicted sugar levels in 24 h hydrolyses of 10–25% substrate). As hydrolysis proceeds, the enzyme reaction slows due to increasing resistance of the residue, product inhibition, and enzyme inactivation. These problems are being attacked by use of pretreatments to increase the quantity of amorphous cellulose, addition of β-glucosidase to reduce cellobiose inhibition, and studies of means to overcome instability and increase efficiency of the cellulases. Indications are that carbon compounds derived from enzymatic hydrolysis of cellulose will be used as fermentation and chemical feedstocks as soon as the process economics are favourable for such application.  相似文献   

12.
A new low-cost β-galactosidase (lactase) preparation for whey permeate saccharification was developed and characterized. A biocatalyst with a lactase activity of 10 U/mg, a low transgalactosylase activity and a protein content of 0.22 mg protein/mg was obtained from a fermenter culture of the fungus Penicillium notatum. Factors influencing the enzymatic hydrolysis of lactose, such as reaction time, pH, temperature and enzyme and substrate concentration were standardized to maximize sugar yield from whey permeate. Thus, a 98.1% conversion of 5% lactose in whey permeate to sweet (glucose-galactose) syrup was reached in 48 h using 650 β-galactosidase units/g hydrolyzed substrate. After the immobilization of the acid β-galactosidase from Penicillium notatum on silanized porous glass modified by glutaraldehyde binding, more than 90% of the activity was retained. The marked shifts in the pH value (from 4.0 to 5.0) and optimum temperatures (from 50°C to 60°C) of the solid-phase enzyme were observed and discussed. The immobilized preparation showed high catalytic activity and stability at wider pH and temperature ranges than those of the free enzyme, and under the best operating conditions (lactose, 5%; β-galactosidase, 610–650 U/g lactose; pH 5.0; temperature 55°C), a high efficiency of lactose saccharification (84–88%) in whey permeate was achieved when lactolysis was performed both in a batch process and in a recycling packed-bed bioreactor. It seems that the promising results obtained during the assays performed on a laboratory scale make this immobilizate a new and very viable preparation of β-galactosidase for application in the processing of whey and whey permeates.  相似文献   

13.
Strains of Saccharomyces cerevisiae transformed with a multicopy expression vector bearing both the Escherichia coli beta-galactosidase gene under the control of the upstream activating sequence of the GAL1-10 genes and the GAL4 activator gene release part of beta-galactosidase in the growth medium. This release is due to cell lysis of the older mother cells; the enzyme maintains its activity in buffered growth media. Fermentation studies with transformed yeast strains showed that the release of beta-galactosidase allowed an efficient growth on buffered media containing lactose as carbon source as well as on whey-based media. The transformed strains utilized up to 95% of the lactose and a high growth yield was obtained in rich media. High productions of ethanol were also observed in stationary phase after growth in lactose minimal media.  相似文献   

14.
Verticillium albo-atrum grew on lactose-containing culture media only after a prolonged lag phase. The intracellular specific activity of β-galactosidase [EC 3.2.1.23] increased 40–200 times during he lag phase. The β-galactosidase was induced by lactose and to a lesser degree by galactose. The appearance of the enzyme in lactose cultures was decreased by cycloheximide. Glucose and other readily metabolized carbon sources were effective repressors of β-galactosidase production. The production of β-galactosidase therefore appeared under control by lactose induction and catabolite repression.  相似文献   

15.
The enzyme beta-galactosidase (EC 3.2.1.23) from Aspergillus niger was purified and resolved into three multiple forms, using molecular sieving, ion-exchange, an hydrophobic chromatography. The isolated enzyme forms accounted for 83%, 8%, and 9% of the total beta-galactosidase activity, respectively. They were glycoproteins with estimated molecular weights of 124,000, 150,000 and 173,000, isoelectric points of about 4.6, and pH optima between 2.5 and 4.0. Amino acid and carbohydrate analyses showed that multiplicity was mainly due to dissimilar carbohydrate contents (about 12.5%, 20.5% and 29% neutral carbohydrates, respectively). The multiple form pattern might depend on the culture conditions. The beta-galactosidase forms were heat-stable up to about 60 degrees C. The Km values for lactose ranged from 85 mM to 125 mM, whereas those for the synthetic substrate o-nitrophenyl-beta-D-galactopyranoside were equal to about 2.4 mM. The V values obtained at 30 degrees C for lactose and o-nitrophenyl-beta-D-galactopyranoside were 104 units/mg enzyme protein and 121 units/mg enzyme protein, respectively (weighted averages for the three enzyme forms). The slight reactional dissimilarities between the three enzyme forms are unlikely to be physiologically relevant. The biological significance of A. niger beta-galactosidase multiplicity might be related to the observed differences in carbohydrate content, as suggested by recent reports on other microbial glycoprotein enzymes.  相似文献   

16.
In view of the increase in Saccharomyces cerevisiae mannan content, the culture medium and condition for S. cerevisiae were optimized in this study. The influence of culture medium ingredients such as carbon and nitrogen sources, inorganic ion, and enzyme activator on mannan production were evaluated using factional design. The mathematical model was established by the quadratic rotary combination design through response surface analysis. The optimized concentrations of culture medium were determined as follows: 4.98 g/100 mL, sucrose; 4.39 g/100 mL, soybean peptone; 3.10 g/100 mL, yeast extract; and 2.21 g/100 mL, glycerol. The optimized culture medium increased mannan production from 82.7 ± 3.4 mg/100 mL to 162.53 ± 3.47 mg/100 mL. The influence of original pH, inoculum size, temperature, and media volume on mannan production was evaluated and confirmed by orthogonale experimental design, with the order of effect as follows: media volume > temperature > initial pH > inoculation size. The optimized culture condition was pH, 5; inoculum size, 5 ml; temperature, 32°C; and media volume, 40 mL. The maximum mannan production increased to 258.5 ± 9.1 mg/100 mL at the optimum culture condition. It was evident that the mannan production was affected significantly by culture medium and condition optimization (p < 0.01).  相似文献   

17.
The fermentation of 1.0% untreated bagasse under optimum cultural and nutritional conditions with Aspergillus terreus GN1 indicated that the maximum rate of protein and cellulase production could be obtained during three days of submerged fermentation. Even though 16.4% protein recovery, 0.55 units CMCase/mL, and 0.027 FPase units/mL were obtained on the seventh day, the rates of increase in protein recovery and cellulase production were slower than those obtained up to these days, which were 14.3% protein recovery, 0.45 units CMCase/mL, and 0.019 units FPase/mL. There was an initial lag in the utilization of cellulose up to two days due to the utilization of the water-soluble carbohydrate present in untreated bagasse. Cellulose utilization and water-soluble carbohydrate content during fermentation were correlated with protein recovery and enzyme production. The protein and cellulase production during three days fermentation with 1.0% untreated and treated bagasse were compared and the protein content of the total biomass was calculated and treated bagasse were compared and the protein content of the biomass was calculated into constituent protein contributed by the fungal mycelium and the under graded bagasse. The total biomass recovered with untreated and treated bagasse was 1020 and 820 mg/g bagasse substrate, respectively, and contained 14.3 and 20.6% crude protein, respectively. The contribution of fungal biomass and under graded bagasse was 309 and 711, and 373 and 447 mg/g untreated and treated bagasse substrates, respectively. In an 8-L-flask trial during three days of fermentation, the recovery of SCP and cellulase were 66 g and 32,400 units (Sigma) for treated bagasse and 82 g and 8200 units (Sigma) for untreated bagasse, respectively.  相似文献   

18.
A methodology is described and applied for performing carbon mass balances across cellulase enzyme production processes using both soluble sugar and insoluble cellulose substrates. The fungus Trichoderma reesei was grown on either glucose, lactose, or cellulose in aerobic batch mode, and the evolution of the main carbonaceous components (cell mass, cellulose, soluble protein, adsorbed protein, sugars, and carbon dioxide) was followed. A variety of analytical techniques were utilized to measure these components, including (i) gravimetric analysis, (ii) near-infrared spectroscopy, (iii) bicinchoninic acid based soluble protein measurement, (iv) gas mass spectrometry and flow rate, (v) CHNS/O elemental analyses, and (vi) high-performance liquid chromatography. The combined set of measurements allowed carbon mass balances across the cellulase production process to be assessed to determine the consistency of the underlying kinetic data. Results demonstrate the capability to determine the levels and distribution of all major carbonaceous components during the cellulase production process on both soluble and insoluble substrates. Average carbon mass balance closures were near 100% during early stages (<72 h) of the cultivations using glucose, lactose, or cellulose as the substrates, but carbon mass closures trended high later in the cultivation. Analysis of carbon allocation results suggests that an error in the gas mass flow rate measurement was the primary cause for carbon mass balance closures to exceed 110% late in the process.  相似文献   

19.
Gram quantities of homogeneous glycerokinase have been prepared from the thermophilic bacterium, Bacillus stearothermophilus, using three major steps: precipitation of debris at pH 5.1, ion-exchange chromatography on DEAE-Sephadex, and affinity chromatography on Procion Blue MX-3G-Sepharose. This method is a considerable improvement over conventional techniques; the purified enzyme was obtained with a 40% recovery and a specific activity of 120 units (mumol/min)/mg protein. A modified culture medium enabled yields of 3.4 X 10(6) units of enzyme to be obtained from 400-liter production cultures.  相似文献   

20.
In this study, the optimization of tannase production by solid state fermentation was investigated using cashew apple bagasse (CAB), an inexpensive residue produced by the cashew apple agroindustry, as a substrate. To accomplish this, CAB was enriched with 2.5% (w/w) tannic acid and 2.5% (w/w) ammonium sulphate and then moistened with water (60 mL/100 g of dry CAB). The influence of inoculum concentration (104 to 107 spores/g), temperature (20, 25, 30, and 35°C) and several additional carbon sources (glucose, starch, sucrose, maltose, analytical grade glycerol, and glycerol produced during biodiesel production) on enzyme production by Aspergillus oryzae was then evaluated. Supplementation with maltose and glycerol inhibited tannase synthesis, which resulted in lower enzyme activity. Starch and sucrose supplementation increased enzyme production, but decreased the enzyme productivity. The maximum tannase activity (4.63 units/g of dry substrate) was obtained at 30°C, using 107 spores/g and 1.0% (w/v) sucrose as an additional carbon source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号