首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of simple theoretical models has provided a considerable contribution to our present understanding of the means by which proteins adopt their native fold from the plethora of available unfolded states. A common assumption in building computationally tractable models has been the neglect of stabilizing non-native interactions in the class of models described as "Gō-like." The focus of this study is the characterization of the folding of a number of proteins via a Gō-like model, which aims to map a maximal amount of information reflecting the protein sequence onto a "minimalist" skeleton. This model is shown to contain sufficient information to reproduce the folding transition states of a number of proteins, including topologically analogous proteins that fold via different transition states. Remarkably, these models also demonstrate consistency with the general features of folding transition states thought to be stabilized by non-native interactions. This suggests that native interactions are the primary determinant of most protein folding transition states, and that non-native interactions lead only to local structural perturbations. A prediction is also included for an asymmetrical folding transition state of bacteriophage lambda protein W, which has yet to be subjected to experimental characterization.  相似文献   

2.
The roles of unfolded states of proteins in normal folding and in diseases involving aggregation, as well as the prevalence and regulatory functions of intrinsically disordered proteins, have become increasingly recognized. The structural representation of these disordered states as ensembles of interconverting conformers can therefore provide critical insights. Experimental methods can be used to probe ensemble-averaged structural properties of disordered states and computational approaches generate representative ensembles of conformers using experimental restraints. In particular, NMR and small-angle X-ray scattering provide quantitative data that can readily be incorporated into calculations. These techniques have gleaned structural information about denatured, unfolded and intrinsically disordered proteins. The use of experimental data in different computational approaches, including ensemble molecular dynamics simulations and algorithms that assign populations to pregenerated conformers, has highlighted the presence of both local and long-range structure, and the occurrence of native-like and non-native interactions in unfolded and denatured states. Analysis of the resulting ensembles has suggested important implications of this fluctuating structure for folding, aggregation and binding.  相似文献   

3.
Lipid-protein interactions are known to play a crucial role in structure and physiological activity of integral membrane proteins. However, current technology for membrane protein purification necessitates extraction from the membrane into detergent micelles. Also, due to experimental protocols, most of the data available for membrane proteins is obtained using detergent-solubilized samples. Stable solubilization of membrane proteins is therefore an important issue in biotechnology as well as in biochemistry and structural biology. An understanding of solubilization effects on structural and functional properties of specific proteins is of utmost relevance for the evaluation and interpretation of experimental results. In this study, a comparison of structural and kinetic data obtained for the archaebacterial photoreceptor/transducer complex from Natronomonas pharaonis (NpSRII/NpHtrII) in detergent-solubilized and lipid-reconstituted states is presented. Laser flash photolysis, fluorescence spectroscopy, and electron paramagnetic resonance spectroscopy data reveal considerable influence of solubilization on the photocycle kinetics of the receptor protein and on the structure of the transducer protein. Especially the protein-membrane proximal region and the protein-protein interfacial domains are sensitive towards non-native conditions. These data demonstrate that relevance of biochemical and structural information obtained from solubilized membrane proteins or membrane protein complexes has to be evaluated carefully.  相似文献   

4.
Intrinsically disordered proteins that acquire their three dimensional structures only upon binding to their targets are very important in cellular signal regulation. While experimental studies have been made on the structures of both bound (structured) and unbound (disordered) states, less is known about the actual folding-binding transition. Coarse grained simulations using native-centric (i.e. Gō) potentials have been particularly useful in addressing this problem, given the large search space for IDP binding, but have well-known deficiencies in reproducing the unfolded state structure and dynamics. Here, we investigate the interaction of HIF1α with CBP using a hierarchy of coarse-grained models, in each case matching the binding affinity at 300 K to the experimental value. Starting from a pure Gō-like model based on the native structure of the complex we go on to consider a more realistic model of helix propensity in the HIF1α, and finally the effect of non-native interactions between binding partners. We find structural disorder (i.e."fuzziness") in the bound state of HIF1α in all models which is supported by the results of atomistic simulations. Correcting the over-stabilized helices in the unbound state gives rise to a more cooperative folding-binding transition (destabilizing partially bound intermediates). Adding non-native contacts lowers the free energy barrier for binding to an almost barrierless scenario, leading to higher binding/unbinding rates relative to the other models, in better agreement with the near diffusion-limited binding rates measured experimentally. Transition state structures for the three models are highly disordered, supporting a fly-casting mechanism for binding.  相似文献   

5.
Molecular dynamics simulations are used to probe the properties of non-native states of the protein human alpha-lactalbumin (human alpha-LA) with a detailed atomistic model in an implicit aqueous solvent environment. To sample the conformational space, a biasing force is introduced that increases the radius of gyration relative to the native state and generates a large number of low-energy conformers that differ in terms of their root-mean-square deviation, for a given radius of gyration. The resulting structures are relaxed by unbiased simulations and used as models of the molten globule and partly denatured states of human alpha-LA, based on measured radii of gyration obtained from nuclear magnetic resonance experiments. The ensembles of structures agree in their overall properties with experimental data available for the human alpha-LA molten globule and its more denatured states. In particular, the simulation results show that the native-like fold of the alpha-domain is preserved in the molten globule. Further, a considerable proportion of the antiparallel beta-strand in the beta-domain are present. This indicates that the lack of hydrogen exchange protection found experimentally for the beta-domain is due to rearrangement of the beta-sheet involving transient populations of non-native beta-structures. The simulations also provide details concerning the ensemble of structures that contribute as the molten globule unfolds and shows, in accord with experimental data, that unfolding is not cooperative; i.e. the various structural elements do not unfold simultaneously.  相似文献   

6.
Protein folding assisted by chaperones   总被引:1,自引:0,他引:1  
Molecular chaperones are one of the most important cell defense mechanisms against protein aggregation and misfolding. These specialized proteins bind non-native states of other proteins and assist them in reaching a correctly folded and functional conformation. Chaperones also participate in protein translocation by membranes, in the stabilization of unstable protein conformers and regulatory factors, in the delivery of substrates for proteolysis and in the recovery of proteins from aggregates.  相似文献   

7.
The N-terminal SH3 domain of drk (drkN SH3) is unstable, existing in equilibrium between a folded state (Fexch) and an unfolded state (Uexch) under non-denaturing buffer conditions. Using a15N/2H-labeled sample, long range amide NOEs can be observed in the Uexchstate as a result of reduced relaxation, in some cases correlating protons over 40 residues apart. These long range NOEs disappear upon addition of 2 M guanidinium chloride, demonstrating that there are substantial differences between the Uexchand the guanidine denatured states. Calculations using the long range NOEs of the Uexchstate yield highly compact structures having non-native turns and a non-native buried tryptophan residue. These structures agree with experimental stopped-flow fluorescence data and analytical ultracentrifugation results. Since protein stability depends on the structural and dynamic properties of both the folded and unfolded states, this study provides insights into the stability of the drkN SH3 domain. These results provide the first strong NOE-based evidence for compact unfolded states of proteins and suggest that some unfolded states under physiological conditions have specific interactions leading to compact structures.  相似文献   

8.
Due to their dynamic ensemble nature and a deficiency of experimental restraints, disordered states of proteins are difficult to characterize structurally. Here, we have expanded upon our previous work on the unfolded state of the Drosophila drk N-terminal (drkN) SH3 domain with our program ENSEMBLE, which assigns population weights to pregenerated conformers in order to calculate ensembles of structures whose properties are collectively consistent with experimental measurements. The experimental restraint set has been enlarged with newly measured paramagnetic relaxation enhancements from Cu(2+) bound to an amino terminal Cu(2+)-Ni(2+) binding (ATCUN) motif as well as nuclear Overhauser effect (NOE) and hydrogen exchange data from recent studies. In addition, two new pseudo-energy minimization algorithms have been implemented that have dramatically improved the speed of ENSEMBLE population weight assignment. Finally, we have greatly improved our conformational sampling by utilizing a variety of techniques to generate both random structures and structures that are biased to contain elements of native-like or non-native structure. Although it is not possible to uniquely define a representative structural ensemble, we have been able to assess various properties of the drkN SH3 domain unfolded state by performing ENSEMBLE minimizations of different conformer pools. Specifically, we have found that the experimental restraint set enforces a compact structural distribution that is not consistent with an overall native-like topology but shows preference for local non-native structure in the regions corresponding to the diverging turn and the beta5 strand of the folded state and for local native-like structure in the region corresponding to the beta6 and beta7 strands. We suggest that this approach could be generally useful for the structural characterization of disordered states.  相似文献   

9.
Cooperative unfolding penalties are calculated by statistically evaluating an ensemble of denatured states derived from native structures. The ensemble of denatured states is determined by dividing the native protein into short contiguous segments and defining all possible combinations of native, i.e., interacting, and non-native, i.e., non-interacting, segments. We use a novel knowledge-based scoring function, derived from a set of non-homologous proteins in the Protein Data Bank, to describe the interactions among residues. This procedure is used for the structural identification of cooperative folding cores for four globular proteins: bovine pancreatic trypsin inhibitor, horse heart cytochrome c, French bean plastocyanin, and staphylococcal nuclease. The theoretical folding units are shown to correspond to regions that exhibit enhanced stability against denaturation as determined from experimental hydrogen exchange protection factors. Using a sequence similarity score for related sequences, we show that, in addition to residues necessary for enzymatic function, those amino acids comprising structurally important folding cores are also preferentially conserved during evolution. This implies that the identified folding cores may be part of an array of fundamental structural folding units.  相似文献   

10.
Interest centers here on whether the use of a fixed charge distribution of a protein solute, or a treatment that considers proton-binding equilibria by solving the Poisson equation, is a better approach to discriminate native from non-native conformations of proteins. In this analysis of the charge distribution of 7 proteins, we estimate the solvation free energy contribution to the total free energy by exploring the 2(zeta) possible ionization states of the whole molecule, with zeta being the number of ionizable groups in the amino acid sequence, for every conformation in the ensembles of 7 proteins. As an additional consideration of the role of electrostatic interactions in determining the charge distribution of native folds, we carried out a comparison of alternative charge assignment models for the ionizable residues in a set of 21 native-like proteins. The results of this work indicate that (1) for 6 out of 7 proteins, estimation of solvent polarization based on the Generalized Born model with a fixed charge distribution provides the optimal trade-off between accuracy, with respect to the Poisson equation, and speed when compared to the accessible surface area model; for the seventh protein, consideration of all possible ionization states of the whole molecule appears to be crucial to discriminate the native from non-native conformations; (2) significant differences in the degree of ionization and hence the charge distribution for native folds are found between the different charge models examined; (3) the stability of the native state is determined by a delicate balance of all the energy components, and (4) conformational entropy, and hence the dynamics of folding, may play a crucial role for a successful ab initio protein folding prediction.  相似文献   

11.
Pressure is a thermodynamic variable which is particularly suitable for exploration of the properties of biological macromolecules. For proteins, in particular, denaturation induced by pressure is different from that induced by temperature or denaturants. The response of proteins to pressure changes can provide information on properties of their native and non-native states. This review focuses on molecular dynamics studies of the effect of pressure on detailed atomic models of proteins. It also reports on other theoretical approaches, such as Monte Carlo simulations, which have been used to study simplified models. Another purpose of this review is to try to point out potential future studies that may be both interesting and feasible, with constantly increasing computing power.  相似文献   

12.
A variety of coarse-grained (CG) models exists for simulation of proteins. An outstanding problem is the construction of a CG model with physically accurate conformational energetics rivaling all-atom force fields. In the present work, atomistic simulations of peptide folding and aggregation equilibria are force-matched using multiscale coarse-graining to develop and test a CG interaction potential of general utility for the simulation of proteins of arbitrary sequence. The reduced representation relies on multiple interaction sites to maintain the anisotropic packing and polarity of individual sidechains. CG energy landscapes computed from replica exchange simulations of the folding of Trpzip, Trp-cage and adenylate kinase resemble those of other reduced representations; non-native structures are observed with energies similar to those of the native state. The artifactual stabilization of misfolded states implies that non-native interactions play a deciding role in deviations from ideal funnel-like cooperative folding. The role of surface tension, backbone hydrogen bonding and the smooth pairwise CG landscape is discussed. Ab initio folding aside, the improved treatment of sidechain rotamers results in stability of the native state in constant temperature simulations of Trpzip, Trp-cage, and the open to closed conformational transition of adenylate kinase, illustrating the potential value of the CG force field for simulating protein complexes and transitions between well-defined structural states.  相似文献   

13.
14.
15.
Detailed knowledge of patterns of native species richness, an important component of biodiversity, and non-native species invasions is often lacking even though this knowledge is essential to conservation efforts. However, we cannot afford to wait for complete information on the distribution and abundance of native and harmful invasive species. Using information from counties well surveyed for plants across the USA, we developed models to fill data gaps in poorly surveyed areas by estimating the density (number of species km−2) of native and non-native plant species. Here, we show that native plant species density is non-random, predictable, and is the best predictor of non-native plant species density. We found that eastern agricultural sites and coastal areas are among the most invaded in terms of non-native plant species densities, and that the central USA appears to have the greatest ratio of non-native to native species. These large-scale models could also be applied to smaller spatial scales or other taxa to set priorities for conservation and invasion mitigation, prevention, and control efforts.  相似文献   

16.
The last three C-terminal residues (129-131) of intestinal fatty acid-binding protein (IFABP) participate in four main-chain hydrogen bonds and two electrostatic interactions to sequentially distant backbone and side-chain atoms. To assess if these interactions are involved in the final adjustment of the tertiary structure during folding, we engineered an IFABP variant truncated at residue 128. An additional mutation, Trp-6-->Phe, was introduced to simplify the conformational analysis by optical methods. Although the changes were limited to a small region of the protein surface, they resulted in an IFABP with altered secondary and tertiary structure. Truncated IFABP retains some cooperativity, is monomeric, highly compact, and has the molecular dimensions and shape of the native protein. Our results indicated that residues 129-131 are part of a crucial conformational determinant in which several long-range interactions, essential for the acquisition of the native state, are established. This work suggests that carefully controlled truncation can populate equilibrium non-native states under physiological conditions. These non-native states hold a great promise as experimental models for protein folding.  相似文献   

17.
Delineation of the structural properties of transition states is key to deriving models for protein folding. Here we describe the structures of the transition states of the bacterial immunity proteins Im7 and Im9 obtained by all-atom molecular dynamics simulations with phi value restraints derived from protein engineering experiments. This pair of proteins is of special interest because, at pH 7 and 10 degrees C, Im7 folds via an intermediate while Im9 folds with a two-state transition. The structures of the transition states for Im7 and Im9, together with their radii of gyration and distances from the native state, are similar. The typical distance between any two members of the transition state ensemble of both proteins is large, with that of Im9 nearly twice that of Im7. Thus, a broad range of structures make up the transition state ensembles of these proteins. The ensembles satisfy the set of rather low phi values and yet are consistent with high beta(T) values (> 0.85 for both proteins). For both Im7 and Im9 the inter-helical angles are highly variable in the transition state ensembles, although the native contacts between helices I and IV are well conserved. By measuring the distribution of the accessible surface area for each residue we show that the hydrophobic residues that are buried in the native state remain buried in the transition state, corresponding to a hydrophobic collapse to a relatively ordered globule. The data provide new insights into the structural properties of the transition states of these proteins at an atomic level of detail and show that molecular dynamics simulations with phi value restraints can significantly enhance the knowledge of the transition state ensembles (TSE) provided by the experimental phi values alone.  相似文献   

18.
One of the striking results of protein thermodynamics is that the heat capacity change upon denaturation is large and positive. This change is generally ascribed to the exposure of non-polar groups to water on denaturation, in analogy to the large heat capacity change for the transfer of small non-polar molecules from hydrocarbons to water. Calculations of the heat capacity based on the exposed surface area of the completely unfolded denatured state give good agreement with experimental data. This result is difficult to reconcile with evidence that the heat denatured state in the absence of denaturants is reasonably compact. In this work, sample conformations for the denatured state of truncated CI2 are obtained by use of an effective energy function for proteins in solution. The energy function gives denatured conformations that are compact with radii of gyration that are slightly larger than that of the native state. The model is used to estimate the heat capacity, as well as that of the native state, at 300 and 350 K via finite enthalpy differences. The calculations show that the heat capacity of denaturation can have large positive contributions from non-covalent intraprotein interactions because these interactions change more with temperature in non-native conformations than in the native state. Including this contribution, which has been neglected in empirical surface area models, leads to heat capacities of unfolding for compact denatured states that are consistent with the experimental heat capacity data. Estimates of the stability curve of CI2 made with the effective energy function support the present model.  相似文献   

19.
Stochastic simulations of coarse-grained protein models are used to investigate the propensity to form knots in early stages of protein folding. The study is carried out comparatively for two homologous carbamoyltransferases, a natively-knotted N-acetylornithine carbamoyltransferase (AOTCase) and an unknotted ornithine carbamoyltransferase (OTCase). In addition, two different sets of pairwise amino acid interactions are considered: one promoting exclusively native interactions, and the other additionally including non-native quasi-chemical and electrostatic interactions. With the former model neither protein shows a propensity to form knots. With the additional non-native interactions, knotting propensity remains negligible for the natively-unknotted OTCase while for AOTCase it is much enhanced. Analysis of the trajectories suggests that the different entanglement of the two transcarbamylases follows from the tendency of the C-terminal to point away from (for OTCase) or approach and eventually thread (for AOTCase) other regions of partly-folded protein. The analysis of the OTCase/AOTCase pair clarifies that natively-knotted proteins can spontaneously knot during early folding stages and that non-native sequence-dependent interactions are important for promoting and disfavouring early knotting events.  相似文献   

20.
Many proteins populate collapsed intermediate states during folding. In order to elucidate the nature and importance of these species, we have mapped the structure of the on-pathway intermediate of the four-helix protein, Im7, together with the conformational changes it undergoes as it folds to the native state. Kinetic data for 29 Im7 point mutants show that the intermediate contains three of the four helices found in the native structure, packed around a specific hydrophobic core. However, the intermediate contains many non-native interactions; as a result, hydrophobic interactions become disrupted in the rate-limiting transition state before the final helix docks onto the developing structure. The results of this study support a hierarchical mechanism of protein folding and explain why the misfolding of Im7 occurs. The data also demonstrate that non-native interactions can play a significant role in folding, even for small proteins with simple topologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号