首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ascospore Formation in the Yeast Saccharomyces cerevisiae   总被引:2,自引:0,他引:2       下载免费PDF全文
Sporulation of the baker's yeast Saccharomyces cerevisiae is a response to nutrient depletion that allows a single diploid cell to give rise to four stress-resistant haploid spores. The formation of these spores requires a coordinated reorganization of cellular architecture. The construction of the spores can be broadly divided into two phases. The first is the generation of new membrane compartments within the cell cytoplasm that ultimately give rise to the spore plasma membranes. Proper assembly and growth of these membranes require modification of aspects of the constitutive secretory pathway and cytoskeleton by sporulation-specific functions. In the second phase, each immature spore becomes surrounded by a multilaminar spore wall that provides resistance to environmental stresses. This review focuses on our current understanding of the cellular rearrangements and the genes required in each of these phases to give rise to a wild-type spore.  相似文献   

2.
Neiman AM 《Genetics》2011,189(3):737-765
In response to nitrogen starvation in the presence of a poor carbon source, diploid cells of the yeast Saccharomyces cerevisiae undergo meiosis and package the haploid nuclei produced in meiosis into spores. The formation of spores requires an unusual cell division event in which daughter cells are formed within the cytoplasm of the mother cell. This process involves the de novo generation of two different cellular structures: novel membrane compartments within the cell cytoplasm that give rise to the spore plasma membrane and an extensive spore wall that protects the spore from environmental insults. This article summarizes what is known about the molecular mechanisms controlling spore assembly with particular attention to how constitutive cellular functions are modified to create novel behaviors during this developmental process. Key regulatory points on the sporulation pathway are also discussed as well as the possible role of sporulation in the natural ecology of S. cerevisiae.  相似文献   

3.
Gamma bodies, which are present in the sporangia and gametangia of Allomyces and in its spores, are interpreted as constituting vesicle generating structures. During spore cleavage the mobilization–decay of the gamma bodies leads to vesicle formation; the vesicles appear to fuse to form the axonemal and plasma membrane of the spore. Vesicle formation by the gamma bodies during spore cleavage can be perturbed by phosphate buffer which leads to the formation of myelin–figure arrays of membranes, or by colchicine and benomyl which give rise to large vacuolar structures after gamma body decay. During the motile period of the spores of Allomyces , mobilization of the gamma bodies leads to vacuole formation and the resulting vacuoles fuse with the plasma membrane of the spore and by this means maintain the osmotic balance of the spore. During spore encystment the gamma body decays and forms vesicles which fuse with the plasma membrane of the cyst; these vesicles appear to be instrumental in chitin wall synthesis.  相似文献   

4.
The rosette agent is an obligate intracellular parasite that causes morbidity and mortality in salmonid fish. In laboratory cultures, the spore stage (2-6 microm diam.) replicates in a salmonid cell line by sequential asexual division, giving rise to daughter cells. If infected cell cultures are transferred to distilled water, the spore stage undergoes internal division to give rise to at least 5 cells each of which develops into a uniflagellated zoospore with a body of approximately 2 microm and a flagellum approximately 10 microm long. Zoosporulation does not occur in cell culture medium alone, artificial seawater, or phosphate-buffered saline. This parasite is currently classified as a member of the Class Mesomycetozoea (formerly Ichthyosporea) based on phylogenetic analyses of the small subunit ribosomal DNA of three different isolates from fish. Given these new morphological observations combined with the available molecular phylogenetic data on other mesomycetozoeans, we propose to classify the rosette agent as Sphaerothecum destruens, n. g., n. sp. This new genus has unique features including (1) intracellular development of spore stages in various organs eliciting a host granulomatous response; and (2) the differentiation of mature spores into multiple, flagellated zoospores. Taken together, these characteristics clearly distinguish it from the closely related genera Dermocystidium and Rhinosporidium.  相似文献   

5.
Bacillus subtilis forms both vegetative cells and spores. The fluidity of the membranes in these forms was measured by using fluorescent anisotropy of 1,6‐diphenyl‐1,3,5‐hexatriene (DPH). The spores were more rigid than the vegetative cells, suggesting that the structure of the spores and vegetative cells was different. This difference was thought to be due to the structure of the cell membranes. The anisotrophy of DPH in the cell membranes of spores gave higher values at all temperatures. The anisotrophy of DPH in the cell membranes of vegetative cells was lower than that of the spores and the value depended upon the temperature. Time Domain Reflectometry (TDR) was used to measure the quantities of bound and free water in the vegetative cells and spores. The spores were dehydrated, and the amount of bound and free water in the spores was about two‐thirds of the levels in the vegetative cells. The spores have fewer sugars molecules on their cell surface membranes, but contained as much sugars within the cell. Almost 100 per cent of the vegetative cells wee absorbed toward chitin, but the spores were not absorbed toward it at all. It was felt that the surface membrane of the vegetative cell had a high mobility because it was sugar‐rich, while the surface membrane of the spore showed a lower mobility because there are fewer sugars on the outer membrane. The spores survive in high temperatures because the surface membrane of the spore is tight and has relatively few sugars. Dehydration causes the rigidity of the spores. On the other hand, the vegetative cells are sugar‐ and water‐rich, which makes them more fluid. The difference between the vegetative cells and spores is the glycosylation of their surface membranes. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
A parasite of the muscle of the shrimp Palaemon serratus has been examined by light and electron microscopy. Development occurs among myofibrils and induces ultrastructural alterations of the muscle fibers causing white discoloration. This microsporidian is characterized by uninucleate, later diplokaryotic and di-diplokaryotic meronts. The mother cell develops by rosette-like budding into 8 uninucleate sporoblasts, each containing 3 tape-like filaments attached to the wall that is enclosed in a persistent sporophorous vacuole. Each sporoblast gives rise to a uninucleate spore that possesses 3 elongated tape-like filaments attached to the spore wall, like spore tails. The morphological characters of the spores, redescribed in the present study, suggested that the spores belonged to Inodosporous octospora. The possibility that in the future members of Inodosporus sp. may be considered a new parasite group is discussed.  相似文献   

7.
During spore germination in the fern, Onoclea sensibilis L., the nucleus moves from a central position to one end, and an asymmetrical cell division partitions the spore into two cells of greatly unequal size. The smaller cell differentiates directly into a rhizoid, whereas the larger cell and its derivatives give rise to the prothallus. In the presence of 5 mM caffeine, the nuclei of most of the spores undergo mitotic replication, whereas cell wall formation is blocked. Multinucleate single cells are produced, which are capable of growth, but no rhizoid differentiation occurs. In some cases a partial cell wall is produced, but the nucleus moves through the discontinuity back to the center of the spore, and the enucleate, incompletely partitioned small “cell” fails to differentiate into a rhizoid. In less than 1% of the spores a broad protuberance, whose wall is yellow-brown, is formed in a multinucleate single cell. The color, staining reaction to ruthenium red, and ultrastructural appearance of the protuberance resemble that of the rhizoid wall. It appears that infrequently in the caffeine-treated spores, a feature which is characteristic of rhizoids is expressed, in the absence of asymmetric cell division, in a cell which otherwise is unable to produce a rhizoid. The results are interpreted to mean that the spore has a highly localized, persistent differentiated region. For rhizoid differentiation to occur, a nucleus must be confined in that region – a confinement which normally is accomplished by the geometrically asymmetric first cell division of germination.  相似文献   

8.
THE PARASPORAL BODY OF BACILLUS LATEROSPORUS LAUBACH   总被引:7,自引:5,他引:2       下载免费PDF全文
On sporulation the slender vegetative rods swell and form larger spindle-shaped cells in which the spores are formed. When the spores mature they lie in a lateral position cradled in canoe-shaped parasporal bodies which are highly basophilic and can be differentiated from the surrounding vegetative cell cytoplasm with dilute basic dyes. On completion of sporulation the vegetative cell protoplasm and the cell wall lyse, leaving the spore cradled in its parasporal body. This attachment continues indefinitely on the usual culture medium and even persists after the spores have germinated. In thin sections of sporing cells the bodies are differentiated from the cell protoplasm by differences in structure. Whereas the protoplasm has a granular appearance, in both longitudinal and cross-sections the parasporal body comprises electron-dense lamellae running parallel with the membranes of the spore coat and less electron-dense material in the interstices of the lamellae. The inner surface of the body is contiguous with that of the spore coat as if it were part of the spore, rather than a separate body attached to the spore. The staining reactions of the parasporal body are not consistent with those of any substance described in bacteria. With Giemsa the bodies stain like chromatin, but the Feulgen reaction indicates that they do not contain the requisite nucleic acid. With an aqueous solution of toluidine blue they stain metachromatically, but with an acidified solution the results are variable. Neisser's stain for polyphosphate is negative. The basophilic substance is removed from the body with some organic solvents. This basophilic substance has not been specifically identified with any material seen in ultrathin sections, but it is suggested that it might be the less electron-dense material in the interstices of the lamellar structure. In contrast to the spore coat of B. laterosporus, those of its two relatives B. brevis and B. circulans take up basic stain like the parasporal body. Thin spore sections of these species have shown that the walls are thicker than those surrounding the spores of B. laterosporus, and it is suggested that the outer stainable layer of brevis and circulans spores is an accessory coat which in laterosporus may have been deformed to give a parasporal body.  相似文献   

9.
Washed spore suspensions germinated promptly without prior heat shock in a basal germination solution containingl-leucine.Germination was inhibited by dipicolinic acid. The inhibition was reversed by eitherl-leucine or phosphate.Phosphate accelerated the rate and increased the extent of germination, which was accompanied by an uncommonly large fall in the optical density of the suspension, but phosphate also caused a massive lysis after germination. This was accompanied by a sudden shedding of the spore coats. The suspensions consisted of shrivelled, cellular walls and membranes attached to the empty spore coats.Lysis of the germinated cells was prevented by fairly high concentrations of Ca or Mg.During germination, exogenous Ca we used Ca45 was absorbed by the cells. Both cells and sonically disrupted cellular particles firmly retained the calcium, and evidence suggested that much of the Ca was bound in the cytoplasmic membranes.The cations contained in plain agar enabled spores which germinated on tryptone soya agar plates to develop into colonies; in the corresponding broth medium these spores lysed upon germination.Hypertonic sucrose delayed but did not prevent lysis.  相似文献   

10.
The steady-state fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene incorporated into isolated Bacillus megaterium spore membranes was measured. Compounds capable of triggering spore germination in vivo caused an increase in the anisotropy of diphenylhexatriene. These increases in anisotropy of diphenylhexatriene in spore membranes are likely to represent at least a portion of the trigger mechanism for spore germination based on the following observations. First, there was an exceptional positive correlation between compounds that both triggered germination in vivo and caused changes in anisotropy in vitro. Second. the capacity of membranes to respond to germinants by increases in anisotropy was unique to membranes from spores but disappeared after germination. Third, alteration of spores chemically or genetically to block the in vivo triggering of germination by l-proline also blocked the in vitro anisotropy change with l-proline but not d-glucose. Finally, there was no correlation between the transport activities of specific compounds and the ability of these compounds to either trigger germination or alter the anisotropy of diphenylhexatriene in the membranes. Although we do not known the nature of the molecular interactions giving rise to the anisotropy changes, we hypothesize that they are due to changes in protein conformation that alter protein-protein and/or protein-lipid interactions. Such modifications of membrane structures could account for the rapid release of small molecular weight compounds such as K+ and Ca2+ early in germination.  相似文献   

11.
Morishita M  Engebrecht J 《Genetics》2005,170(4):1561-1574
During sporulation in Saccharomyces cerevisiae, vesicles transported to the vicinity of spindle pole bodies are fused to each other to generate bilayered prospore membranes (PSMs). PSMs encapsulate the haploid nuclei that arise from the meiotic divisions and serve as platforms for spore wall deposition. Membrane trafficking plays an important role in supplying vesicles for these processes. The endocytosis-deficient mutant, end3Delta, sporulated poorly and the spores produced lost resistance to ether vapor, suggesting that END3-mediated endocytosis is important for sporulation. End3p-GFP localized to cell and spore peripheries in vegetative and sporulating cells and colocalized with actin structures. Correspondingly, the actin cytoskeleton appeared aberrant during sporulation in end3Delta. Analysis of meiosis in end3Delta mutants revealed that the meiotic divisions occurred with wild-type kinetics. Furthermore, PSMs were assembled normally. However, the levels of proteins required for spore wall synthesis and components of the spore wall layers at spores were reduced, indicating that end3Delta mutants are defective in spore wall synthesis. Thus, END3-mediated endocytosis is important for spore wall formation. Additionally, cytological analyses suggest that trafficking between the plasma membrane and PSMs is important earlier during sporulation.  相似文献   

12.
Summary During germination of the spore of the sensitive fernOnoclea sensibilis L. the nucleus migrates from a central position to the proximal face and then to one end of the ellipsoidal spore. An asymmetric cell division follows giving rise to a small cell which differentiates immediately into a rhizoid, and a large cell which divides further to give rise to the prothallus. The proximal face of the spore coat is differentiated from the remainder of the spore by its ability to bind nickel ions under certain conditions and by its staining with a sulfide-silver procedure which localizes heavy metals. The inner portion of the exine at the proximal face is differentiated from the outer part by its ability to stain with sulfide-silver at specific periods during germination. The exine at the proximal face also contains pore-like structures 50 nm in diameter which extend from the inner layer of the exine to the outer surface. Sulfide-silver staining material appears to be extruded through the pores at specific periods during germination. The percentage of spores showing nickel-binding and sulfide-silver stainability increases sharply during the first two to four hours of imbibition, then decreases sharply during the following two hours. This is followed by a second rise in staining at 8 to 12 hours of imbibition.The role of the ion-binding sites in the exine is discussed in relation to the stable polarity of the spore.Publishing prior to 1984 asAlix R. Bassel  相似文献   

13.
Differentiation of Dictyostelium spores initiates with rapid encapsulation of prespore cells under the control of cAMP-dependent protein kinase (PKA), followed by further maturation processes involving cytoskeletal reorganization. Constitutive activation of PKA induces precocious formation of viable spores in development and confers the ability to encapsulate under specific submerged conditions. In this study, we show that the stability of these spores depends upon conditions of high osmotic strength during spore differentiation, indicating that a hypertonic signal is required in addition to PKA to induce maturation to stable spores. The formation of stable spores under hypertonic conditions requires high cell density, suggesting the involvement of additional cellular signaling.  相似文献   

14.
Stages in the formation of protoplasts from S. coelicolor strain A3(2) have been studied by transmission electron microscopy. Protoplasts liberated from submerged mycelial growth were variable in size and were released when digestion of the cell wall by lysozyme had completely or almost completely taken place. Protoplasts did not fully adopt the typical rounded shape until after release. A single region of cytoplasm gave rise to more than one protoplast unit. Protoplasts released from spore germinants escaped from the tip of the germ tube, which was the region of the cell wall most susceptible to digestion. Protoplasts derived from spore germinants were more consistent in size and rounded up more rapidly. If a cross-wall had formed in a germinant then it gave rise to separate protoplasts from each cellular compartment. Protoplasts of either type contained a single DNA region. These studies give an indication of the cellular organization of a streptomycete colony, which can be visualized as a multinucleated assemblage of cellular units in a common cytoplasm. The assembly of units separates into a number of protoplasts on digestion of the cell wall.  相似文献   

15.
Aim:  To investigate the effect of different growth conditions on Bacillus cereus cell and spore properties.
Methods and Results:  Bacillus cereus was grown on agar plates with different surface water conditions (wet and dry) or viscosity. Cell populations displayed different types of behaviour, and heterogeneity was manifested in cell motility and dimension. Spore populations were heterogeneous regarding their properties, namely size and thermal resistance. The smallest spores were produced from flagellated cells, which also displayed jet-motility, growing on the wettest agar. Cytometric analysis also revealed within the smallest spores a sub-population labelled by propidium iodide (PI), indicating that spore populations were partly damaged. Nonmotile cells grown on diffusion-limiting media were elongated and produced the least thermal-resistant spores.
Conclusions:  The micro-structural properties of the media were found to influence cell and spore properties. Abundant surface water enabled flagellar motility and resulted in a heterogeneous cell and spore population, the latter including small and damaged spores. High viscosity gave rise to filamentous cells and more heat-sensitive spores.
Significance and Impact of the Study:  This study provides useful information on conditions resulting in heterogeneous populations of damaged and heat-sensitive spores.  相似文献   

16.
Lipid lateral segregation into specific domains in cellular membranes is associated with cell signaling and metabolic regulation. This phenomenon partially arises as a consequence of the very distinct bilayer-associated lipid physico-chemical properties that give rise to defined phase states at a given temperature. Until now lamellar gel (Lβ) phases have been described in detail in single or two-lipid systems. Using x-ray scattering, differential scanning calorimetry, confocal fluorescence microscopy, and atomic force microscopy, we have characterized phases of ternary lipid compositions in the presence of saturated phospholipids, cholesterol, and palmitoyl ceramide mixtures. These phases stabilized by direct cholesterol-ceramide interaction can exist either with palmitoyl sphingomyelin or with dipalmitoyl phosphatidylcholine and present intermediate properties between raft-associated phospholipid-cholesterol liquid-ordered and phospholipid-ceramide Lβ phases. The present data provide novel, to our knowledge, evidence of a chemically defined, multicomponent lipid system that could cooperate in building heterogeneous segregated platforms in cell membranes.  相似文献   

17.
A genetic melanotic neoplasm of Drosophila melanogaster   总被引:6,自引:0,他引:6  
The construction of mature fruiting bodies occurs during the culmination stage of development of Dictyostelium discoideum. These contain at least two different cell types, spores and stalks, which originate from an initially homogenous population of vegetative amoebas. As an attempt to identify proteins whose synthesis is regulated in each cell type during differentiation, we have analyzed the two-dimensional profiles of proteins synthesized by spore and stalk cells during the culmination stage. We have identified 5 major polypeptides which are specifically synthesized by spore cells during culmination and 9 which are only made by stalk cells. Furthermore, synthesis of about 20 polypeptides appears to be enriched either in the spore or in the stalk cells. We also show that synthesis of actin, a major protein synthesized during Dictyostelium development, is specifically inhibited in the spore cells during culmination. Synthesis of most of the cell type-specific proteins initiates at 19–20 hr, during culmination. Moreover, the proteins whose synthesis is induced after formation of tight aggregates, the time when the major change in gene expression occurs, are not specifically incorporated into spores or stalk cells, and appear to be synthesized by both cell types. We conclude that a new class of genes is expressed during the culmination stage in Dictyostelium, giving rise to specific patterns of protein synthesis in spore and stalk cells.  相似文献   

18.
To confirm the presence of the outer spore membrane in dormant spore coats of Bacillus subtilis, the proteins from vegetative cell membrane and dormant spore coat fractions were compared by immunoblot assay with antibodies prepared against both preparations. The spore coat fraction contained at least 11 proteins antigenically identical to those in the vegetative cell membranes. Further, the cytochemical localization of the proteins derived from vegetative cell membrane in dormant spores was examined by an immunoelectron microscopy method with a colloidal gold-immunoglobulin G complex. The colloidal gold particles were observed in the coat region and around the core region of dormant spore. These results have provided evidence that some proteins from vegetative cell membrane remain in the dormant spore coat region of B. subtilis, although it is not clear whether the outer membrane persists as an intact functional entity or not.  相似文献   

19.
Examination of the lipid composition of spore membranes of Bacillus subtilis Marburg, extracted after treatment of spores with dithiothreitol/urea and NaOH followed by lysozyme digestion, revealed that the spore membranes had significantly higher cardiolipin (CL) content than the membranes of exponentially growing cells. Analysis of the membranes of coat-defective, cotE::cat and gerE::cat mutant spores, which are susceptible to lysozyme digestion without chemical treatment, confirmed that spore membranes contain a high level of CL. After addition of the germinants L-alanine or AGFK (a combination of asparagine, glucose, fructose, and KCl), the turbidity of wild type spore suspensions decreased to 50% within 30 min. Suspensions of spores with only trace amounts of CL, however, showed no decrease in turbidity when L-alanine was added and the initial decrease in turbidity with AGFK was slight (14% after 60 min). These results indicate that CL is involved in an early step of germination, related to the functioning of germinant receptors. This is the first conspicuous in vivo evidence that CL in bacterial membranes has a specific role, in which it cannot be replaced by other anionic phospholipids.  相似文献   

20.
A bacterial spore assay and a molecular DNA microarray method were compared for their ability to assess relative cleanliness in the context of bacterial abundance and diversity on spacecraft surfaces. Colony counts derived from the NASA standard spore assay were extremely low for spacecraft surfaces. However, the PhyloChip generation 3 (G3) DNA microarray resolved the genetic signatures of a highly diverse suite of microorganisms in the very same sample set. Samples completely devoid of cultivable spores were shown to harbor the DNA of more than 100 distinct microbial phylotypes. Furthermore, samples with higher numbers of cultivable spores did not necessarily give rise to a greater microbial diversity upon analysis with the DNA microarray. The findings of this study clearly demonstrated that there is not a statistically significant correlation between the cultivable spore counts obtained from a sample and the degree of bacterial diversity present. Based on these results, it can be stated that validated state-of-the-art molecular techniques, such as DNA microarrays, can be utilized in parallel with classical culture-based methods to further describe the cleanliness of spacecraft surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号