首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water, osmotic, and pressure potentials of soybean (Glycine max [L.] Merrill) embryos and related maternal tissues were measured during periods of seed growth and maturation to test the involvement of embryo water relations in seed maturation. Seeds were matured in situ or in an in vitro liquid culture medium in detached pods or as isolated seeds. Changes in water relations of embryo tissues were independent of maternal tissues. During seed maturation in situ, water and osmotic potentials in both embryo and maternal tissues declined sharply near the time of maximum dry weight. During in vitro seed culture with and without pods, water and osmotic potentials in axis and cotyledon tissues declined continuously during growth. Water and osmotic potentials of the seed coat, which was present only during in vitro seed culture with pods, changed little during the culture period. Positive turgor in the embryo was maintained beyond maximum dry weight and the loss of green color during in vitro culture but declined to zero at maturity in situ. The osmotic potential in embryo tissues declined from −1.1 megapascals at early pod fill to between −1.65 and −2.2 megapascals at maximum seed dry weight across all maturation environments. It is suggested that the decreasing osmotic potential in the growing soybean embryo reaches a threshold level that is associated with cessation of growth and onset of seed maturation.  相似文献   

2.
Water deficits during seed filling decrease seed size in soybean (Glycine max L.). This may result from a reduction in the supply of assimilates from the maternal plant and/or an inhibition of seed metabolism. To determine whether maternal or zygotic factors limited seed growth, we examined the effects of a plant water deficit on the supply of sucrose to and its utilization by developing embryos. Plants were grown in the greenhouse, and water deficits were imposed by withholding water for a period of 6 days during linear seed fill. When water was withheld, leaf water potential decreased rapidly, inhibiting canopy photosynthesis completely within 3 days. However, seed dry weight (nodes 7-11) continued to increase at or near the control rate. The level of total extractable carbohydrates in leaf, stem, and pericarp tissue decreased by 70, 50, and 45%, respectively, indicating that reserves were mobilized to support seed growth. Cotyledon sucrose content decreased from about 60 milligrams per gram dry weight to 30 milligrams per gram dry weight. Similarly, the concentration of sucrose in the interfacial apoplast of the cotyledons decreased from approximately 100 millimolar to 50 millimolar. However, the rate of sucrose accumulation by excised embryos, measured in a short-term in vitro assay, increased in response to the water deficit. These results indicate that both source and sink activity in soybean are altered by water deficits to maintain the flux of assimilates to the developing embryos. This may explain why seed growth is maintained, albeit for a shorter duration, when soybean is exposed to water deficits during the seed filling period.  相似文献   

3.
Field experiments using two soybean (Glycine max L. Merrill)cultivars (‘Elgin 87’ and ‘Essex’) wereconducted for 2 years near Lexington, KY, USA to evaluate theeffect of source-sink alterations on seed carbohydrate statusand growth. Sucrose concentrations in developing cotyledonsof control plants were consistently low (<50 m M) early inseed development, but they increased to 100–150 m M byphysiological maturity. The concentrations increased in bothyears by 47 to 59% when 90% of the pods were removed from ‘Elgin87’, but the increase had no effect on individual seedgrowth rate (SGR). Shading (80%) reduced cotyledon sucrose levelsand SGR in both years. The critical cotyledon sucrose concentration(the concentration providing 80% of the maximum cotyledon growthrate) was estimated fromin vitro cotyledon growth at sucroseconcentrations of 0–200 m M. These critical concentrationsvaried from 72–124 m M;in planta control cotyledon sucroseconcentrations were below this critical level during the firsthalf of seed growth but exceeded it in the later stages of growthin all experiments. The estimated critical concentration wasconsistent with the failure of in planta SGR to respond to anincrease in assimilate supply and with the reduction in SGRassociated with a decrease in assimilate supply. The resultssuggest that soybean SGR is generally sink limited if photosynthesisincreases during seed filling, but source limited if photosynthesisis reduced. Copyright 2001 Annals of Botany Company Glycine max(L.) Merrill, soybean, source-sink ratios, sucrose, starch, depodding, shade, in vitro culture  相似文献   

4.
Total water potential (ψ), solute potential, and turgor potential of field-grown muskmelon (Cucumis melo L.) fruit tissue (pericarp) and seeds were determined by thermocouple psychrometry at 5-day intervals from 10 to 65 days after anthesis (DAA). Fruit maturity occurred between 44 and 49 DAA, and seed germination ability developed between 35 and 45 DAA. Pericarp ψ was essentially constant at approximately −0.75 megapascal (MPa) from 10 to 25 DAA, then decreased to a minimum value of −1.89 MPa at 50 DAA before increasing to −1.58 MPa at 65 DAA. Seed ψ remained relatively constant at approximately −0.5 MPa from 10 to 30 DAA then decreased to −2.26 MPa at 50 to 60 DAA before increasing to −2.01 MPa at 65 DAA. After a rapid increase to 20 DAA, seed fresh weight declined until 30 DAA due to net water loss, despite continuing dry weight gain. As fruit and seed growth rates decreased, turgor potential initially increased, then declined to small values when growth ceased. A disequilibrium in ψ was measured between seeds and pericarp both early and late in development. From 20 to 40 DAA, the ψ gradient was from the seed to the tissue, coinciding with water loss from the seeds. From 50 to 65 DAA, seed ψ decreased, causing a reversal of the ψ gradient and a slight increase in seed water content. The partitioning of solutes between symplast and apoplast may create and maintain ψ gradients between the pericarp and seed. The low solute potential within the pericarp due to solute accumulation and loss of cellular compartmentation during ripening and sensecence may be involved in prevention of precocious germination of mature seeds.  相似文献   

5.
The Effect of Source-Sink Alterations on Soybean Seed Growth   总被引:3,自引:0,他引:3  
Soybeans (Glycine max L. Merrill) were grown in the greenhouseand in the field to investigate the effect of variations inthe assimilate supply during the linear phase of seed developmenton the rate and duration of growth of individual seeds. Increasedassimilate supplies, created by partial fruit removal, increasedrates of dry matter accumulation, duration of seed growth, andfinal seed size (weight per seed). Reductions in the supplyof assimilate to the developing seed, created by shading (60per cent) the plants during the linear phase of seed development,lowered seed growth rate but did not affect final seed sizebecause of a longer duration of seed growth. Nitrogen stressduring seed development, created by removing N from the nutrientmedium, did not affect seed growth rate but shortened the durationof seed growth and reduced final seed size. The data indicatethat the growth characteristics of soybean seed are influencedby the supply of assimilate to the seed during the linear phaseof seed development. Glycine max L., soybean, seed growth rate, duration of seed growth, effective filling period  相似文献   

6.
To investigate the effects of brown stem rot, a vascular disease of soybean (Glycine max) induced by Phialophora gregata, on the water relations of diseased plants, stems of greenhouse-grown plants of susceptible (Pride B216) and resistant (BSR 201) cultivars were injected with the pathogen at vegetative growth stage VI. Plants of both cultivars developed internal stem browning, but those of Pride B216 developed more severe symptoms of water stress (reduced leaf water potential and stem conductance). Inoculated plants of both cultivars also had reduced stem conductance and increased stomatal conductance and transpiration. Disease-related water stress can be attributed to the combined effects of reduced stem conductance and increased water loss resulting from increased stomatal conductance.  相似文献   

7.
8.
Eighty soybeans (Glyane max Merr) cultivars, includingx a resistant line Oxley 615 were each inoculated with seven streams of soybean mosaic virus SMV. Susceptible cultivers produced smaller plants with delaved maturity, and reduced seed yield relative to the non inoculared plants Someptible cultivars had.a higher level of morrled seeds and seat transmission ot SMV from the morrled seeds than the resistance line Oxley 615. The SMV strain cultivar interaction was significant for all traits, suggsesting that soybean cultivars should be tested against specific SMV strains to determine their response to this virus.  相似文献   

9.
Growth rates of seasonal leaf flushes of ‘Valencia’orange [Citrus sinensis (L.) Osbeck] were measured and waterrelations characteristics of young (new) and over-wintered (old)citrus leaves were compared. New flush leaves had lower specificleaf weights and lower midday leaf water potentials than comparablyexposed old leaves. Spring and summer flush new leaves had higherosmotic potentials than old leaves. These differences becamenon-significant as the new leaves matured. During summer conditions,water-stressed new leaves reached zero turgor and stomatal conductancealso began to decrease in them at higher leaf water potentialsthan in old leaves. Old leaves were capable of maintaining openstomata at lower leaf water potentials. Opened flowers and newflush leaves lost more water, on a dry weight basis, than flowerbuds, fruit or mature leaves. The results illustrate differencesin leaf water potential and stomatal conductance which can beattributed to the maintenance of leaf turgor by decreases inleaf osmotic potentials as leaves mature. These changes in citrusleaf water relations are especially important since water stressresulting from high water loss rates of new tissues could reduceflowering and fruit set. Citrus sinensis (L.) Osbeck, orange, Citrus paradisi Macf., grapefruit, growth rate, leaf water relations, osmotic potential, water potential, stomatal conductance  相似文献   

10.
The changes in the internal water relations of soybean (Glycinemax L. Merr.) leaves during vegetative and reproductive growthwere studied by following the changes in the pressure-volumecurves of soybean leaves. The results demonstrate that soybeanleaves undergo a change in their osmotic properties which coincideswith the onset of active reproductive growth and is not inducedby water stress. The observed osmotic changes resulted in anincrease in the leaf relative water content at any given bulkleaf water potential. The volume of leaf water loss needed toreduce turgor potential to zero did not change following thischange in osmotic properties. The degree of turgor maintenanceafter the change in osmotic properties depended on the abilityto maintain adequate leaf relative water content. The observedchanges in bulk osmotic potential of the soybean leaves wouldcontribute to increased leaf-soil water potential gradientsand therefore to improved ability to extract the remaining soilwater as the season progressed.  相似文献   

11.
The initiation of radicle growth during seed germination may be driven by solute accumulation and increased turgor pressure, by cell wall relaxation, or by weakening of tissues surrounding the embryo. To investigate these possibilities, imbibition kinetics, water contents, and water (Ψ) and solute (ψs) potentials of intact muskmelon (Cucumis melo L.) seeds, decoated seeds (testa removed, but a thin perisperm/endosperm envelope remains around the embryo), and isolated cotyledons and embryonic axes were measured. Cotyledons and embryonic axes excised and imbibed as isolated tissues attained water contents 25 and 50% greater, respectively, than the same tissues hydrated within intact seeds. The effect of the testa and perisperm on embryo water content was due to mechanical restriction of embryo swelling and not to impermeability to water. The Ψ and ψs of embryo tissues were measured by psychrometry after excision from imbibed intact seeds. For intact or decoated seeds and excised cotyledons, Ψ values were >−0.2 MPa just prior to radicle emergence. The Ψ of excised embryonic axes, however, averaged only −0.6 MPa over the same period. The embryonic axis apparently is mechanically constrained within the testa/perisperm, increasing its total pressure potential until axis Ψ is in equilibrium with cotyledon Ψ, but reducing its water content and resulting in a low Ψ when the constraint is removed. There was no evidence of decreasing ψs or increasing turgor pressure (Ψ-ψs) prior to radicle growth for either intact seeds or excised tissues. Given the low relative water content of the axes within intact seeds, cell wall relaxation would be ineffective in creating a Ψ gradient for water uptake. Rather, axis growth may be initiated by weakening of the perisperm, thus releasing the external pressure and creating a Ψ gradient for water uptake into the axis. The perisperm envelope contains a cap of small, thin-walled endosperm cells adjacent to the radicle tip. We hypothesize that weakening or separation of cells in this region could initiate radicle expansion.  相似文献   

12.
The effect of soybean mosaic virus (SMV) infection on symptom severity, yield, seed mottling and seed transmission in soybean in relation to the growth stage at infection and subsequent temperature was investigated using a susceptible (Harosoy), a moderately resistant (Evans) and a highly resistant (Merit) cultivar. Disease symptoms were more severe with early infection. A greater reduction in plant growth and seed yield, and higher percentages of mottled seeds and seed transmission of SMV also occurred with early infection. Virus titer was higher in younger plants than in older ones and also higher in plants infected at the ealier stage than at the later stage of growth. Merit (a highly resistant cultivar previously reported to be immune to seed mottling) inoculated at the early stage of plant growth resulted in infection and production of some mottled seeds. Temperature affected all parameters investigated. The effect of temperature was greater in the susceptible cultivar than in the resistant one. The optimal temperature for symptom severity, yield, seed mottling and seed transmission was 20 °C. Virus titer was highest at 30 °C in all three cultivars. Maturity of susceptible cultivar was delayed by infection.  相似文献   

13.
Short-day photoperiods can increase the partitioning of assimilatesto filling seeds of soybean (Glycine max L. Merr.), resultingin higher seed growth rates. The plant growth substance ABAhas been implicated in the regulation of assimilate transferwithin filling soybean seeds. Thus, we hypothesized that anincreased concentration of endogenous ABA in seeds may enhancesucrose accumulation and seed growth rate of soybeans exposedto short-day photoperiods. Plants of cv. Hood 75 were grownin a greenhouse under an 8-h short-day photoperiod (SD) until11 d after anthesis (DAA) of the first flower, when half ofthe plants were transferred to a night-interruption (NI) treatment(3 h of low-intensity light inserted into the middle of thedark period). Plants remaining in SD throughout seed developmenthad seed growth rates 43% higher than that of plants shiftedto NI (7·6 mg seed–1 d–1 vs. 5·3 mgseed–1 d–1). On a tissue-water basis, the concentrationof ABA in SD seeds increased rapidly from 7.6 µmol l–1at 11 DAA to 65·2 µmol l–1 at 18 DAA, butthen declined to 6·6 µmol l–1 by 39 DAA.In contrast, the concentration of ABA increased more slowlyin NI seeds, reaching only 47·4 µmol l–1by 18 DAA, peaking at 57·0 µmol l–1 on 25DAA, and declining to 10·2 µmol l–1 by 39DAA. The concentration of sucrose in SD embryos peaked at 73·5mmol l–1 on 25 DAA and remained relatively constant forthe remainder of the seed-filling period. In NI, the concentrationof sucrose reached only 38·3 mmol 1–1 by 25 DAA,and peaked at 61·5 µmol l–1 on 32 DAA. Thusin both SD and NI, sucrose accumulated in embryos only afterthe peak in ABA concentration, suggesting that ABA may havestimulated sucrose movement to the seeds. The earlier accumulationof ABA and sucrose in SD suggests that ABA may have increasedassimilate availability during the critical cell-division period,thus regulating cotyledon cell number and subsequent seed growthrate for the remainder of the seed-filling period. Glycine max L. Merr. cv. Hood 75, soybean, assimilate partitioning, abscisic acid, photoperiod, source-sink  相似文献   

14.
The flacca mutant in tomato (Lycopersicon esculentum Mill. cv Rheinlands Ruhm) was employed to examine the effects of a relatively constant diurnal water stress on leaf growth and water relations. As the mutant is deficient in abscisic acid (ABA) and can be phenotypically reverted to the wild type by applications of the growth substance, inferences can be made concerning the involvement of ABA in responses to water stress. Water potential and turgor were lower in leaves of flacca than of Rheinlands Ruhm, and were increased by ABA treatment. ABA decreased transpiration rates by causing stomatal closure and also increased the hydraulic conductance of the sprayed plants. Osmotic adjustment did not occur in flacca plants despite the daily leaf water deficits. Stem elongation was inhibited by ABA, but leaf growth was promoted. It is concluded that, in some cases, ABA may promote leaf growth via its effect on leaf water balance.  相似文献   

15.
Crafts-Brandner, S. J. and Egli, D. B. 1987. Modification ofseed growth in soybean by physical restraint. Effect on leafsenescence.—J. exp. Bot. 38: 2043–2049. The effect of total plant sink size on leaf senescence in soybean[Glycine max (L.) Merrill] was investigated by using a simple,non-destructive method to decrease seed growth rate and totalplant fruit sink size without altering fruit or seed number.The treatment consisted of placing plastic pod restriction devices(PPRD), which were made from plastic drinking straws (6·35mm diameter), over the fruits so that all of the seeds werecontained within the PPRD's. The treatment did not alter thetime of initiation of leaf senescence for two cultivars (McCalland Maple Amber), but decreased the rate of leaf senescencebased on declines in chlorophyll, ribulose-l,5-hi'sphosphatecarboxylase/oxygenase level and carbon dioxide exchange rate.The treatment also delayed seed maturation. At the time of seedmaturation, the plants still retained green leaves. In a separate experiment, one seed in each fruit (40% of theseeds on the plant) was not restrained by the PPRD's. This treatmentled to an intermediate rate of leaf senescence compared to controland complete seed restriction treatments. The results indicatedthat, for the cultivars examined (1) leaf senescence was initiatedat the same time regardless of sink size (2) the rate of leafsenescence could be modified by altering sink size and (3) seedmaturation could occur without complete leaf yellowing and leafabscission. The effect of the PPRD treatments on leaf senescencewere similar to results obtained when fruits were physicallyremoved, which indicated that physical removal of fruits doesnot lead to artefacts due to wounding of the plants. Key words: Glycine max L, senescence, source-sink  相似文献   

16.
17.
The extension growth of Festuca arundinacea was reduced by shaking,and the leaves formed during shaking were thinner and narrowerthan the controls. The response to shaking was modified by thenutritional status of the plant — shaken plants took upmore phosphorus from a phosphorus deficient soil than the controlsand this advantage seemed to offset the influence of shaking. Shaken plants displayed a higher stomatal conductance and alower water potential than the controls, though it was consideredthat the effect of shaking could not be attributed entirelyto differences in water potential. Festuca arundinacea Schreb., water potential, stomatal conductance, phosphorus, shaking  相似文献   

18.
19.
Conditions in which seeds of beetroot (Beta vulgaris L.) willgerminate are relatively narrowly limited by a deficient oran excessive water-supply. The ovary cap, which covers eachseed situated within its locule in the seed cluster, has beenshown to be responsible, under wet conditions, for preventingaccess of oxygen to the embryo, owing to its imperviousnessto gas and to the production of mucilage around its rim in thepresence of excess water. Seeds in intact clusters germinatein the wet if the oxygen pressure is increased. Removal of theovary cap enables seeds to germinate even under water. Preliminarywashing of the clusters increases germination under dry conditions,owing to the elimination from them of an endogenous water-solublegermination inhibitor complex. Washing also improves germinationunder wet conditions; and measurements of oxygen uptake suggestthat the dilute inhibitor may further depress the respirationalready obstructed by the ovary cap. Conversely, removal ofthe ovary cap appears to have the same effect as eliminatingthe inhibitor complex. Depressed germination is usually correlatedwith depressed oxygen uptake of the imbibing seeds but an exceptionallyhigh concentration of inhibitor can uncouple respiration. The production of beetroot seeds with a low level of inhibitorin the cluster material and with loose and non-mucilaginousovary caps, or the washing and drying of clusters prior to sowingshould widen the range of moisture conditions over which beetrootseeds are able to germinate.  相似文献   

20.
We previously reported that an apparent water potential disequilibrium is maintained late in muskmelon (Cucumis melo L.) seed development between the embryo and the surrounding fruit tissue (mesocarp). To further investigate the basis of this phenomenon, the permeability characteristics of the tissues surrounding muskmelon embryos (the mucilaginous endocarp, the testa, a 2- to 4-cell-layered perisperm and a single cell layer of endosperm) were examined from 20 to 65 days after anthesis (DAA). Water passes readily through the perisperm envelope (endosperm + perisperm), testa, and endocarp at all stages of development. Electrolyte leakage (conductivity of imbibition solutions) of individual intact seeds, decoated seeds (testa removed), and embryos (testa and perisperm envelope removed) was measured during imbibition of freshly harvested seeds. The testa accounted for up to 80% of the total electrolyte leakage. Leakage from decoated seeds fell by 8- to 10-fold between 25 and 45 DAA. Presence of the perisperm envelope prior to 40 DAA had little effect on leakage, while in more mature seeds, it reduced leakage by 2- to 3-fold. In mature seeds, freezing, soaking in methanol, autoclaving, accelerated aging, and other treatments which killed the embryos had little effect on leakage of intact or decoated seeds, but caused osmotic swelling of the perisperm envelope due to the leakage of solutes from the embryo into the space between the embryo and perisperm. The semipermeability of the perisperm envelope of mature seeds did not depend upon cellular viability or lipid membrane integrity. After maximum seed dry weight is attained (35-40 DAA), the perisperm envelope prevents the diffusion of solutes, but not of water, between the embryo and the surrounding testa, endocarp, and mesocarp tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号