首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The membrane P-glycoprotein (P170) is an ATP-hydrolyzing transmembrane pump, and elevated levels of P170, due to higher expression with or without amplification of the multidrug resistance gene (mdr1), result in resistance to a variety of chemotherapeutic agents in mammalian cells. The function of the P170 pump has been proposed as a protection against toxic substances present in animal diets. Here we describe a Chinese hamster ovary cell line that was selected for resistance to a synthetic tripeptide, N-acetyl-leucyl-leucyl-norleucinal (ALLN). This ALLN-resistant variant shows the classical multidrug resistance (MDR) phenotype, including overexpression and amplification of the mdr1 gene. Additionally, a mouse embryo cell line overexpressing the transfected mdr1 gene is likewise resistant to ALLN. Our results demonstrate that P170 is capable of transporting peptides and raise the possibility that the mdr1 gene product or other MDR-like genes, present in the genome of mammalian cells, may be involved in secretion of peptides or cellular proteins as is the case with the structurally similar hylB and ste6 gene products of Escherichia coli and yeast, respectively.  相似文献   

3.
4.
The mdr gene, which encodes an energy-dependent multidrug efflux pump termed P-glycoprotein, is expressed in some normal human and rodent tissues, including the adrenal gland, kidney, liver, colon, small intestine, and brain and testis capillary endothelial cells. Because of the important role played by the multidrug transporter in determining sensitivity of normal tissues and resistance of cancers to chemotherapeutic drugs, we and others have been determining the environmental factors which regulate expression of the mdr gene. In previous studies, expression of the human MDR1 gene has been shown to be regulated by heat shock, arsenite, and cadmium in a kidney carcinoma cell line, and mdr RNA is dramatically elevated in rat liver after partial hepatectomy or treatment of the animals with cytotoxic agents. We have now investigated the genetic response of the mdr gene to acute cytotoxic insults in rodent and human tissue culture cells. Following exposure to several drugs, most of which are known to be substrates for the multidrug transporter, mdr RNA levels were found to increase substantially in the rodent cells, but not the human cells. Furthermore, RNA levels for topoisomerase II, an intracellular target for these drugs, decreased in the rodent cells. These results suggest a complex pattern of regulation of mdr RNA levels, depending on animal species and cell type, and possible coordinate regulation with topoisomerase II RNA levels.  相似文献   

5.
6.
We report the cloning and functional analysis of a complete clone for the third member of the mouse mdr gene family, mdr3. Nucleotide and predicted amino acid sequence analyses showed that the three mouse mdr genes encode highly homologous membrane glycoproteins, which share the same length (1,276 residues), the same predicted functional domains, and overall structural arrangement. Regions of divergence among the three proteins are concentrated in discrete segments of the predicted polypeptides. Sequence comparison indicated that the three mouse mdr genes were created from a common ancestor by two independent gene duplication events, the most recent one producing mdr1 and mdr3. When transfected and overexpressed in otherwise drug-sensitive cells, the mdr3 gene, like mdr1 and unlike mdr2, conferred multidrug resistance to these cells. In independently derived transfected cell clones expressing similar amounts of either MDR1 or MDR3 protein, the drug resistance profile conferred by mdr3 was distinct from that conferred by mdr1. Cells transfected with and expressing MDR1 showed a marked 7- to 10-fold preferential resistance to colchicine and Adriamycin compared with cells expressing equivalent amounts of MDR3. Conversely, cells transfected with and expressing MDR3 showed a two- to threefold preferential resistance to actinomycin D over their cellular counterpart expressing MDR1. These results suggest that MDR1 and MDR3 are membrane-associated efflux pumps which, in multidrug-resistant cells and perhaps normal tissues, have overlapping but distinct substrate specificities.  相似文献   

7.
8.
A series of CCRF-CEM sublines selected for extreme resistance to methotrexate has been shown previously to exhibit cross resistance to a number of agents belonging to the multidrug resistance phenotype (J.Natl.Cancer Inst.1989; 81, 1250-1254). The role of the mdr1 gene and its product (P-glycoprotein) in this atypical pattern of multidrug resistance has now been investigated. Southern and Northern analyses failed to demonstrate any amplification, rearrangement or over-expression of the mdr1 gene in the drug-resistant cells. Similarly, monoclonal antibodies MRK16 and JSB1 revealed no increase in the amount of P-glycoprotein present. By contrast, monoclonal antibody C219 detected a 170 kDa protein in all sublines, and in highest concentration in the most resistant cells. The results raise the possibility that a novel, C219-reactive protein may mediate resistance to both methotrexate and members of the multidrug resistance family.  相似文献   

9.
Mouse NIH 3T3 cells were transformed to multidrug resistance with high-molecular-weight DNA from multidrug-resistant human KB carcinoma cells. The patterns of cross resistance to colchicine, vinblastine, and doxorubicin hydrochloride (Adriamycin; Adria Laboratories Inc.) of the human donor cell line and mouse recipients were similar. The multidrug-resistant human donor cell line contains amplified sequences of the mdr1 gene which are expressed at high levels. Both primary and secondary NIH 3T3 transformants contained and expressed these amplified human mdr1 sequences. Amplification and expression of the human mdr1 sequences and amplification of cotransferred human Alu sequences in the mouse cells correlated with the degree of multidrug resistance. These data suggest that the mdr1 gene is likely to be responsible for multidrug resistance in cultured cells.  相似文献   

10.
11.
12.
13.
14.
15.
Expression of a multidrug resistance gene (mdr1) and its protein product, P-glycoprotein (Pgp), has been correlated with the onset of multidrug resistance in vitro in human cell lines selected for resistance to chemotherapeutic agents derived from natural products. Expression of this gene has also been observed in normal tissues and human tumors, including neuroblastoma. We therefore examined total RNA prepared from human neuroblastoma cell lines before and after differentiation with retinoic acid or sodium butyrate. An increase in the level of mdr1 mRNA was observed after retinoic acid treatment of four neuroblastoma cell lines, including the SK-N-SH cell line. Western blot (immunoblot) analysis demonstrated concomitant increases in Pgp. However, studies of 3H-vinblastine uptake failed to show a concomitant Pgp-mediated decrease in cytotoxic drug accumulation. To provide evidence that Pgp was localized on the cell surface, an immunotoxin conjugate directed against Pgp was added to cells before and after treatment with retinoic acid. Incorporation of [3H]leucine was decreased by the immunotoxin in the retinoic acid-treated cells compared with the undifferentiated cells. These results demonstrate that whereas expression of the mdr1 gene can be modulated by differentiating agents, increased levels of expression are not necessarily associated with increased cytotoxic drug accumulation.  相似文献   

16.
17.
18.
A full-length cDNA clone for the mouse mdr1 gene can confer multidrug resistance when introduced by transfection into otherwise drug-sensitive cells. In the same assay, a full-length cDNA clone for a closely related member of the mouse mdr gene family, mdr2, fails to confer multidrug resistance. To identify the domains of mdr1 which are essential for multidrug resistance and which may be functionally distinct in mdr2, we have constructed chimeric cDNA molecules in which discrete domains of mdr2 have been introduced into the homologous region of mdr1 and analyzed these chimeras for their capacity to transfer drug resistance. The two predicted ATP-binding domains of mdr2 were found to be functional, as either could complement the biological activity of mdr1. Likewise, a chimeric molecule in which the highly sequence divergent linker domain of mdr2 had been introduced in mdr1 could also confer drug resistance. However, the replacement of either the amino- or carboxy-terminus transmembrane (TM) domain regions of mdr1 by the homologous segments of mdr2 resulted in inactive chimeras. The replacement of as few as two TM domains from either the amino (TM5-6) or the carboxy (TM7-8) half of mdr1 by the homologous mdr2 regions was sufficient to destroy the activity of mdr1. These results suggest that the functional differences detected between mdr1 and mdr2 in our transfection assay reside within the predicted TM domains.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号