首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The response of a number of species to high light levels was examined to determine whether chlorophyll fluorescence from photosystem (PS) II measured at ambient temperature could be used quantitatively to estimate the photon yield of O2 evolution. In many species, the ratio of the yield of the variable (FV) and the maximum chlorophyll fluorescence (FM) determined from leaves at ambient temperature matched that from leaves frozen to 77K when reductions in FV/FM and the photon yield resulted from exposure of leaves to high light levels under favorable temperatures and water status. Under conditions which were less favorable for photosynthesis, FV/FM at ambient temperature often matched the photon yield more closely than FV/FM measured at 77K. Exposure of leaves to high light levels in combination with water stress or chilling stress resulted in much greater reductions in the photon yield than in FV/FM (at both ambient temperature and 77K) measured in darkness, which would be expected if the site of inhibition was beyond PSII. Following chilling stress, FV/FM determined during measurement of the photon yield in the light was depressed to a degree more similar to that of the depression of photon yield, presumably as a result of regulation of PSII in response to greatly reduced electron flow.Abbreviations and Symbols Fo yield of instantaneous fluorescence - FM yield of maximum fluorescence - FV yield of variable fluorescence - PFD photon flux density (400–700 nm) - PSI (II) photosystem I (II) This work was supported by the Deutsche Forschungsgemeinchaft. W.W.A. gratefully acknowledges the support of Fellowships from the North Atlantic Treaty Organization and the Alexander von Humboldt-Stiftung. We also thank Maria Lesch for plant maintenance.  相似文献   

2.
D. H. Greer  W. A. Laing 《Planta》1988,175(3):355-363
Photoinhibition of photosynthesis was induced in intact kiwifruit (Actinidia deliciosa (A. Chev.) C. F. Liang et A. R. Ferguson) leaves grown at two photon flux densities (PFDs) of 700 and 1300 mol·m-2·s-1 in a controlled environment, by exposing the leaves to PFD between 1000 and 2000 mol·m-2·s-1 at temperatures between 10 and 25°C; recovery from photoinhibition was followed at the same range of temperatures and at a PFD between 0 and 500 mol·m-2·s-1. In either case the time-courses of photoinhibition and recovery were followed by measuring chlorophyll fluorescence at 692 nm and 77K and by measuring the photon yield of photosynthetic O2 evolution. The initial rate of photoinhibition was lower in the high-light-grown plants but the long-term extent of photoinhibition was not different from that in low-light-grown plants. The rate constants for recovery after photoinhibition for the plants grown at 700 and 1300 mol·m-2·s-1 or for those grown in shade were similar, indicating that differences between sun and shade leaves in their susceptibility to photoinhibition could not be accounted for by differences in capacity for recovery during photoinhibition. Recovery following photoinhibition was increasingly suppressed by an increasing PFD above 20 mol·m-2·s-1, indicating that recovery in photoinhibitory conditions would, in any case, be very slow. Differences in photosynthetic capacity and in the capacity for dissipation of non-radiative energy seemed more likely to contribute to differences in susceptibility to photoinhibition between sun and shade leaves of kiwifruit.Abbreviations and symbols F o , F m , F v instantaneous, maximum, variable fluorescence - F v /F m fluorescence ratio - F i =F v at t=0 - F F v at t= - K D rate constant for photochemistry - k(F p ) first-order rate constant for photoinhibition - k(F r ) first-order rate constant for recovery - PFD photon flux density - PSII photosystem II - i photon yield of O2 evolution (incident light)  相似文献   

3.
Leaf discs from spinach were exposed to a photon flux density of 1250 μmol m−2s−1 at 5°C for 2 or 3 h in ambient air. Photoinhibition of photosystem II (PS II) was measured by means of chlorophyll fluorescence. Recovery of photosystem II was followed at 6°C and 20°C in low light or darkness for periods up to 12 h.
The experimental setup allowed kinetic resolution of different phases of recovery. The experiments revealed a temperature dependent dark recovery phase and two distinct light- and temperature dependent phases: (1) A relatively fast, light dependent recovery phase occurred in parallel with partial recovery of basic fluorescence at 6°C and 20°C. A population of PS II centers with very slow fluorescence induction kinetics, which had accumulated during photoinhibition treatment, disappeared during this phase. This fast recovery phase is proposed to represent reactivation of photoinhibited PS II, without dissassembly or incorporation of new D1-protein. (2) A relatively slow light-dependent recovery phase took place at 20°C, but not at 6°C. In the presence of the chloroplast translation inhibitor streptomycin, part of the 2nd phase was inhibited. This phase is proposed to involve assembly of new Photosystem II centers, which is partly dependent on de novo synthesis of D1-reaction center protein, but presumably is also using a preexisting pool of D1-protein. Cold acclimation of the leaves resulted in a decreased sensitivity for photoinhibition of photosystem II. Recovery of photoinhibited photosystem II at 6°C of the cold-acclimated leaves was faster than in non-acclimated leaves, but this effect can be ascribed to diminished photoinhibitory damage.  相似文献   

4.
When willow leaves were transferred from 270 to 650 μmol m-2 s-1 photosynthetic photon flux density (PPFD), partial photoinhibition developed over the next hours. This was manifested as roughly parallel inhibitions of the ratio of variable over maximal chlorophyll fluorescence (Fv/FM), and of the maximal quantum yield and the capacity of photosynthesis. This occurred even though photosynthesis was operating well below its capacity and only about one fourth of the reaction centres of photosystem (PS) II were in the closed state. When the air temperature was lowered from 25 to 15°C (18°C leaf temperature) photoinhibition was markedly accelerated. This temperature effect is suggested to be mediated largely by a decrease in the rate of energy dissipation through photosynthesis and indicated by a 50% increase in the number of closed PSII reaction centres. The pool size of the carotcnoid zeaxanthin and the extent of inhibition of the Fv/FM ratio were positively correlated during the treatment. However, the relaxation following imposition of darkness was much faster for zeaxanthin than for the Fv/FM ratio, ruling out the possibility of a direct causal relationship. The energy distribution between PSII and PSI was unaltered upon photoinhibition. However, the functioning of the PSII reaction centres was altered, as indicated by a rise in the minimal fluorescence, Fa.  相似文献   

5.
Analyses of chlorophyll fluorescence induction kinetics from DCMU-poisoned thylakoids were used to examine the contribution of the light-harvesting chlorophyll a/b protein complex (LHCP) to Photosystem II (PS II) heterogeneity. Thylakoids excited with 450 nm radiation exhibited fluorescence induction kinetics characteristic of major contributions from both PS II and PS IIβ centres. On excitation at 550 nm the major contribution was from PS IIβ centres, that from PS II centres was only minimal. Mg2+ depletion had negligible effect on the induction kinetics of thylakoids excited with 550 nm radiation, however, as expected, with 450 nm excitation a loss of the PS II component was observed. Thylakoids from a chlorophyll-b-less barley mutant exhibited similar induction kinetics with 450 and 550 nm excitation, which were characteristic of PS IIβ centres being the major contributors; the PS II contribution was minimal. The fluorescence induction kinetics of wheat thylakoids at two different developmental stages, which exhibited different amounts of thylakoid appression but similar chlorophyll a/b ratios and thus similar PS II:LHCP ratios, showed no appreciable differences in the relative contributions of PS II and PS IIβ centres. Mg2+ depletion had similar effects on the two thylakoid preparations. These data lead to the conclusion that it is the PS II:LHCP ratio, and probably not thylakoid appression, that is the major determinant of the relative contributions of PS II and PS IIβ to the fluorescence induction kinetics. PS II characteristics are produced by LHCP association with PS II, whereas PS IIβ characteristic can be generated by either disconnecting LHCP from PS II or by preferentially exciting PS II relative to LHCP.  相似文献   

6.
The role of D1-protein in photoinhibition was examined. Photoinhibition of spinach thylakoids at 20°C caused considerable degradation of D1-protein and a parallel loss of variable fluorescence, QB-independent electron flow and QB-dependent electron flow. The breakdown of D1-protein as well as the loss of variable fluorescence and QB-independent electron flow were largely prevented when thylakoids were photoinhibited at 0°C. The QB-dependent electron flow markedly decreased under the same conditions. This inactivation may represent the primary event in photoinhibition and could be the result of some modification at the QB-site of D1-protein. Evidence for this comes from fluorescence relaxation kinetics following photoinhibition at 0°C which indicate a partial inactivation of QA --reoxidation. These results support the idea of D1-protein breakdown during photoinhibition as a two step process consisting of an initial inactivation at the QB-site of the protein followed by its degradation. The latter is accompanied by the loss of PS II-reaction centre function.Abbreviations Asc ascorbate - p-BQ 1, 4-benzoquinone - DAD diaminodurene - DPC diphenylcarbazide - DQH2 duroquinole - Fecy ferricyanide - MV methylviologen - QA primary quinone acceptor of PS II - QB secondary quinone acceptor of PS II - SiMo silicomolybdate  相似文献   

7.
Using chlorophyll (chl) fluorescence imaging, we studied the effect of mild (MiDS), moderate (MoDS) and severe (SDS) drought stress on photosystem II (PSII) photochemistry of 4-week-old Arabidopsis thaliana. Spatio-temporal heterogeneity in all chl fluorescence parameters was maintained throughout water stress. After exposure to drought stress, maximum quantum yield of PSII photochemistry (F(v)/F(m)) and quantum efficiency of PSII photochemistry (Φ(PSΙΙ)) decreased less in the proximal (base) than in the distal (tip) leaf. The chl fluorescence parameter F(v) /F(m) decreased less after MoDS than MiDS. Under MoDS, the antioxidant mechanism of A. thaliana leaves seemed to be sufficient in scavenging reactive oxygen species, as evident by the decreased lipid peroxidation, the more excitation energy dissipated by non-photochemical quenching (NPQ) and decreased excitation pressure (1-q(p)). Arabidopsis leaves appear to function normally under MoDS, but do not seem to have particular metabolic tolerance mechanisms under MiDS and SDS, as revealed by the level of lipid peroxidation and decreased quantum yield for dissipation after down-regulation in PSII (Φ(NPQ)), indicating that energy dissipation by down-regulation did not function and electron transport (ETR) was depressed. The simultaneous increased quantum yield of non-regulated energy dissipation (Φ(NO)) indicated that both the photochemical energy conversion and protective regulatory mechanism were insufficient. The non-uniform photosynthetic pattern under drought stress may reflect different zones of leaf anatomy and mesophyll development. The data demonstrate that the effect of different degrees of drought stress on A. thaliana leaves show spatio-temporal heterogeneity, implying that common single time point or single point leaf analyses are inadequate.  相似文献   

8.
Photoinhibition of photosynthesis was induced in intact leaves of Phaseolus vulgaris L. grown at a photon flux density (PFD; photon fluence rate) of 300 mol·m-2·s-1, by exposure to a PFD of 1400 mol·m-2·s-1. Subsequent recovery from photoinhibition was followed at temperatures ranging from 5 to 35°C and at a PFD of either 20 or 140 mol·m-2·s-1 or in complete darkness. Photoinhibition and recovery were monitored mainly by chlorophyll fluorescence emission at 77K but also by photosynthetic O2 evolution. The effects of the protein-synthesis inhibitors, cycloheximide and chloramphenicol, on photoinhibition and recovery were also determined. The results demonstrate that recovery was temperature-dependent with rates slow below 15°C and optimal at 30°C. Light was required for maximum recovery but the process was light-saturated at a PFD of 20 mol·m-2·s-1. Chloramphenicol, but not cycloheximide, inactivated the repair process, indicating that recovery involved the synthesis of one or more chloroplast-encoded proteins. With chloramphenicol, it was shown that photoinhibition and recovery occurred concomitantly. The temperature-dependency of the photoinhibition process was, therefore, in part determined by the effect of temperature on the recovery process. Consequently, photoinhibition is the net difference between the rate of damage and the rate of repair. The susceptibility of chilling-sensitive plant species to photoinhibition at low temperatures is proposed to result from the low rates of recovery in this temperature range.Abbreviations and symbols Da Dalton - Fo, Fm, Fv instantaneous, maximum, variable fluorescence emission - PFD photon flux density - PSII photosystem II - photon yield C.I.W.-D.P.B. Publication No. 871  相似文献   

9.
10.
The response of photosynthesis to absorbed light by intact leaves of wild-type ( Hordeum vulgare L. cv. Gunilla) and chlorophyll b -less barley ( H. vulgare L. cv. Dornaria, chlorina-f22800) was measured in a light integrating sphere. Up to the section where the light response curve bends most sharply the responses of the b -less and wild-type barley were similar but not identical. Average quantum yield and convexity for the mutant light response curves were 0.89 and 0.90, respectively, times those of the wild-type barley. The maximum quantum yield for PSII photochemistry was also 10% lower as indicated by fluorescence induction kinetics (Fv/Fm). Just above the region where the light curve bends most sharply, photosynthesis decreased with time in the mutant but not in the wild-type barley. This decrease was associated with a decrease in Fv/Fm indicating photoinhibition of PSII. This photoinhibition occurred in the same region of the light response curve where zeaxanthin formation occurs. Zeaxanthin formation occurred in both the chlorophyll b -less and wild-type leaves. However, the epoxidation state was lower in the mutant than in the wild-type barley. The results indicate that chlorophyll b -less mutants will have reduced photosynthetic production as a result of an increased sensitivity to photoinhibition and possibly a lowered quantum yield and convexity in the absence of photoinhibition.  相似文献   

11.
Photoinactivation of Photosystem (PS) II in vivo was investigated by cumulative exposure of pea, rice and spinach leaves to light pulses of variable duration from 2 to 100 s, separated by dark intervals of 30 min. During each light pulse, photosynthetic induction occurred to an extent depending on the time of illumination, but steady-state photosynthesis had not been achieved. During photosynthetic induction, it is clearly demonstrated that reciprocity of irradiance and duration of illumination did not hold: hence the same cumulative photon exposure (mol m–2) does not necessarily give the same extent of photoinactivation of PS II. This contrasts with the situation of steady-state photosynthesis where the photoinactivation of PS II exhibited reciprocity of irradiance and duration of illumination (Park et al. (1995) Planta 196: 401–411). We suggest that, for reciprocity to hold between irradiance and duration of illumination, there must be a balance between photochemical (qP) and non-photochemical (NPQ) quenching at all irradiances. The index of susceptibility to light stress, which represents an intrinsic ability of PS II to balance photochemical and non-photochemical quenching, is defined by the quotient (1-qP)/NPQ. Although constant in steady-state photosynthesis under a wide range of irradiance (Park et al. (1995). Plant Cell Physiol 36: 1163–1169), this index of susceptibility for spinach leaves declined extremely rapidly during photosynthetic induction at a given irradiance, and, at a given cumulative photon exposure, was dependent on irradiance. During photosynthetic induction, only limited photoprotective strategies are developed: while the transthylakoid pH gradient conferred some degree of photoprotection, neither D1 protein turnover nor the xanthophyll cycle was operative. Thus, PS II is more easily photoinactivated during photosynthetic induction, a phenomenon that may have relevance for understorey leaves experiencing infrequent, short sunflecks.Abbreviations D1 protein psbA gene product - DTT dithiothreitol - Fv, Fm, Fo variable, maximum, and initial (corresponding to open traps) chlorophyll fluorescence yield, respectively - NPQ non-photochemical quenching - PS Photosystem - QA primary quinone acceptor of PS II - qP photochemical quenching coefficient  相似文献   

12.
In a previous paper it was shown that photoinhibition of reaction centre II of spinach thylakoids was predominantly caused by the degradation of D1-protein. An initial inactivation step at the QB-site was distinguished from its breakdown. The present paper deals with the question as to whether this loss of QB-function is caused by oxygen radical attack. For this purpose the photoinhibition of thylakoids was induced at 20°C in the presence of either superoxide dismutase and catalase or the antioxidants glutathione and ascorbic acid. This resulted in comparable though not total protection of D1-protein, photochemistry and fluorescence from photoinhibition. The combined action of both the enzymatic and the non-enzymatic radical scavenging systems brought about an even more pronounced protective effect against photoinhibition than did either of the two systems singularly at saturating concentrations. The results signify a major contribution of activated oxygen species to the degradation process of D1-protein and the related phenomena of photoinhibition. Thylakoids treated with hydroxyl radicals generated through a Fenton reaction showed a loss of atrazine binding sites, electron transport capacity and variable fluorescence in a similar manner, though not to the same extent, as usually observed following photoinhibitory treatment.Abbreviations Asc ascorbate - Fecy ferricyanide - GSH reduced glutathione - PQ plastoquinone - QA primary quinone acceptor of PS II - QB secondary quinone acceptor of PS II - SOD superoxide dismutase  相似文献   

13.
Tradescantia albiflora (Kunth) was grown under two different light quality regimes of comparable light quantity: in red + far-red light absorbed mainly by photosystem I (PSI light) and yellow light absorbed mainly by photosystem II (PSII light). The composition, function and ultrastructure of chloroplasts, and photoinhibition of photosynthesis in the two types of leaves were compared. In contrast to regulation by light quantity (Chow et al. 1991. Physiol. Plant. 81: 175–182), light quality exerted an effect on the composition of pigment complexes, function and structure of chloroplasts in Tradescantia: PSII light-grown leaves had higher Chl a/b ratios, higher PSI concentrations, lower PSII/PSI reaction centre ratios and less extensive thylakoid stacking than PSI light-grown leaves. Light quality triggered modulations of chloroplast components, leading to a variation of photosynthetic characteristics. A larger proportion of primary quinone acceptor (QA) in PSI light-grown leaves was chemically reduced at any given irradiance. It was also observed that the quantum yield of PSII photochemistry was lower in PSI light-grown leaves. PSI light-grown leaves were more sensitive to photoinihibition and recovery was slower compared to PSII light-grown leaves, showing that the PSII reaction centre in PSI light-grown leaves was more easily impaired by photoinhibition. The increase in susceptibility of leaves to photoinhibition following blockage of chloroplast-encoded protein synthesis was greater in PSII light-grown leaves, showing that these leaves normally have a greater capacity for PSII repair. Inhibition of zeaxanthin formation by dithiothreitol slightly increased sensitivity to photoinhibition in both PSI and PSII light-grown leaves.  相似文献   

14.
In this study the response to photoinhibition of photosynthesis and subsequent recovery was examined in plants of Phaseolus vulgaris L. cultivar ‘Pinto’ exposed to charcoal-filtered air or to ozone (O3) at 150 nL L−1 either for 3 h, or for 5 h. The responses were analysed using chlorophyll fluorescence imaging and by conventional fluorometry. Compared to control plants maintained in charcoal-filtered air, in plants exposed for 3 h to O3 and then subjected to high light treatment, the results show an increased tolerance to photoinhibition. Plants exposed to the same O3 concentration but for the longer 5-h period, were not tolerant to the photoinhibition treatment and, instead showed visible symptoms of damage (chlorosis and necrosis) clearly attributable to the longer O3 exposure. Here the detrimental effects of O3 aggravated the effects of the high light photoinhibitory treatment. The leaves exposed to the shorter O3 treatment (150 nL L−1 for 3 h) developed an ability to counteract the negative effects of a high light exposure probably because the O3 had activated an antioxidant system able to protect the photosynthetic machinery.  相似文献   

15.
Changes in the protein secondary structure and electron transport activity of the Triton X-100-treated photosystem I (PSI) and photosystem II (PSII) complexes after strong illumination treatment were studied using Fourier transform-infrared (FT-IR) spectroscopy and an oxygen electrode. Short periods of photoinhibitory treatment led to obvious decreases in the rates of PSI-mediated electron transport activity and PSII-mediated oxygen evolution in the native or Triton-treated PSI and PSII complexes. In the native PSI and PSII complexes, the protein secondary structures had little changes after the photoinhibitory treatment. However, in both Triton-treated PSI and PSII complexes, short photoinhibition times caused significant loss of -helical content and increase of -sheet structure, similar to the conformational changes in samples of Triton-treated PSI and PSII complexes after long periods of dark incubation. Our results demonstrate that strong-light treatment to the Triton-treated PSI and PSII complexes accelerates destruction of the transmembrane structure of proteins in the two photosynthetic membranes.  相似文献   

16.
In leaves of three alpine high mountain plants, Homogyne alpina, Ranunculus glacialis and Soldanella alpina, both photosystem II (PSII) and the enzyme catalase appeared to he highly resistant to photoinactivation under natural field conditions. While the Dl protein of PSII and catalase have a rapid turnover in light and require continuous new protein synthesis in non-adapted plants, little apparent photoinactivation of PSII or catalase was induced in the alpine plants by translation inhibitors or at low temperature, suggesting that turnover of the Dl protein and catalase was slow in these leaves. In vitro PSII was rapidly inactivated in light in isolated thylakoids from H. alpina and R. glacialis. In isolated intact chloroplasts from R. glacialis, photoinactivation of PSII was slower than in thylakoids. Partially purified catalase from R. glacialis and S. alpina was as sensitive to photoinactivation in vitro as catalases from other sources. Catalase from H. alpina had, however, a 10-fold higher stability in light. The levels of xanthophyll cycle carotenoids, of the antioxidants ascorbate and glulathione, and of the activities of catalase, superoxide dismutase and glutathione reductase were very high in S. alpina, intermediate in H. alpina, but very low in R. glacialis. However, isolated chloroplasts from all three alpine species contained much higher concentrations of ascorbate and glutathione than chloroplasts from lowland plants.  相似文献   

17.
D. H. Greer  W. A. Laing 《Planta》1992,186(3):418-425
Kiwifruit (Actinidia deliciosa (A. Chev.) C.F. Liang et A.R. Ferguson) plants grown in an outdoor enclosure were exposed to the natural conditions of temperature and photon flux density (PFD) over the growing season (October to May). Temperatures ranged from 14 to 21° C while the mean monthly maximum PFD varied from 1000 to 1700 mol · m–2 · s–1, although the peak PFDs exceeded 2100 mol · m–2 · s–1. At intervals, the daily variation in chlorophyll fluorescence at 692 nm and 77K and the photon yield of O2 evolution in attached leaves was monitored. Similarly, the susceptibility of intact leaves to a standard photoinhibitory treatment of 20° C and a PFD of 2000 mol · m–2 · s–1 and the ability to recover at 25° C and 20 mol · m–2 · s–2 was followed through the season. On a few occasions, plants were transferred either to or from a shade enclosure to assess the suceptibility to natural photoinhibition and the capacity for recovery. There were minor though significant changes in early-morning fluorescence emission and photon yield throughout the growing season. The initial fluorescence, Fo, and the maximum fluorescence, Fm, were, however, significantly and persistently different from that in shade-grown kiwifruit leaves, indicative of chronic photoinhibition occurring in the sun leaves. In spring and autumn, kiwifruit leaves were photoinhibited through the day whereas in summer, when the PFDs were highest, no photoinhibition occurred. However, there was apparently no non-radiative energy dissipation occurring then also, indicating that the kiwifruit leaves appeared to fully utilize the available excitation energy. Nevertheless, the propensity for kiwifruit leaves to be susceptible to photoinhibition remained high throughout the season. The cause of a discrepancy between the severe photoinhibition under controlled conditions and the lack of photoinhibition under comparable, natural conditions remains uncertain. Recovery from photoinhibition, by contrast, varied over the season and was maximal in summer and declined markedly in autumn. Transfer of shade-grown plants to full sun had a catastrophic effect on the fluorescence characteristics of the leaf and photon yield. Within 3 d the variable fluorescence, Fv, and the photon yield were reduced by 80 and 40%, respectively, and this effect persisted for at least 20 d. The restoration of fluorescence characteristics on transfer of sun leaves to shade, however, was very slow and not complete within 15 d.Abbreviations and Symbols Fo, Fm, Fv initial, maximum, variable fluorescence - Fi Fv at t = 0 - F Fv at t = - PFD photon flux density - PSII photosystem II - leaf absorptance ratio - (a photon yield of O2 evolution (absorbed basis) - i a at t = 0 - a at t = We thank Miss Linda Muir and Amanda Yeates for their technical assistance in this study.  相似文献   

18.
When organisms that perform oxygenic photosynthesis are exposed to strong visible or UV light, inactivation of photosystem II (PSII) occurs. However, such organisms are able rapidly to repair the photoinactivated PSII. The phenomenon of photoinactivation and repair is known as photoinhibition. Under normal laboratory conditions, the rate of repair is similar to or faster than the rate of photoinactivation, preventing the detailed analysis of photoinactivation and repair as separate processes. We report here that, using strong UV-A light from a laser, we were able to analyze separately the photoinactivation and repair of photosystem II in the cyanobacterium Synechocystis sp. PCC 6803. Very strong UV-A light at 364 nm and a photon flux density of 2600 μmol photons m−2 s−1 inactivated the oxygen-evolving machinery and the photochemical reaction center of PSII within 1 or 2 min before the first step in the repair process, namely, the degradation of the D1 protein, occurred. During subsequent incubation of cells in weak visible light, the activity of PSII recovered fully within 30 min and this process depended on protein synthesis. During subsequent incubation of cells in darkness for 60 min, the D1 protein of the photoinactivated PSII was degraded. Further incubation in weak visible light resulted in the rapid restoration of the activity of PSII. These observations suggest that very strong UV-A light is a useful tool for the analysis of the repair of PSII after photoinactivation.  相似文献   

19.
When organisms that perform oxygenic photosynthesis are exposed to strong visible or UV light, inactivation of photosystem II (PSII) occurs. However, such organisms are able rapidly to repair the photoinactivated PSII. The phenomenon of photoinactivation and repair is known as photoinhibition. Under normal laboratory conditions, the rate of repair is similar to or faster than the rate of photoinactivation, preventing the detailed analysis of photoinactivation and repair as separate processes. We report here that, using strong UV-A light from a laser, we were able to analyze separately the photoinactivation and repair of photosystem II in the cyanobacterium Synechocystis sp. PCC 6803. Very strong UV-A light at 364 nm and a photon flux density of 2600 micromol photons m(-2) s(-1) inactivated the oxygen-evolving machinery and the photochemical reaction center of PSII within 1 or 2 min before the first step in the repair process, namely, the degradation of the D1 protein, occurred. During subsequent incubation of cells in weak visible light, the activity of PSII recovered fully within 30 min and this process depended on protein synthesis. During subsequent incubation of cells in darkness for 60 min, the D1 protein of the photoinactivated PSII was degraded. Further incubation in weak visible light resulted in the rapid restoration of the activity of PSII. These observations suggest that very strong UV-A light is a useful tool for the analysis of the repair of PSII after photoinactivation.  相似文献   

20.
D. H. Greer  W. A. Laing  T. Kipnis 《Planta》1988,174(2):152-158
Photoinhibition of photosynthesis was induced in attached leaves of kiwifruit grown in natural light not exceeding a photon flux density (PFD) of 300 mol·m-2·s-1, by exposing them to a PFD of 1500 mol·m-2·s-1. The temperature was held constant, between 5 and 35° C, during the exposure to high light. The kinetics of photoinhibition were measured by chlorophyll fluorescence at 77K and the photon yield of photosynthetic O2 evolution. Photoinhibition occurred at all temperatures but was greatest at low temperatures. Photoinhibition followed pseudo first-order kinetics, as determined by the variable fluorescence (F v) and photon yield, with the long-term steady-state of photoinhibition strongly dependent on temperature wheareas the observed rate constant was only weakly temperature-dependent. Temperature had little effect on the decrease in the maximum fluorescence (F m) but the increase in the instantaneous fluorescence (F o) was significantly affected by low temperatures in particular. These changes in fluorescence indicate that kiwifruit leaves have some capacity to dissipate excessive excitation energy by increasing the rate constant for non-radiative (thermal) energy dissipation although temperature apparently had little effect on this. Direct photoinhibitory damage to the photosystem II reaction centres was evident by the increases in F o and extreme, irreversible damage occurred at the lower temperatures. This indicates that kiwifruit leaves were most susceptible to photoinhibition at low temperatures because direct damage to the reaction centres was greatest at these temperatures. The results also imply that mechanisms to dissipate excess energy were inadequate to afford any protection from photoinhibition over a wide temperature range in these shade-grown leaves.Abbreviations and symbols fluorescence yield correction coefficient - F o, F m, F v instantaneous, maximum, variable fluorescence - K D, K F, K P, K T rate constants for non-radiative energy dissipation, fluorescence, photochemistry, energy transfer to photosystem I - PFD photon flux density - PSI, II photosystem I, II - i photon yield of photosynthesis (incident light)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号