首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Ribosomes translate genetic information encoded by messenger RNAs (mRNAs) into proteins. Accurate decoding by the ribosome depends on the proper interaction between the mRNA codon and the anticodon of transfer RNA (tRNA). tRNAs from all kingdoms of life are enzymatically modified at distinct sites, particularly in and near the anticodon. Yet, the role of these naturally occurring tRNA modifications in translation is not fully understood. Here we show that modified nucleosides at the first, or wobble, position of the anticodon and 3'-adjacent to the anticodon are important for translocation of tRNA from the ribosome's aminoacyl site (A site) to the peptidyl site (P site). Thus, naturally occurring modifications in tRNA contribute functional groups and conformational dynamics that are critical for accurate decoding of mRNA and for translocation to the P site during protein synthesis.  相似文献   

3.
4.
5.
Three members of a collection of pBR322-yeast DNA recombinant plasmids containing yeast tRNA genes have been analyzed and sequenced. Each plasmid carries a single tRNA gene: pY44, tRNASer2; pY41, tRNAArg2; pY7, tRNAVal1. All three genes are intronless and terminate in a cluster of Ts in the non-coding strand. The sequence information here and previously determined sequences allow an extensive comparison of the regions flanking several yeast tRNA genes. This analysis has revealed novel features in tRNA gene arrangement. Blocks of homology in the flanking regions were found between the tRNA genes of an isoacceptor family but, more interestingly, also between genes coding for tRNAs of different amino-acid specificities. Particularly, three examples are discussed in which sequence elements in the neighborhood of different tRNA genes have been conserved to a high degree and over long distances.  相似文献   

6.
7.
8.
A functional tRNA(Val) gene, which codes for the major tRNA(ValIAC) isoacceptor species, and three new tRNA(Val) pseudogenes have been isolated from human genomic DNA. Two tRNA(Val) pseudogenes and a tRNA(Val) variant gene were found to be associated with tRNA genes encoding tRNA(ArgICG), tRNA(GlyUCC), and tRNA(ThrIGU), respectively, on distinct DNA fragments. All tRNA genes, including the pseudogenes, are actively transcribed in HeLa nuclear extract. Pre-tRNAs of tRNA(Val), tRNA(Arg), tRNA(Thr), and tRNA(Gly) genes are correctly processed to mature-sized tRNAs, whereas the three tRNA(Val) pseudogenes yield stable pre-tRNAs in vitro. These findings reveal that, together with the three known pseudogenes, half of the members of the human tRNA(Val) gene family are pseudogenes, all of which are active in homologous nuclear extracts in vitro and presumably also in vivo.  相似文献   

9.
10.
11.
12.
13.
In this report, we have compared the changes in the production of tRNA(iMet) (initiator tRNA(Met] and tRNA(Asn), which occur during erythroid differentiation in the Friend erythroleukemia cell. The relative steady-state concentration of these two tRNAs (relative to the total tRNA population) was measured by aminoacylation. The results show that while the relative steady-state concentration of tRNA(iMet) changes very little in the cytoplasmic tRNA population, the relative concentration of tRNA(Asn) decreases during the first two days of differentiation and then undergoes an increase. This difference in the behavior of these two tRNAs is also seen when their relative concentrations in newly synthesized tRNA is examined. When tRNA is labeled with tritiated uridine for 24 h in vivo prior to isolation, the hybridization of this labeled tRNA to filter-bound tRNA genes shows that the relative concentration of tRNA(iMet) in newly synthesized tRNA changes very little, while the relative concentration of newly synthesized tRNA(Asn) again decreases through the first 2 days of differentiation, and then undergoes a smaller increase. Thus, the production of these two tRNAs appears to be independently regulated. Independent regulation of synthesis is also observed when examining the production of these two tRNAs in isolated nuclei. During erythroid differentiation, the relative synthesis of tRNA(iMet) (relative to total nuclear RNA synthesis) remains constant, while the relative synthesis of tRNA(Asn) undergoes periodic increases and decreases in value.  相似文献   

14.
15.
16.
17.
18.
19.
The conserved U54 in tRNA is often modified to 5-methyluridine (m5U) and forms a reverse Hoogsteen base pair with A58 that stabilizes the L-shaped tRNA structure. In Gram-positive and some Gram-negative eubacteria, m5U54 is produced by folate/FAD-dependent tRNA (m5U54) methyltransferase (TrmFO). TrmFO utilizes N5,N10-methylenetetrahydrofolate (CH2THF) as a methyl donor. We previously reported an in vitro TrmFO assay system, in which unstable [14C]CH2THF was supplied from [14C]serine and tetrahydrofolate by serine hydroxymethyltransferase. In the current study, we have improved the TrmFO assay system by optimization of enzyme and substrate concentrations and introduction of a filter assay system. Using this assay, we have focused on the tRNA recognition mechanism of TrmFO. 42 tRNA mutant variants were prepared, and experiments with truncated tRNA and microhelix RNAs revealed that the minimum requirement of TrmFO exists in the T-arm structure. The positive determinants for TrmFO were found to be the U54U55C56 sequence and G53-C61 base pair. The gel mobility shift assay and fluorescence quenching showed that the affinity of TrmFO for tRNA in the initial binding process is weak. The inhibition experiments showed that the methylated tRNA is released before the structural change process. Furthermore, we found that A38 prevents incorrect methylation of U32 in the anticodon loop. Moreover, the m1A58 modification clearly accelerates the TrmFO reaction, suggesting a synergistic effect of the m5U54, m1A58, and s2U54 modifications on m5s2U54 formation in Thermus thermophilus cells. The docking model of TrmFO and the T-arm showed that the G53-C61 base pair is not able to directly contact the enzyme.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号