首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The GLUT4 glucose transporter appears to be targeted to a unique insulin-sensitive intracellular membrane compartment in fat and muscle cells. Insulin stimulates glucose transport in these cell types by mediating the partial redistribution of GLUT4 from this intracellular compartment to the plasma membrane. The structural basis for the unique targeting behavior of GLUT4 was investigated in the insulin-sensitive L6 myoblast cell line. Analysis of immunogold-labeled cells of independent clonal lines by electron microscopy indicated that 51-53% of GLUT1 was present in the plasma membrane in the basal state. Insulin did not significantly affect this distribution. In contrast, only 4.2- 6.1% of GLUT4 was present in the plasma membrane of basal L6 cells and insulin increased this percentage by 3.7-6.1-fold. Under basal conditions and after insulin treatment, GLUT4 was detected in tubulovesicular structures, often clustered near Golgi stacks, and in endosome-like vesicles. Analysis of 25 chimeric transporters consisting of reciprocal domains of GLUT1 and GLUT4 by confocal immunofluorescence microscopy indicated that only the final 25 amino acids of the COOH- terminal cytoplasmic tail of GLUT4 were both necessary and sufficient for the targeting pattern observed for GLUT4. A dileucine motif present in the COOH-terminal tail of GLUT4 was found to be necessary, but not sufficient, for intracellular targeting. Contrary to previous studies, the NH2 terminus of GLUT4 did not affect the subcellular distribution of chimeras. Analysis of a chimera containing the COOH-terminal tail of GLUT4 by immunogold electron microscopy indicated that its subcellular distribution in basal cells was very similar to that of wild-type GLUT4 and that its content in the plasma membrane increased 6.8-10.5-fold in the presence of insulin. Furthermore, only the chimera containing the COOH terminus of GLUT4 enhanced insulin responsive 2-deoxyglucose uptake. GLUT1 and two other chimeras lacking the COOH terminus of GLUT4 were studied by immunogold electron microscopy and did not demonstrate insulin-mediated changes in subcellular distribution. The NH2-terminal cytoplasmic tail of GLUT4 did not confer intracellular sequestration and did not cause altered subcellular distribution in the presence of insulin. Intracellular targeting of one chimera to non-insulin- sensitive compartments was also observed. We conclude that the COOH terminus of GLUT4 is both necessary and sufficient to confer insulin- sensitive subcellular targeting of chimeric glucose transporters in L6 myoblasts.  相似文献   

2.
Insulin stimulates glucose transport in adipocytes via the rapid redistribution of the GLUT1 and GLUT4 glucose transporters from intracellular membrane compartments to the cell surface. Insulin sensitivity is dependent on the proper intracellular trafficking of the glucose transporters in the basal state. The bulk of insulin-sensitive transport in adipocytes appears to be due to the translocation of GLUT4, which is more efficiently sequestered inside the cell and is present in much greater abundance than GLUT1. The cell type and isoform specificity of GLUT4 intracellular targeting were investigated by examining the subcellular distribution of GLUT1 and GLUT4 in cell types that are refractory to the effect of insulin on glucose transport. Rat GLUT4 was expressed in 3T3-L1 fibroblasts and HepG2 hepatoma cells by DNA-mediated transfection. Transfected 3T3-L1 fibroblasts over-expressing human GLUT1 exhibited increased glucose transport, and laser confocal immunofluorescent imaging of GLUT1 in these cells indicated that the protein was concentrated in the plasma membrane. In contrast, 3T3-L1 fibroblasts expressing GLUT4 exhibited no increase in transport activity, and confocal imaging demonstrated that this protein was targeted almost exclusively to cytoplasmic compartments. 3T3-L1 fibroblasts expressing GLUT4 were unresponsive to insulin with respect to transport activity, and no change was observed in the subcellular distribution of the protein after insulin administration. Immunogold labeling of frozen ultrathin sections revealed that GLUT4 was concentrated in tubulo-vesicular elements of the trans-Golgi reticulum in these cells. Sucrose density gradient analysis of 3T3-L1 homogenates was consistent with the presence of GLUT1 and GLUT4 in discrete cytoplasmic compartments. Immunogold labeling of frozen thin sections of HepG2 cells indicated that endogenous GLUT1 was heavily concentrated in the plasma membrane. Sucrose density gradient analysis of homogenates of HepG2 cells expressing rat GLUT4 suggested that GLUT4 is targeted to an intracellular location in these cells. The density of the putative GLUT4-containing cytoplasmic membrane vesicles was very similar in HepG2 cells, 3T3-L1 fibroblasts, 3T3-L1 adipocytes, and rat adipocytes. These data indicate that the intracellular trafficking of GLUT4 is isoform specific. Additionally, these observations support the notion that GLUT4 is targeted to its proper intracellular locale even in cell types that do not exhibit insulin-responsive glucose transport, and suggest that the machinery that regulates the intracellular targeting of GLUT4 is distinct from the factors that regulate insulin-dependent recruitment to the cell surface.  相似文献   

3.
Exposure of 3T3-L1 adipocytes to 100 ng/ml of cholera toxin or 1 mM dibutyryl cyclic AMP caused a marked stimulation of deoxyglucose transport. A maximal increase of 10- to 15-fold was observed after 12-24 h of exposure, while 100 nM insulin elicited an increase of similar magnitude within 30 min. A short term exposure (4 h) of cells to cholera toxin or dibutyryl cyclic AMP resulted in a 3- to 4-fold increase in deoxyglucose transport which was associated with significant redistribution of both the HepG2/erythrocyte (GLUT1) and muscle/adipocyte (GLUT4) glucose transporters from low density microsomes to the plasma membrane fraction. Total cellular amounts of both transporter proteins remained constant. In contrast, cells exposed to cholera toxin or dibutyryl cyclic AMP for 12 h exhibited elevations in total cellular contents of GLUT1 (but not GLUT4) protein to about 1.5- and 2.5-fold above controls, respectively. Although such treatments of cells with cholera toxin (12 h) versus insulin (30 min) caused similar 10-fold enhancements of deoxyglucose transport, a striking discrepancy was observed with respect to the content of glucose transporter proteins in the plasma membrane fraction. While insulin elicited a 2.6-fold increase in the levels of GLUT4 protein in the plasma membrane fraction, cholera toxin increased the amount of this transporter by only 30%. Insulin or cholera toxin increased the levels of GLUT1 protein in the plasma membrane fraction equally (1.6-fold). Thus, a greater number of glucose transporters in the plasma membrane fraction is associated with transport stimulation by insulin compared to cholera toxin. We conclude that: 1) at early times (4 h) after the addition of cholera toxin or dibutyryl cyclic AMP to 3T3-L1 adipocytes, redistribution of glucose transporters to the plasma membrane appears to contribute to elevated deoxyglucose uptake rates, and 2) the stimulation of hexose uptake after prolonged treatment (12-18 h) of cells with cholera toxin may involve an additional increase in the intrinsic activity of one or both glucose transporter isoforms.  相似文献   

4.
Retinal endothelial cells are believed to play an important role in the pathogenesis of diabetic retinopathy. In previous studies, we and others demonstrated that glucose transporter 1 (GLUT1) is downregulated in response to hyperglycemia. Increased oxidative stress is likely to be the event whereby hyperglycemia is transduced into endothelial cell damage. However, the effects of sustained oxidative stress on GLUT1 regulation are not clearly established. The objective of this study is to evaluate the effect of increased oxidative stress on glucose transport and on GLUT1 subcellular distribution in a retinal endothelial cell line and to elucidate the signaling pathways associated with such regulation. Conditionally immortalized rat retinal endothelial cells (TR-iBRB) were incubated with glucose oxidase, which increases the intracellular hydrogen peroxide levels, and GLUT1 regulation was investigated. The data showed that oxidative stress did not alter the total levels of GLUT1 protein, although the levels of mRNA were decreased, and there was a subcellular redistribution of GLUT1, decreasing its content at the plasma membrane. Consistently, the half-life of the protein at the plasma membrane markedly decreased under oxidative stress. The proteasome appears to be involved in GLUT1 regulation in response to oxidative stress, as revealed by an increase in stabilization of the protein present at the plasma membrane and normalization of glucose transport following proteasome inhibition. Indeed, levels of ubiquitinated GLUT1 increase as revealed by immunoprecipitation assays. Furthermore, data indicate that protein kinase B activation is involved in the stabilization of GLUT1 at the plasma membrane. Thus subcellular redistribution of GLUT1 under conditions of oxidative stress is likely to contribute to the disruption of glucose homeostasis in diabetes.  相似文献   

5.
Hresko RC  Hruz PW 《PloS one》2011,6(9):e25237
The clinical use of several first generation HIV protease inhibitors (PIs) is associated with the development of insulin resistance. Indinavir has been shown to act as a potent reversible noncompetitive inhibitor of zero-trans glucose influx via direct interaction with the insulin responsive facilitative glucose transporter GLUT4. Newer drugs within this class have differing effects on insulin sensitivity in treated patients. GLUTs are known to contain two distinct glucose-binding sites that are located on opposite sides of the lipid bilayer. To determine whether interference with the cytoplasmic glucose binding site is responsible for differential effects of PIs on glucose transport, intact intracellular membrane vesicles containing GLUT1 and GLUT4, which have an inverted transporter orientation relative to the plasma membrane, were isolated from 3T3-L1 adipocytes. The binding of biotinylated ATB-BMPA, a membrane impermeable bis-mannose containing photolabel, was determined in the presence of indinavir, ritonavir, atazanavir, tipranavir, and cytochalasin b. Zero-trans 2-deoxyglucose transport was measured in both 3T3-L1 fibroblasts and primary rat adipocytes acutely exposed to these compounds. PI inhibition of glucose transport correlated strongly with the PI inhibition of ATB-BMPA/transporter binding. At therapeutically relevant concentrations, ritonavir was not selective for GLUT4 over GLUT1. Indinavir was found to act as a competitive inhibitor of the cytoplasmic glucose binding site of GLUT4 with a K(I) of 8.2 μM. These data establish biotinylated ATB-BMPA as an effective probe to quantify accessibility of the endofacial glucose-binding site in GLUTs and reveal that the ability of PIs to block this site differs among drugs within this class. This provides mechanistic insight into the basis for the clinical variation in drug-related metabolic toxicity.  相似文献   

6.
Chen Y  Wang Y  Ji W  Xu P  Xu T 《The FEBS journal》2008,275(4):705-712
Insulin stimulates glucose uptake by inducing translocation of glucose transporter 4 (GLUT4) from intracellular resides to the plasma membrane. How GLUT4 storage vesicles are translocated from the cellular interior to the plasma membrane remains to be elucidated. In the present study, intracellular transport of GLUT4 storage vesicles and the kinetics of their docking at the plasma membrane were comprehensively investigated at single vesicle level in control and microtubule-disrupted 3T3-L1 adipocytes by time-lapse total internal reflection fluorescence microscopy. It is demonstrated that microtubule disruption substantially inhibited insulin-stimulated GLUT4 translocation. Detailed analysis reveals that microtubule disruption blocked the recruitment of GLUT4 storage vesicles to underneath the plasma membrane and abolished the docking of them at the plasma membrane. These data suggest that transport of GLUT4 storage vesicles to the plasma membrane takes place along microtubules and that this transport is obligatory for insulin-stimulated GLUT4 translocation.  相似文献   

7.
Syntaxins are thought to be membrane receptors that bind proteins of the synaptobrevin/vesicle-associated membrane protein (VAMP) family found on transport vesicles. Recently, we detected synaptobrevin II and cellubrevin on immunopurified vesicles containing the glucose transporter 4 (GLUT4) in insulin-responsive cells. In an effort to identify the plasma membrane receptors for these vesicles, we now examine the expression of syntaxins in the 3T3-L1 adipocyte cell line. Neither syntaxin 1A nor 1B was found, in keeping with the neuronal restriction of these isoforms. In contrast, syntaxins 2 and 4 were readily detectable. By subcellular fractionation and estimation of protein yields, 67% of syntaxin 4 was localized to the plasma membrane, 24% to the low-density microsomes, and 9% to the high-density microsomes. Interestingly, acute insulin treatment decreased the content of syntaxin 4 in low-density microsomes and caused a corresponding gain in the plasma membrane fraction, reminiscent of the recruitment of GLUT4 glucose transporters. In contrast, there was no change in the distribution of syntaxin 2, which was mostly associated in the plasma membrane. A fraction of the intracellular syntaxin 4 was recovered with immunopurified GLUT4-containing vesicles. Moreover, anti-syntaxin 4 antibodies introduced in permeabilized 3T3-L1 adipocytes significantly reduced the insulin-dependent stimulation of glucose transport, in contrast to the introduction of irrelevant immunoglobulin G, which was without consequence. We propose that either the plasma membrane and/or the vesicular syntaxin 4 are involved in docking and/or fusion of GLUT4 vesicles at the cell surface of 3T3-L1 adipocytes.  相似文献   

8.
Insulin stimulates the translocation of glucose transporter GLUT4 from intracellular vesicles to the plasma membrane (PM). This involves multiple steps as well as multiple intracellular compartments. The Ser/Thr kinase Akt has been implicated in this process, but its precise role is ill defined. To begin to dissect the role of Akt in these different steps, we employed a low-temperature block. Upon incubation of 3T3-L1 adipocytes at 19 C, GLUT4 accumulated in small peripheral vesicles with a slight increase in PM labeling concomitant with reduced trans-Golgi network labeling. Although insulin-dependent translocation of GLUT4 to the PM was impaired at 19 C, we still observed movement of vesicles toward the surface. Strikingly, insulin-stimulated Akt activity, but not phosphatidylinositol 3 kinase activity, was blocked at 19 C. Consistent with a multistep process in GLUT4 trafficking, insulin-stimulated GLUT4 translocation could be primed by treating cells with insulin at 19 C, whereas this was not the case for Akt activation. These data implicate two insulin-regulated steps in GLUT4 translocation: 1) redistribution of GLUT4 vesicles toward the cell cortex-this process is Akt-independent and is not blocked at 19 C; and 2) docking and/or fusion of GLUT4 vesicles with the PM-this process may be the major Akt-dependent step in the insulin regulation of glucose transport.  相似文献   

9.
Glucose transporter isoform expression was studied in the skeletal muscle-like cell line, C2C12. Northern and Western blot analysis showed that the insulin-responsive muscle/fat glucose transporter isoform, GLUT 4, was expressed in these cells at very low levels, whereas the erythrocyte isoform, GLUT 1, was expressed at readily detectable levels. Insulin did not stimulate glucose transport in this cultured muscle cell line. The C2C12 cells were then transfected separately with either GLUT 1 or GLUT 4, and stable cell lines expressing high levels of mRNA and protein were isolated. GLUT 1-transfected cells exhibited a 3-fold increase in the amount of the GLUT 1 transporter protein which was accompanied by a 2- to 3-fold increase in the glucose uptake rate. However, despite at least a 10-fold increase in GLUT 4 mRNA and protein detected after GLUT 4 cDNA transfection, the glucose uptake of these cells was unchanged and remained insulin-insensitive. By laser confocal immunofluorescence imaging, it was established that the transfected GLUT 4 protein was localized almost entirely in cytoplasmic compartments. In contrast, the GLUT 1 isoform was detected both at the plasma membrane as well as in intracellular compartments. These results suggest that acute insulin stimulation of glucose transport is not solely dependent on the presence of the insulin receptor and the GLUT 4 protein, and that the presence of some additional protein(s) must be required.  相似文献   

10.
《The Journal of cell biology》1993,123(6):1687-1694
The biosynthesis, intracellular transport, and surface expression of the beta cell glucose transporter GLUT2 was investigated in isolated islets and insulinoma cells. Using a trypsin sensitivity assay to measure cell surface expression, we determined that: (a) greater than 95% of GLUT2 was expressed on the plasma membrane; (b) GLUT2 did not recycle in intracellular vesicles; and (c) after trypsin treatment, reexpression of the intact transporter occurred with a t1/2 of approximately 7 h. Kinetics of intracellular transport of GLUT2 was investigated in pulse-labeling experiments combined with glycosidase treatment and the trypsin sensitivity assay. We determined that transport from the endoplasmic reticulum to the trans-Golgi network (TGN) occurred with a t1/2 of 15 min and that transport from the TGN to the plasma membrane required a similar half-time. When added at the start of a pulse-labeling experiment, brefeldin A prevented exit of GLUT2 from the endoplasmic reticulum. When the transporter was first accumulated in the TGN during a 15-min period of chase, but not following a low temperature (22 degrees C) incubation, addition of brefeldin A (BFA) prevented subsequent surface expression of the transporter. This indicated that brefeldin A prevented GLUT2 exit from the TGN by acting at a site proximal to the 22 degrees C block. Together, these data demonstrate that GLUT2 surface expression in beta cells is via the constitutive pathway, that transport can be blocked by BFA at two distinct steps and that once on the surface, GLUT2 does not recycle in intracellular vesicles.  相似文献   

11.
Insulin modulates glucose disposal in muscle and adipose tissue by regulating the cellular redistribution of the GLUT4 glucose transporter. Protein kinase Akt/PKB is a central mediator of insulin-regulated translocation of GLUT4; however, the GLUT4 trafficking step(s) regulated by Akt is not known. Here, we use acute pharmacological Akt inhibition to show that Akt is required for insulin-stimulated exocytosis of GLUT4 to the plasma membrane. Our data also suggest that the AS160 Rab GAP is not the only Akt target required for insulin-stimulated GLUT4 translocation. Using a total internal reflection microscopy assay, we show that Akt activity is specifically required for an insulin-mediated prefusion step involving the recruitment and/or docking of GLUT4 vesicles to within 250 nm of the plasma membrane. Moreover, the insulin-stimulated fusion of GLUT4 vesicles with the plasma membrane can occur independently of Akt activity, although based on inhibition by wortmannin, it is dependent on phosphatidylinositol 3' kinase activity. Hence, to achieve full redistribution of GLUT4 into the plasma membrane, insulin signaling bifurcates to independently regulate both fusion and a prefusion step(s).  相似文献   

12.
Glucose uptake by cells in response to stimulation with either IGF-1 or insulin is associated with the translocation of GLUT (glucose transporter) proteins from intracellular cytoplasmic compartments to the plasma membrane. In response to such stimulation, GLUT4 and GLUT1 translocation to the plasma membrane is triggered through an increase in their exocytosis involving phospholipase D (PLD) activation, disrupting the recycling of intracellular GLUT-containing vesicles between the plasma membrane and internal compartments. In skeletal muscle, insulin resistance is observed in association with an increase of dipalmitoyl-phosphatidylcholine, which is also known to interact with PLD. Based on evidence that the recycling process is important for GLUT translocation, we decided to address whether dipalmitoyl-phosphatidylcholine, a non-translocatable phospholipid known to alter the recycling of intracellular vesicles and to interact with PLD, can be involved in glucose metabolism. We show that an acute change in phospholipid composition, by addition of dipalmitoyl-phophatidylcholine, leads to GLUT1 translocation to the plasma membrane in conjunction to an increase of Akt and GSK3beta phosphorylation, which are sensitive to PI3K and PLD inhibitors. Moreover, we also show that long-term change in phospholipid composition disrupts both the IGF-1 signalling pathway and GLUT1 partitioning within the cells.  相似文献   

13.
GLUT1 is the predominant glucose transporter in leukemia cells, and the modulation of glucose transport activity by cytokines, oncogenes or metabolic stresses is essential for their survival and proliferation. However, the molecular mechanisms allowing to control GLUT1 trafficking and degradation are still under debate. In this study we investigated whether plasma membrane cholesterol depletion plays a role in glucose transport activity in M07e cells, a human megakaryocytic leukemia line. To this purpose, the effect of cholesterol depletion by methyl-β-cyclodextrin (MBCD) on both GLUT1 activity and trafficking was compared to that of the cytokine Stem Cell Factor (SCF). Results show that, like SCF, MBCD led to an increased glucose transport rate and caused a subcellular redistribution of GLUT1, recruiting intracellular transporter molecules to the plasma membrane. Due to the role of caveolae/lipid rafts in GLUT1 stimulation in response to many stimuli, we have also investigated the GLUT1 distribution along the fractions obtained after non ionic detergent treatment and density gradient centrifugation, which was only slightly changed upon MBCD treatment. The data suggest that MBCD exerts its action via a cholesterol-dependent mechanism that ultimately results in augmented GLUT1 translocation. Moreover, cholesterol depletion triggers GLUT1 translocation without the involvement of c-kit signalling pathway, in fact MBCD effect does not involve Akt and PLCγ phosphorylation. These data, together with the observation that the combined MBCD/SCF cell treatment caused an additive effect on glucose uptake, suggest that the action of SCF and MBCD may proceed through two distinct mechanisms, the former following a signalling pathway, and the latter possibly involving a novel cholesterol dependent mechanism.  相似文献   

14.
The possible role of protein kinase C in the regulation of glucose transport in the rat adipose cell has been examined. Both insulin and phorbol 12-myristate 13-acetate (PMA) stimulate 3-O-methylglucose transport in the intact cell ein association with the subcellular redistribution of glucose transporters from the low density microsomes to the plasma membranes, as assessed by cytochalasin B binding. In addition, the actions of insulin and PMA on glucose transport activity and glucose transporter redistribution are additive. Furthermore, PMA accelerates insulin's stimulation of glucose transport activity, reducing the t1/2 from 3.2 +/- 0.4 to 2.1 +/- 0.2 min (mean +/- S.E.). However, the effect of PMA on glucose transport activity is approximately 10% of that for insulin whereas its effect on glucose transporter redistribution is approximately 50% of the insulin response. Immunoblots of the GLUT1 and GLUT4 glucose transporter isoforms in subcellular membrane fractions also demonstrate that the translocations of GLUT1 in response to PMA and insulin are of similar magnitude whereas the translocation of GLUT4 in response to insulin is markedly greater than that in response to PMA. Thus, glucose transport activity in the intact cell with PMA and insulin correlates more closely with the appearance of GLUT4 in the plasma membrane than cytochalasin B-assayable glucose transporters. Although these data do not clarify the potential role of protein kinase C in the mechanism of insulin action, they do suggest that the mechanisms through which insulin and PMA stimulate glucose transport are distinct but interactive.  相似文献   

15.
Evidence suggests that chromium supplementation may alleviate symptoms associated with diabetes, such as high blood glucose and lipid abnormalities, yet a molecular mechanism remains unclear. Here, we report that trivalent chromium in the chloride (CrCl3) or picolinate (CrPic) salt forms mobilize the glucose transporter, GLUT4, to the plasma membrane in 3T3-L1 adipocytes. Concomitant with an increase in GLUT4 at the plasma membrane, insulin-stimulated glucose transport was enhanced by chromium treatment. In contrast, the chromium-mobilized pool of transporters was not active in the absence of insulin. Microscopic analysis of an exofacially Myc-tagged enhanced green fluorescent protein-GLUT4 construct revealed that the chromium-induced accumulation of GLUT4-containing vesicles occurred adjacent to the inner cell surface membrane. With insulin these transporters physically incorporated into the plasma membrane. Regulation of GLUT4 translocation by chromium did not involve known insulin signaling proteins such as the insulin receptor, insulin receptor substrate-1, phosphatidylinositol 3-kinase, and Akt. Consistent with a reported effect of chromium on increasing membrane fluidity, we found that chromium treatment decreased plasma membrane cholesterol. Interestingly, cholesterol add-back to the plasma membrane prevented the beneficial effect of chromium on both GLUT4 mobilization and insulin-stimulated glucose transport. Furthermore, chromium action was absent in methyl-beta-cyclodextrin-pretreated cells already displaying reduced plasma membrane cholesterol and increased GLUT4 translocation. Together, these data reveal a novel mechanism by which chromium may enhance GLUT4 trafficking and insulin-stimulated glucose transport. Moreover, these findings at the level of the cell are consistent with in vivo observations of improved glucose tolerance and decreased circulating cholesterol levels after chromium supplementation.  相似文献   

16.
Facilitated glucose transport across plasma membranes is mediated by a family of transporters (GLUT1-GLUT5) that have different tissue distributions and Km values for transport. It has been shown that insulin stimulates glucose transport in fat and muscle tissues by causing the redistribution of one of these proteins (GLUT4) from inside the cell to the plasma membrane. Previous studies have shown that agents that change cAMP levels are able to modulate glucose transport in fat cells. The aim of this study was to investigate the mechanisms responsible for modulation of glucose transport by cAMP. 2-Deoxyglucose transport and insulin-regulatable glucose transporter (GLUT4) immunoreactivity in plasma and low density microsomal membranes were measured in adipocytes incubated for 30 min with insulin or dibutyryl-cAMP (Bt2cAMP). Low concentrations of Bt2cAMP (10 microM) increased 2-deoxyglucose uptake by translocating GLUT4 from low density microsomal membranes to the plasma membranes. Bt2cAMP at 1000 microM inhibited glucose transport below basal but further increased translocation of GLUT4. The effect of Bt2cAMP on translocation was additive to that of 7 nM insulin. We conclude that in rat adipocytes, Bt2cAMP acutely translocates GLUT4 but inhibits its activity to transport glucose.  相似文献   

17.
Malignant cells are known to have accelerated metabolism, high glucose requirements, and increased glucose uptake. Transport of glucose across the plasma membrane of mammalian cells is the first rate-limiting step for glucose metabolism and is mediated by facilitative glucose transporter (GLUT) proteins. Increased glucose transport in malignant cells has been associated with increased and deregulated expression of glucose transporter proteins, with overexpression of GLUT1 and/or GLUT3 a characteristic feature. Oncogenic transformation of cultured mammalian cells causes a rapid increase of glucose transport and GLUT1 expression via interaction with GLUT1 promoter enhancer elements. In human studies, high levels of GLUT1 expression in tumors have been associated with poor survival. Studies indicate that glucose transport in breast cancer is not fully explained by GLUT1 or GLUT3 expression, suggesting involvement of another glucose transporter. Recently, a novel glucose transporter protein, GLUT12, has been found in breast and prostate cancers. In human breast and prostate tumors and cultured cells, GLUT12 is located intracellularly and at the cell surface. Trafficking of GLUT12 to the plasma membrane could therefore contribute to glucose uptake. Several factors have been implicated in the regulation of glucose transporter expression in breast cancer. Hypoxia can increase GLUT1 levels and glucose uptake. Estradiol and epidermal growth factor, both of which can play a role in breast cancer cell growth, increase glucose consumption. Estradiol and epidermal growth factor also increase GLUT12 protein levels in cultured breast cancer cells. Targeting GLUT12 could provide novel methods for detection and treatment of breast and prostate cancer.  相似文献   

18.
Insulin-regulated aminopeptidase (IRAP) is a marker for insulin-sensitive recycling compartments of fat and muscle cells that contain the glucose transporter isoform GLUT4. Unlike GLUT4, IRAP is expressed in many other cell types. Thus, it is a potential marker for regulated recycling compartments that are analogous to GLUT4 vesicles. In bone marrow-derived mast cells, IRAP is highly expressed and localizes to an intracellular compartment different from secretory granules. Using cell-surface biotinylation, we determined that IRAP underwent rapid redistribution to the plasma membrane on antigen/immunoglobulin E (IgE) stimulation and was re-internalized within 30 min. When granule exocytosis was inhibited, by removing extracellular calcium, adding the protein kinase C inhibitor bisindolylmaleimide or the phosphatidylinositol 3-kinase inhibitor wortmannin, IRAP redistribution was still detected in stimulated cells. However, the redistribution of IRAP required intracellular calcium. By immunofluorescence, IRAP significantly co-localized with the transferrin receptor (TfR), a marker for constitutively recycling endosomes. However, antigen/IgE stimulation did not increase TfR on the cell surface, indicating that IRAP and TfR may follow different pathways to the plasma membrane. In rat peritoneal mast cells, the distributions of IRAP and TfR overlapped to only a limited extent, indicating that overlap may decrease with cell differentiation. We propose that IRAP vesicles represent a second IgE-sensitive exocytotic compartment in mast cells, which is regulated differently from secretory granules, and that these vesicles may be similar to GLUT4 vesicles.  相似文献   

19.
Insulin stimulates glucose transport in muscle and adipocytes. This is achieved by regulated delivery of intracellular glucose transporter (GLUT4)-containing vesicles to the plasma membrane where they dock and fuse, resulting in increased cell surface GLUT4 levels. Recent work identified a potential further regulatory step, in which insulin increases the dispersal of GLUT4 in the plasma membrane away from the sites of vesicle fusion. EFR3 is a scaffold protein that facilitates localization of phosphatidylinositol 4-kinase type IIIα to the cell surface. Here we show that knockdown of EFR3 or phosphatidylinositol 4-kinase type IIIα impairs insulin-stimulated glucose transport in adipocytes. Using direct stochastic reconstruction microscopy, we also show that EFR3 knockdown impairs insulin stimulated GLUT4 dispersal in the plasma membrane. We propose that EFR3 plays a previously unidentified role in controlling insulin-stimulated glucose transport by facilitating dispersal of GLUT4 within the plasma membrane.  相似文献   

20.
Summary The syncytiotrophoblast covering the surface of the placental villi contains the machinery for the transfer of specific substances between maternal and fetal blood, and also serves as a barrier. Existence of a facilitated-diffusion transporter for glucose in the syncytiotrophoblast has been suggested. Using antibodies to erythrocyte/HepG2-type glucose transporter (GLUT1), one isoform of the facilitated-diffusion glucose transporters, we detected a 50 kD protein in human placenta at term. By use of immunohistochemistry, GLUT1 was found to be abundant in both the syncytiotrophoblast and cytotrophoblast. Endothelial cells of the fetal capillaries also showed positive staining for GLUT1. Electron-microscopic examination revealed that GLUT1 was concentrated at both the microvillous apical plasma membrane and the infolded basal plasma membrane of the syncytiotrophoblast. Plasma membrane of the cytotrophoblast was also positive for GLUT1. GLUT1 at the apical plasma membrane of the syncytiotrophoblast may function for the entry of glucose into its cytoplasm, while GLUT1 at the basal plasma membrane may be essential for the exit of glucose from the cytoplasm into the stroma of the placental villi. Thus, GLUT1 at the plasma membranes of syncytiotrophoblast and endothelial cells may play an important role in the transport of glucose across the placental barrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号