首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To satisfy their iron needs, several Gram-negative bacteria use a heme uptake system involving an extracellular heme-binding protein called hemophore. The function of the hemophore is to acquire free or hemoprotein-bound heme and to transfer it to HasR, its specific outer membrane receptor, by protein-protein interaction. The hemophore HasA secreted by Serratia marcescens, an opportunistic pathogen, was the first to be identified and is now very well characterized. HasA is a monomer that binds one b heme with strong affinity. The heme in HasA is highly exposed to solvent and coordinated by an unusual pair of ligands, a histidine and a tyrosine. Here, we report the identification, the characterization and the X-ray structure of a dimeric form of HasA from S. marcescens: DHasA. We show that both monomeric and dimeric forms are secreted in iron deficient conditions by S. marcescens. The crystal structure of DHasA reveals that it is a domain swapped dimer. The overall structure of each monomeric subunit of DHasA is very similar to that of HasA but formed by parts coming from the two different polypeptide chains, involving one of the heme ligands. Consequently DHasA binds two heme molecules by residues coming from both polypeptide chains. We show here that, while DHasA can bind two heme molecules, it is not able to deliver them to the receptor HasR. However, DHasA can efficiently transfer its heme to the monomeric form that, in turn, delivers it to HasR. We assume that DHasA can function as a heme reservoir in the hemophore system.  相似文献   

2.
Bacterial hemophores are secreted to the extracellular medium, where they scavenge heme from various hemoproteins due to their higher affinity for this compound, and return it to their specific outer membrane receptor. HasR, the outer membrane receptor of the HasA hemophore, assumes multiple functions which require various energy levels. Binding of heme and, of heme-free or heme-loaded hemophores is energy-independent. Heme transfer from the holo-hemophore to the outer membrane receptor is also energy-independent. In contrast, heme transport and hemophore release require basal or high levels of TonB and proton motive force, respectively. In addition, HasR is a component of a signaling cascade, regulating expression of the has operon via specific sigma and anti-sigma factors encoded by genes clustered at the has operon. The signal is the heme landing on HasR in the presence of the hemophore in its apo form. The has system is the only system thus far characterized in which the anti-sigma factor is submitted to the same signaling cascade as the target operon. Specific autoregulation of the has system, combined with negative regulation by the Fur protein, permits bacterial adaptation to the available iron source. In the presence of a heme-loaded hemophore, inactive anti-sigma factor is accumulated and can be activated as soon as the heme source dries up. Hence, the has system, instead of being submitted to amplification like other systems regulated by sigma anti-sigma factors, functions by pulses triggered by heme availability.  相似文献   

3.
4.
Hemophores are secreted by several gram-negative bacteria (Serratia marcescens, Pseudomonas aeruginosa, Pseudomonas fluorescens, and Yersinia pestis) and form a family of homologous proteins. Unlike the S. marcescens hemophore (HasA(SM)), the P. fluorescens hemophore HasA(PF) has an additional region of 12 residues located immediately upstream from the C-terminal secretion signal. We show that HasA(PF) undergoes a C-terminal cleavage which removes the last 21 residues when secreted from P. fluorescens and that only the processed form is able to deliver heme to the S. marcescens outer membrane hemophore-specific receptor, HasR(SM). Functional analysis of variants including those with an internal deletion of the extra C-terminal domain show that the secretion signal does not inhibit the biological activity, whereas the 12-amino-acid region located upstream does. This extra domain may inhibit the interaction of the hemophore with HasR(SM). To localize the hemophore regions involved in binding to HasR, chimeric HasA(PF)-HasA(SM) proteins were tested for biological activity. We show that residues 153 to 180 of HasA(PF) are necessary for its interaction with the receptor.  相似文献   

5.
Many gram-negative bacteria have specific outer membrane receptors for free heme, hemoproteins, and hemophores. Heme is a major iron source and is taken up intact, whereas hemoproteins and hemophores are not transported: the iron-containing molecule has to be stripped off at the cell surface, with only the heme moiety being taken up. The Serratia marcescens hemophore-specific outer membrane receptor HasR can transport either heme itself or heme bound to the hemophore HasA. This second mechanism is much more efficient and requires a higher TonB-ExbB-ExbD (TonB complex) concentration than does free or hemoglobin-bound heme uptake. This requirement for more of the TonB complex is associated with a higher energy requirement. Indeed, the sensitivity of heme-hemophore uptake to the protonophore carbonyl cyanide m-chlorophenyl hydrazone is higher than that of heme uptake from hemoglobin. We show that a higher TonB complex concentration is required for hemophore dissociation from the receptor. This dissociation is concomitant with heme uptake. We propose that increasing the TonB complex concentration drives more energy to the outer membrane receptor and speeds up the release of empty hemophores, which, if they remained on receptors, would inhibit heme transport.  相似文献   

6.
On the basis of the three-dimensional model of the heme/hemophore TonB-dependent outer membrane receptor HasR, mutants with six-residue deletions in the 11 putative extracellular loops were generated. Although all mutants continued to be active TonB-dependent heme transporters, mutations in three loops abolished hemophore HasA binding both in vivo and in vitro.  相似文献   

7.
TonB is a cytoplasmic membrane protein required for active transport of various essential substrates such as heme and iron siderophores through the outer membrane receptors of Gram-negative bacteria. This protein spans the periplasm, contacts outer membrane transporters by its C-terminal domain, and transduces energy from the protonmotive force to the transporters. The TonB box, a relatively conserved sequence localized on the periplasmic side of the transporters, has been shown to directly contact TonB.While Serratia marcescens TonB functions with various transporters, HasB, a TonB-like protein, is dedicated to the HasR transporter. HasR acquires heme either freely or via an extracellular heme carrier, the hemophore HasA, that binds to HasR and delivers heme to the transporter. Here, we study the interaction of HasR with a HasB C-terminal domain and compare it with that obtained with a TonB C-terminal fragment. Analysis of the thermodynamic parameters reveals that the interaction mode of HasR with HasB differs from that with TonB, the difference explaining the functional specificity of HasB for HasR. We also demonstrate that the presence of the substrate on the extracellular face of the transporter modifies, via enthalpy-entropy compensation, the interaction with HasB on the periplasmic face. The transmitted signal depends on the nature of the substrate. While the presence of heme on the transporter modifies only slightly the nature of interactions involved between HasR and HasB, hemophore binding on the transporter dramatically changes the interactions and seems to locally stabilize some structural motifs. In both cases, the HasR TonB box is the target for those modifications.  相似文献   

8.
TonB is a key protein in active transport of essential nutrients like vitamin B12 and metal sources through the outer membrane transporters of Gram-negative bacteria. This inner membrane protein spans the periplasm, contacts the outer membrane receptor by its periplasmic domain and transduces energy from the cytoplasmic membrane pmf to the receptor allowing nutrient internalization. Whereas generally a single TonB protein allows the acquisition of several nutrients through their cognate receptor, in some species one particular TonB is dedicated to a specific system. Despite a considerable amount of data available, the molecular mechanism of TonB-dependent active transport is still poorly understood. In this work, we present a structural study of a TonB-like protein, HasB dedicated to the HasR receptor. HasR acquires heme either free or via an extracellular heme transporter, the hemophore HasA. Heme is used as an iron source by bacteria. We have solved the structure of the HasB periplasmic domain of Serratia marcescens and describe its interaction with a critical region of HasR. Some important differences are observed between HasB and TonB structures. The HasB fold reveals a new structural class of TonB-like proteins. Furthermore, we have identified the structural features that explain the functional specificity of HasB. These results give a new insight into the molecular mechanism of nutrient active transport through the bacterial outer membrane and present the first detailed structural study of a specific TonB-like protein and its interaction with the receptor.  相似文献   

9.
Shigella dysentriae and other Gram‐negative human pathogens are able to use iron from heme bound to hemoglobin for growing. We solved at 2.6 Å resolution the 3D structure of the TonB‐dependent heme/hemoglobin outer membrane receptor ShuA from S. dysenteriae. ShuA binds to hemoglobin and transports heme across the outer membrane. The structure consists of a C‐terminal domain that folds into a 22‐stranded transmembrane β‐barrel, which is filled by the N‐terminal plug domain. One distal histidine ligand of heme is located at the apex of the plug, exposed to the solvent. His86 is situated 9.86 Å apart from His420, the second histidine involved in the heme binding. His420 is in the extracellular loop L7. The heme coordination by His86 and His420 involves conformational changes. The comparisons with the hemophore receptor HasR of Serratia marcescens bound to HasA‐Heme suggest an extracellular induced fit mechanism for the heme binding. The loop L7 contains hydrophobic residues which could interact with the hydrophobic porphyring ring of heme. The energy required for the transport by ShuA is derived from the proton motive force after interactions between the periplasmic N‐terminal TonB‐box of ShuA and the inner membrane protein, TonB. In ShuA, the TonB‐box is buried and cannot interact with TonB. The structural comparisons with HasR suggest its conformational change upon the heme binding for interacting with TonB. The signaling of the heme binding could involve a hydrogen bond network going from His86 to the TonB‐box. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
The utilization by Serratia marcescens of heme bound to hemoglobin requires HasA, an extracellular heme-binding protein. This unique heme acquisition system was studied in an Escherichia coli hemA mutant that was a heme auxotroph. We identified a 92-kDa iron-regulated S. marcescens outer membrane protein, HasR, which alone enabled the E. coli hemA mutant to grow on heme or hemoglobin as a porphyrin source. The concomitant secretion of HasA by the HasR-producing hemA mutant greatly facilitates the acquisition of heme from hemoglobin. This is the first report of a synergy between an outer membrane protein and an extracellular heme-binding protein, HasA, acting as a heme carrier, which we termed a hemophore.  相似文献   

11.
A heme-acquisition system present in several Gram-negative bacteria requires the secretion of hemophores. These extracellular carrier proteins capture heme and deliver it to specific outer membrane receptors. The Serratia marcescens HasA hemophore is a monodomain protein that binds heme with a very high affinity. Its α/β structure, as that of its binding pocket, has no common features with other iron- or heme-binding proteins. Heme is held by two loops L1 and L2 and coordinated to iron by an unusual ligand pair, H32/Y75. Two independent regions of the hemophore β-sheet are involved in HasA-HasR receptor interaction. Here, we report the 3-D NMR structure of apoHasA and the backbone dynamics of both loaded and unloaded hemophore. While the overall structure of HasA is very similar in the apo and holo forms, the hemophore presents a transition from an open to a closed form upon ligand binding, through a large movement, of up to 30 Å, of loop L1 bearing H32. Comparison of loaded and unloaded HasA dynamics on different time scales reveals striking flexibility changes in the binding pocket. We propose a mechanism by which these structural and dynamic features provide the dual function of heme binding and release to the HasR receptor.  相似文献   

12.
Pseudomonas aeruginosa PAO1 encodes two outer membrane receptors, PhuR (Pseudomonas heme uptake) and HasR (heme assimilation system). The HasR and PhuR receptors have distinct heme coordinating ligands and substrate specificities. HasR is encoded in an operon with a secreted hemophore, HasAp. In contrast the non-hemophore-dependent PhuR is encoded within an operon along with proteins required for heme translocation into the cytoplasm. Herein we report on the contributions of the HasR and PhuR receptors to heme uptake and utilization. Employing bacterial genetics and isotopic [13C]heme labeling studies we have shown both PhuR and HasR are required for optimal heme utilization. However, the unique His-Tyr-ligated PhuR plays a major role in the acquisition of heme. In contrast the HasR receptor plays a primary role in the sensing of extracellular heme and a supplementary role in heme uptake. We propose PhuR and HasR represent non-redundant heme receptors, capable of accessing heme across a wide range of physiological conditions on colonization of the host.  相似文献   

13.
HasA is an extracellular heme binding protein, and HasR is an outer membrane receptor protein from Serratia marcescens. They are the initial partners of a heme internalization system allowing S. marcescens to scavenge heme at very low concentrations due to the very high affinity of HasA for heme (Ka = 5,3 x 10(10) m(-1)). Heme is then transferred to HasR, which has a lower affinity for heme. The mechanism of the heme transfer between HasA and HasR is largely unknown. HasR has been overexpressed and purified in holo and apo forms. It binds one heme molecule with a Ka of 5 x 10(6) m(-1) and shows the characteristic absorbance spectrum of a low spin heme iron. Both holoHasA and apoHasA bind tightly to apoHasR in a 1:1 stoichiometry. In this study we show that heme transfer occurs in vitro in the purified HasA.HasR complex, demonstrating that heme transfer is energy- and TonB complex-independent and driven by a protein-protein interaction. We also show that heme binding to HasR involves two conserved histidine residues.  相似文献   

14.
The protein HasA from the Gram negative bacteria Serratia marcescens is the first hemophore to be described at the molecular level. It participates to the shuttling of heme from hemoglobin to the outer membrane receptor HasR, which in turn releases it into the bacterium. HasR alone is also able to take up heme from hemoglobin but synergy with HasA increases the efficiency of the system by a factor of about 100. This iron acquisition system allows the bacteria to survive with hemoglobin as the sole iron source. Here we report the structures of a new crystal form of HasA diffracting up to 1.77A resolution as well as the refined structure of the trigonal crystal form diffracting to 3.2A resolution. The crystal structure of HasA at high resolution shows two possible orientations of the heme within the heme-binding pocket, which probably are functionally involved in the heme-iron acquisition process. The detailed analysis of the three known structures reveals the molecular basis regulating the relative affinity of the heme/hemophore complex.  相似文献   

15.
Free iron availability is strongly limited in vertebrate hosts, making the iron acquisition by siderophores inappropriate. Pathogenic bacteria have developed various ways to use the host's iron from iron-containing proteins. Serratia marcescens can use the iron from hemoglobin through the secretion of a hemophore called HasA, which takes up the heme from hemoglobin and shuttles it to the receptor HasR, which in turn, releases heme into the bacterium. We report here the first crystal structure of such a hemophore, bound to a heme group at two different pH values and at a resolution of 1.9 A. The structure reveals a new original fold and suggests a hypothetical mechanism for both heme uptake and release.  相似文献   

16.
The major mechanism by which bacteria acquire free or haemoglobin-bound haem involves direct binding of haem to specific outer membrane receptors. Serratia marcescens and Pseudomonas aeruginosa have an alternative system, which involves an extracellular haemophore, HasA, that captures free or haemoglobin-bound haem and shuttles it to a specific cell surface outer membrane receptor, HasR. Both haem-free (apoprotein) and haem-loaded (holoprotein) HasA bind to HasR, evidence for direct protein-protein interactions between HasA and HasR. HasA binding to HasR takes place in a tonB mutant. TonB is thus required for a step subsequent to HasA binding.  相似文献   

17.
The hemophore protein HasA from Serratia marcescens cycles between two states as follows: the heme-bound holoprotein, which functions as a carrier of the metal cofactor toward the membrane receptor HasR, and the heme-free apoprotein fishing for new porphyrin to be taken up after the heme has been delivered to HasR. Holo- and apo-forms differ for the conformation of the two loops L1 and L2, which provide the axial ligands of the iron through His(32) and Tyr(75), respectively. In the apo-form, loop L1 protrudes toward the solvent far away from loop L2; in the holoprotein, closing of the loops on the heme occurs upon establishment of the two axial coordination bonds. We have established that the two variants obtained via single point mutations of either axial ligand (namely H32A and Y75A) are both in the closed conformation. The presence of the heme and one out of two axial ligands is sufficient to establish a link between L1 and L2, thanks to the presence of coordinating solvent molecules. The latter are stabilized in the iron coordination environment by H-bond interactions with surrounding protein residues. The presence of such a water molecule in both variants is revealed here through a set of different spectroscopic techniques. Previous studies had shown that heme release and uptake processes occur via intermediate states characterized by a Tyr(75)-iron-bound form with open conformation of loop L1. Here, we demonstrate that these states do not naturally occur in the free protein but can only be driven by the interaction with the partner proteins.  相似文献   

18.
革兰氏阴性菌血红素载体蛋白Hemophore的结构及作用机制   总被引:1,自引:1,他引:0  
血红素作为宿主体内最丰富的铁离子来源,是致病菌营养竞争的主要目标,尤其对于血红素自身合成途径部分丧失的细菌。革兰氏阴性菌血红素转运系统由血红素载体蛋白(Hemophore)、外膜血红素受体、TonB-ExbB-ExbD复合物、ABC转运体等组成。Hemophore是存在于细菌细胞膜上或分泌到胞外环境中的一种蛋白。它能从宿主血红素结合蛋白中捕获血红素并将其传递给外膜受体。目前,在不同革兰氏阴性菌中已发现3种类型的Hemophore,分别是HasA、HxuA和HmuY型。本文将详细描述这3种Hemophore捕获血红素及与外膜受体相互作用的机制,以期为进一步研究其他细菌血红素载体蛋白的功能及作用机制奠定基础。  相似文献   

19.
Serratia marcescens hemTUV genes encoding a potential heme permease were cloned in Escherichia coli recombinant mutant FB827 dppF::Km(pAM 238-hasR). This strain, which expresses HasR, a foreign heme outer membrane receptor, is potentially capable of using heme as an iron source. However, this process is invalidated due to a dppF::Km mutation which inactivates the Dpp heme/peptide permease responsible for heme, dipeptide, and delta-aminolevulinic (ALA) transport through the E. coli inner membrane. We show here that hemTUV genes complement the Dpp permease for heme utilization as an iron source and thus are functional in E. coli. However, hemTUV genes do not complement the Dpp permease for ALA uptake, indicating that the HemTUV permease does not transport ALA. Peptides do not inhibit heme uptake in vivo, indicating that, unlike Dpp permease, HemTUV permease does not transport peptides. HemT, the periplasmic binding protein, binds heme. Heme binding is saturable and not inhibited by peptides that inhibit heme uptake by the Dpp system. Thus, the S. marcescens HemTUV permease and, most likely, HemTUV orthologs present in many gram-negative pathogens form a class of heme-specific permeases different from the Dpp peptide/heme permease characterized in E. coli.  相似文献   

20.
Serratia marcescens possesses two functional TonB paralogs, TonBSm and HasB, for energizing TonB-dependent transport receptors (TBDT). Previous work had shown that HasB is specific to heme uptake in the natural host and in Escherichia coli expressing the S. marcescens TBDT receptor HasR, whereas the S. marcescens TonB and E. coli TonB proteins function equally well with various TBDT receptors for heme and siderophores. This has raised the question of the target of this specificity. HasB could be specific either to heme TBDT receptors or only to HasR. To resolve this question, we have cloned in E. coli another S. marcescens heme receptor, HemR, and we show here that this receptor is TonB dependent and does not work with HasB. This demonstrates that HasB is not dedicated to heme TBDT receptors but rather forms a specific pair with HasR. This is the first reported case of a specific TonB protein working with only one TBDT receptor in one given species. We discuss the occurrence, possible molecular mechanisms, and selective advantages of such dedicated TonB paralogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号