首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 258 毫秒
1.
Peptides with the Arg-Gly-Asp (RGD) motif induce vasoconstriction in rat afferent arterioles by increasing the intracellular Ca(2+) concentration ([Ca(2+)](i)) in vascular smooth muscle cells (VSMC). This finding suggests that occupancy of integrins on the plasma membrane of VSMC might affect vascular tone. The purpose of this study was to determine whether occupancy of integrins by exogenous RGD peptides initiates intracellular Ca(2+) signaling in cultured renal VSMC. When smooth muscle cells were exposed to 0.1 mM hexapeptide GRGDSP, [Ca(2+)](i) rapidly increased from 91 +/- 4 to 287 +/- 37 nM and then returned to the baseline within 20 s (P < 0.05, 34 cells/5 coverslips). In controls, the hexapeptide GRGESP did not trigger Ca(2+) mobilization. Local application of the GRGDSP induced a regional increase of cytoplasmic [Ca(2+)](i), which propagated as Ca(2+) waves traveling across the cell and induced a rapid elevation of nuclear [Ca(2+)](i). Spontaneous recurrence of smaller-amplitude Ca(2+) waves were found in 20% of cells examined after the initial response to RGD-containing peptides. Blocking dihydropyridine-sensitive Ca(2+) channels with nifedipine or removal of extracellular Ca(2+) did not inhibit the RGD-induced Ca(2+) mobilization. However, pretreatment of 20 microM ryanodine completely eliminated the RGD-induced Ca(2+) mobilization. Anti-beta(1) and anti-beta(3)-integrin antibodies with functional blocking capability simulate the effects of GRGDSP in [Ca(2+)](i). Incubation with anti-beta(1)- or beta(3)-integrin antibodies inhibited the increase in [Ca(2+)](i) induced by GRGDSP. We conclude that exogenous RGD-containing peptides induce release of Ca(2+) from ryanodine-sensitive Ca(2+) stores in renal VSMC via integrins, which can trigger cytoplasmic Ca(2+) waves propagating throughout the cell.  相似文献   

2.
Loading of the spine alters the osmotic environment in the intervertebral disk (IVD) as interstitial water is expressed from the tissue. Cells from the three zones of the IVD, the anulus fibrosus (AF), transition zone (TZ), and nucleus pulposus (NP), respond to osmotic stress with altered biosynthesis through a pathway that may involve calcium (Ca(2+)) as a second messenger. We examined the hypothesis that IVD cells respond to hyperosmotic stress by increasing the concentration of intracellular calcium ([Ca(2+)](i)) through a mechanism involving F-actin. In response to hyperosmotic stress, control cells from all zones decreased in volume and cells from the AF and TZ exhibited [Ca(2+)](i) transients, while cells from the NP did not. Extracellular Ca(2+) was necessary to initiate [Ca(2+)](i) transients. Stabilization of F-actin with phalloidin prevented the Ca(2+) response in AF and TZ cells and decreased the rate of volume change in cells from all zones, coupled with an increase in the elastic moduli and apparent viscosity. Conversely, actin breakdown with cytochalasin D facilitated Ca(2+) signaling while decreasing the elastic moduli and apparent viscosity for NP cells. These results suggest that hyperosmotic stress induces volume change in IVD cells and may initiate [Ca(2+)](i) transients through an actin-dependent mechanism.  相似文献   

3.
Osanai M  Tanaka S  Takeno Y  Takimoto S  Yagi T 《PloS one》2010,5(10):e13738
The calcium ion (Ca(2+)) is an important messenger for signal transduction, and the intracellular Ca(2+) concentration ([Ca(2+)](i)) changes in response to an excitation of the cell. To reveal the spatiotemporal properties of the propagation of an excitatory signal with action potentials in the primary visual cortical circuit, we conducted a Ca(2+) imaging study on slices of the mouse visual cortex. Electrical stimulation of layer 4 evoked [Ca(2+)](i) transients around the stimulus electrode. Subsequently, the high [Ca(2+)](i) region mainly propagated perpendicular to the cortical layer (vertical propagation), with horizontal propagation being restricted. When the excitatory synaptic transmission was blocked, only weak and concentric [Ca(2+)](i) transients were observed. When the action potential was blocked, the [Ca(2+)](i) transients disappeared almost completely. These results suggested that the action potential contributed to the induction of the [Ca(2+)](i) transients, and that excitatory synaptic connections were involved in the propagation of the high [Ca(2+)](i) region in the primary visual cortical circuit. To elucidate the involvement of inhibitory synaptic connections in signal propagation in the primary visual cortex, the GABA(A) receptor inhibitor bicuculline was applied. In this case, the evoked signal propagated from layer 4 to the entire field of view, and the prolonged [Ca(2+)](i) transients were observed compared with the control condition. Our results suggest that excitatory neurons are widely connected to each other over the entire primary visual cortex with recurrent synapses, and inhibitory neurons play a fundamental role in the organization of functional sub-networks by restricting the propagation of excitation signals.  相似文献   

4.
Substance P (SP) plays an important role in pain transmission through the stimulation of the neurokinin (NK) receptors expressed in neurons of the spinal cord, and the subsequent increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)) as a result of this stimulation. Recent studies suggest that spinal astrocytes also contribute to SP-related pain transmission through the activation of NK receptors. However, the mechanisms involved in the SP-stimulated [Ca(2+)](i) increase by spinal astrocytes are unclear. We therefore examined whether (and how) the activation of NK receptors evoked increase in [Ca(2+)](i) in rat cultured spinal astrocytes using a Ca(2+) imaging assay. Both SP and GR73632 (a selective agonist of the NK1 receptor) induced both transient and sustained increases in [Ca(2+)](i) in a dose-dependent manner. The SP-induced increase in [Ca(2+)](i) was significantly attenuated by CP-96345 (an NK1 receptor antagonist). The GR73632-induced increase in [Ca(2+)](i) was completely inhibited by pretreatment with U73122 (a phospholipase C inhibitor) or xestospongin C (an inositol 1,4,5-triphosphate (IP(3)) receptor inhibitor). In the absence of extracellular Ca(2+), GR73632 induced only a transient increase in [Ca(2+)](i). In addition, H89, an inhibitor of protein kinase A (PKA), decreased the GR73632-mediated Ca(2+) release from intracellular Ca(2+) stores, while bisindolylmaleimide I, an inhibitor of protein kinase C (PKC), enhanced the GR73632-induced influx of extracellular Ca(2+). RT-PCR assays revealed that canonical transient receptor potential (TRPC) 1, 2, 3, 4 and 6 mRNA were expressed in spinal astrocytes. Moreover, BTP2 (a general TRPC channel inhibitor) or Pyr3 (a TRPC3 inhibitor) markedly blocked the GR73632-induced sustained increase in [Ca(2+)](i). These findings suggest that the stimulation of the NK-1 receptor in spinal astrocytes induces Ca(2+) release from IP(3-)sensitive intracellular Ca(2+) stores, which is positively modulated by PKA, and subsequent Ca(2+) influx through TRPC3, which is negatively regulated by PKC.  相似文献   

5.
Calcium ions (Ca(2+)) play an important role in mediating an array of structural and functional responses in cells. In hippocampal neurons, elevated glucocorticoid (GC) levels, as seen during stress, perturb calcium homeostasis and result in altered neuronal excitability and viability. Ligand- and voltage-gated calcium channels have been the presumed targets of hormonal regulation; however, circumstantial evidence has suggested the possibility that calcium extrusion might be an important target of GC regulation. Here we demonstrate that GC-induced repression of the plasma membrane Ca(2+)-ATPase-1 (PMCA1) is an essential determinant of intracellular Ca(2+) levels ([Ca(2+)](i)) in cultured hippocampal H19-7 cells. In particular, GC treatment caused a prolongation of agonist-evoked elevation of [Ca(2+)](i) that was prevented by the expression of exogenous PMCA1. Furthermore, selective inhibition of PMCA1 using the RNA interference technique caused prolongation of Ca(2+) transients in the absence of GC treatment. Taken together, these observations suggest that GC-mediated repression of PMCA1 is both necessary and sufficient to increase agonist-evoked Ca(2+) transients by down-regulating Ca(2+) extrusion mechanisms in the absence of effects on calcium channels. Prolonged exposure to GCs, resulting in concomitant accumulation of [Ca(2+)](i), is likely to compromise neuronal function and viability.  相似文献   

6.
Bradykinin (1 microM) and histamine (100 microM) evoked an initial transient increase and a subsequent sustained increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) in fura-2-loaded human gingival fibroblasts, which may be attributed to Ca(2+) release from intracellular stores and Ca(2+) entry from extracellular sites, respectively. In fibroblasts pretreated with tyrosine kinase inhibitors such as herbimycin A (1 microM) and tyrphostin 47 (20 microM), the sustained level of [Ca(2+)](i) induced by bradykinin and histamine increased, but not the initial peak level. In the absence of external Ca(2+), bradykinin and histamine induced only the transient increase in [Ca(2+)](i), but a subsequent addition of Ca(2+) to the medium resulted in a sustained increase in [Ca(2+)](i) caused by Ca(2+)entry. Thapsigargin, an inhibitor of Ca(2+)-ATPase in inositol 1,4,5-trisphosphate-sensitive Ca(2+) stores, mimicked the effect of bradykinin and histamine. In the fibroblasts pretreated with tyrosine kinase inhibitors, the bradykinin-, histamine- and thapsigargin-induced Ca(2+) entry was clearly enhanced, but not the transient [Ca(2+)](i) increase. Tyrosine phosphatase inhibitor benzylphosphonic acid (200 microM) had no effect on Ca(2+)entry or transient [Ca(2+)](i) increase. These results suggest that tyrosine phosphorylation is involved in Ca(2+) entry in human gingival fibroblasts.  相似文献   

7.
We have studied cyclopiazonic acid (CPA)-sensitive store-operated Ca(2+) entry (SOCE) in cultured neurons and astrocytes and examined the effect of 2-[2-[4-(4-nitrobenzyloxy)phenyl]]isothiourea (KB-R7943), which is often used as a selective inhibitor of the Na(+)-Ca(2+) exchanger (NCX), on the SOCE. CPA increased transiently intracellular Ca(2+) concentration ([Ca(2+)](i)) followed by a sustained increase in [Ca(2+)](i) in neurons and astrocytes. The sustained increase in [Ca(2+)](i) depended on the presence of extracellular Ca(2+) and inhibited by SOCE inhibitors, but not by a Ca(2+) channel inhibitor. CPA also caused quenching of fura-2 fluorescence when the cells were incubated in Mn(2+)-containing medium. KB-R7943 at 10 microM inhibited significantly CPA-induced sustained increase in [Ca(2+)](i) in neurons and astrocytes. KB-R7943 also inhibited CPA-induced quenching of fura-2 fluorescence in the presence of extracellular Mn(2+). These results indicate that cultured neurons and astrocytes possess SOCE and that KB-R7943 inhibits not only NCX but also SOCE.  相似文献   

8.
Endothelin-1 (ET-1) increases intracellular Ca(2+) concentration ([Ca(2+)](i)) in pulmonary arterial smooth muscle cells (PASMCs); however, the mechanisms for Ca(2+) mobilization are not clear. We determined the contributions of extracellular influx and intracellular release to the ET-1-induced Ca(2+) response using Indo 1 fluorescence and electrophysiological techniques. Application of ET-1 (10(-10) to 10(-8) M) to transiently (24-48 h) cultured rat PASMCs caused concentration-dependent increases in [Ca(2+)](i). At 10(-8) M, ET-1 caused a large, transient increase in [Ca(2+)](i) (>1 microM) followed by a sustained elevation in [Ca(2+)](i) (<200 nM). The ET-1-induced increase in [Ca(2+)](i) was attenuated (<80%) by extracellular Ca(2+) removal; by verapamil, a voltage-gated Ca(2+)-channel antagonist; and by ryanodine, an inhibitor of Ca(2+) release from caffeine-sensitive stores. Depleting intracellular stores with thapsigargin abolished the peak in [Ca(2+)](i), but the sustained phase was unaffected. Simultaneously measuring membrane potential and [Ca(2+)](i) indicated that depolarization preceded the rise in [Ca(2+)](i). These results suggest that ET-1 initiates depolarization in PASMCs, leading to Ca(2+) influx through voltage-gated Ca(2+) channels and Ca(2+) release from ryanodine- and inositol 1,4,5-trisphosphate-sensitive stores.  相似文献   

9.
An increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) may play a role in the proliferative effect of several growth factors. In this study, the changes in [Ca(2+)](i) elicited by epidermal growth factor (EGF) in rat cardiac microvascular endothelial cells (CMEC) have been investigated by using fura-2 conventional and confocal microscopy. A large heterogeneity in the latency and in the pattern of the Ca(2+) response was found at each dose of EGF (2.5-100 ng/ml), whereas some cells displayed a non-oscillatory behavior and others exhibited a variable number of Ca(2+) oscillations. On average, the fraction of responsive cells, the total number of oscillations and the duration of the Ca(2+) signal were higher at around 10 ng/ml EGF, while there was no dose-dependence in the lag time and in the amplitude of the [Ca(2+)](i) increase. EGF-induced Ca(2+) spikes were abolished by the tyrosine kinase inhibitor genistein, but not by its inactive analogue daidzein, and by the phospholipase C blocker NCDC. Only 1-2 transients could be elicited in Ca(2+)-free solution, while re-addition of extracellular Ca(2+) recovered the spiking activity. The oscillatory signal was prevented by the SERCA inhibitor thapsigargin and abolished by the calcium entry blockers Ni(2+) and La(3+). Moreover, EGF-induced Ca(2+) transients were abolished by the InsP(3) receptor blocker caffeine, while ryanodine was without effect. Confocal imaging microscopy showed that the Ca(2+) response to EGF was localized both in the cytoplasm and in the nucleus. We suggest that EGF-induced [Ca(2+)](i) increase may play a role in the proliferative action of EGF on endothelial cells.  相似文献   

10.
Intracellular calcium regulation of connexin43   总被引:4,自引:0,他引:4  
The mechanism by which intracellular Ca(2+) concentration ([Ca(2+)](i)) regulates the permeability of gap junctions composed of connexin43 (Cx43) was investigated in HeLa cells stably transfected with this connexin. Extracellular addition of Ca(2+) in the presence of the Ca(2+) ionophore ionomycin produced a sustained elevation in [Ca(2+)](i) that resulted in an inhibition of the cell-to-cell transfer of the fluorescent dye Alexa fluor 594 (IC(50) of 360 nM Ca(2+)). The Ca(2+) dependency of this inhibition of Cx43 gap junctional permeability is very similar to that described in sheep lens epithelial cell cultures that express the three sheep lens connexins (Cx43, Cx44, and Cx49). The intracellular Ca(2+)-mediated decrease in cell-to-cell dye transfer was prevented by an inhibitor of calmodulin action but not by inhibitors of Ca(2+)/calmodulin-dependent protein kinase II or protein kinase C. In experiments that used HeLa cells transfected with a Cx43 COOH-terminus truncation mutant (Cx43(Delta257)), cell-to-cell coupling was similarly decreased by an elevation of [Ca(2+)](i) (IC(50) of 310 nM Ca(2+)) and similarly prevented by the addition of an inhibitor of calmodulin. These data indicate that physiological concentrations of [Ca(2+)](i) regulate the permeability of Cx43 in a calmodulin-dependent manner that does not require the major portion of the COOH terminus of Cx43.  相似文献   

11.
Previous studies have shown that, in acutely dispersed canine pulmonary artery smooth muscle cells (PASMCs), depletion of both functionally independent inositol 1,4,5-trisphosphate (IP(3))- and ryanodine-sensitive Ca(2+) stores activates capacitative Ca(2+) entry (CCE). The present study aimed to determine if cell culture modifies intracellular Ca(2+) stores and alters Ca(2+) entry pathways caused by store depletion and hypoxia in canine PASMCs. Intracellular Ca(2+) concentration ([Ca(2+)](i)) was measured in fura 2-loaded cells. Mn(2+) quench of fura 2 signal was performed to study divalent cation entry, and the effects of hypoxia were examined under oxygen tension of 15-18 mmHg. In acutely isolated PASMCs, depletion of IP(3)-sensitive Ca(2+) stores with cyclopiazonic acid (CPA) did not affect initial caffeine-induced intracellular Ca(2+) transients but abolished 5-HT-induced Ca(2+) transients. In contrast, CPA significantly reduced caffeine- and 5-HT-induced Ca(2+) transients in cultured PASMCs. In cultured PASMCs, store depletion or hypoxia caused a transient followed by a sustained rise in [Ca(2+)](i). The transient rise in [Ca(2+)](i) was partially inhibited by nifedipine, whereas the nifedipine-insensitive transient rise in [Ca(2+)](i) was inhibited by KB-R7943, a selective inhibitor of reverse mode Na(+)/Ca(2+) exchanger (NCX). The nifedipine-insensitive sustained rise in [Ca(2+)](i) was inhibited by SKF-96365, Ni(2+), La(3+), and Gd(3+). In addition, store depletion or hypoxia increased the rate of Mn(2+) quench of fura 2 fluorescence that was also inhibited by these blockers, exhibiting pharmacological properties characteristic of CCE. We conclude that cell culture of canine PASMCs reorganizes IP(3) and ryanodine receptors into a common intracellular Ca(2+) compartment, and depletion of this store or hypoxia activates voltage-operated Ca(2+) entry, reverse mode NCX, and CCE.  相似文献   

12.
Many functions of endothelial cells are Ca(2+)/calmodulin dependent, whereas the role of calmodulin in the regulation of cytosolic Ca(2+) ([Ca(2+)](i)) remains largely unexplained. In the present study, effects of various calmodulin antagonists on [Ca(2+)](i) were investigated in cultured aortic endothelial cells loaded with the Ca(2+)-sensitive dye fura-2/AM, and were compared with those of calmodulin-dependent protein kinase II (CaM kinase II) inhibitors. The calmodulin antagonists W-7, calmidazolium and fendiline provoked dose-dependent increases in [Ca(2+)](i). However, the CaM kinase II inhibitors KN-93 and lavendustin C had no effect on [Ca(2+)](i). In the absence of extracellular Ca(2+), pretreatment of cells with bradykinin (BK) and thapsigargin completely prevented W-7-stimulated increase in [Ca(2+)](i). Alternatively, pretreatment with W-7 also completely blocked BK- and thapsigargin-stimulated increases in [Ca(2+)](i). The time course of the Ca(2+)-response in W-7 treated cells was identical to that in thapsigargin-treated cells, but not that in BK-stimulated cells, suggesting that calmodulin antagonists could share a common signaling pathway with thapsigargin to increase [Ca(2+)](i) in endothelial cells. These findings indicate that calmodulin is involved in the regulation of [Ca(2+)](i), and may play an important role in the uptake of Ca(2+) to intracellular stores.  相似文献   

13.
Although lysophosphatidic acid (LPA) is known to increase intracellularfree calcium concentration ([Ca(2+)](i)) in different cell types, the effect of LPA on the skeletal muscle cells is not known. The present study was therefore undertaken to examine the effect of LPA on the [Ca(2+)](i) in C2C12 cells. LPA induced a concentration and time dependent increase in [Ca(2+)](i), which was inhibited by VPC12249, VPC 32183 and dioctanoyl glycerol pyrophosphate, LPA1/3 receptor antagonists. Pertussis toxin, a G(i) protein inhibitor, also inhibited the LPA-induced increase in [Ca(2+)](i). Inhibition of tyrosine kinase activities with tyrphostin A9 and genistein also prevented the increase in [Ca(2+)](i) due to LPA. Likewise, wortmannin and LY 294002, phosphatidylinositol 3-kinase (PI3-K) inhibitors, inhibited [Ca(2+)](i) response to LPA. The LPA effect was also attenuated by ethylene glycolbis(beta-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA), an extracellular Ca(2+) chelator, Ni(2+) and KB-R7943, inhibitors of the Na(+)-Ca(2+) exchanger; the receptor operated Ca(2+) channel (ROC) blockers, 2-aminoethoxydiphenyl borate and SK&F 96365. However, the L-type Ca(2+) channel blockers, verapamil and diltiazem; the store operated Ca(2+) channel blockers, La(3+) and Gd(3+); a sarcoplasmic reticulum calcium pump inhibitor, thapsigargin; an inositol trisphosphate receptor antagonist, xestospongin and a phospholipase C inhibitor, U73122, did not prevent the increase [Ca(2+)](i) due to LPA. Our data suggest that the LPA-induced increase in [Ca(2+)](i) might occur through G(i)-protein coupled LPA(1/3) receptors that may be linked to tyrosine kinase and PI3-K, and may also involve the Na(+)-Ca(2+) exchanger as well as the ROC. In addition, LPA stimulated C2C12 cell proliferation via PI3-K. Thus, LPA may be an important phospholipid in the regulation of [Ca(2+)](i) and growth of skeletal muscle cells.  相似文献   

14.
Altered calcium homeostasis and increased cytosolic calcium concentrations ([Ca(2+)](c)) are linked to neuronal apoptosis in epilepsy and in cerebral ischemia, respectively. Apoptotic programmed cell death is regulated by the antiapoptotic Bcl2 family of proteins. Here, we investigated the role of Bcl2 on calcium (Ca(2+)) homeostasis in PC12 cells, focusing on L-type voltage-dependent calcium channels (VDCC). Cytosolic Ca(2+) transients ([Ca(2+)](c)) and changes of mitochondrial Ca(2+) concentrations ([Ca(2+)](m)) were monitored using cytosolic and mitochondrially targeted aequorins of control PC12 cells and PC12 cells stably overexpressing Bcl2. We found that: (i) the [Ca(2+)](c) and [Ca(2+)](m) elevations elicited by K(+) pulses were markedly depressed in Bcl2 cells, with respect to control cells; (ii) such depression of [Ca(2+)](m) was not seen either in digitonin-permeabilized cells or in intact cells treated with ionomycin; (iii) the [Ca(2+)](c) transient depression seen in Bcl2 cells was reversed by shRNA transfection, as well as by the Bcl2 inhibitor HA14-1; (iv) the L-type Ca(2+) channel agonist Bay K 8644 enhanced K(+)-evoked [Ca(2+)](m) peak fourfold in Bcl2, and twofold in control cells; (v) in current-clamped cells the depolarization evoked by K(+) generated a more hyperpolarized voltage step in Bcl2, as compared to control cells. Taken together, our experiments suggest that the reduction of the [Ca(2+)](c) and [Ca(2+)](m) transients elicited by K(+), in PC12 cells overexpressing Bcl2, is related to the reduction of Ca(2+) entry through L-type Ca(2+) channels. This may be due to the fact that Bcl2 mitigates cell depolarization, thus diminishing the recruitment of L-type Ca(2+) channels, the subsequent Ca(2+) entry, and mitochondrial Ca(2+) overload.  相似文献   

15.
The effect of sarcoendoplasmic reticulum Ca(2+)-ATPase (SERCA) inhibition on the cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) was studied in primary insulin-releasing pancreatic beta-cells isolated from mice, rats and human subjects as well as in clonal rat insulinoma INS-1 cells. In Ca(2+)-deficient medium the individual primary beta-cells reacted to the SERCA inhibitor cyclopiazonic acid (CPA) with a slow rise of [Ca(2+)](i) followed by an explosive transient elevation. The [Ca(2+)](i) transients were preferentially observed at low intracellular concentrations of the Ca(2+) indicator fura-2 and were unaffected by pre-treatment with 100 microM ryanodine. Whereas 20mM caffeine had no effect on basal [Ca(2+)](i) or the slow rise in response to CPA, it completely prevented the CPA-induced [Ca(2+)](i) transients as well as inositol 1,4,5-trisphosphate-mediated [Ca(2+)](i) transients in response to carbachol. In striking contrast to the primary beta-cells, caffeine readily mobilized intracellular Ca(2+) in INS-1 cells under identical conditions, and such mobilization was prevented by ryanodine pre-treatment. The results indicate that leakage of Ca(2+) from the endoplasmic reticulum after SERCA inhibition is feedback-accelerated by Ca(2+)-induced Ca(2+) release (CICR). In primary pancreatic beta-cells this CICR is due to activation of inositol 1,4,5-trisphosphate receptors. CICR by ryanodine receptor activation may be restricted to clonal beta-cells.  相似文献   

16.
Gastrin-releasing peptide (GRP) and its amphibian homolog, bombesin, are potent secretogogues in mammals. We determined the roles of intracellular free Ca(2+) ([Ca(2+)](i)), protein kinase C (PKC), and mitogen-activated protein kinases (MAPK) in GRP receptor (GRP-R)-regulated secretion. Bombesin induced either [Ca(2+)](i) oscillations or a biphasic elevation in [Ca(2+)](i). The biphasic response was associated with peptide secretion. Receptor-activated secretion was blocked by removal of extracellular Ca(2+), by chelation of [Ca(2+)](i), and by treatment with inhibitors of phospholipase C, conventional PKC isozymes, and MAPK kinase (MEK). Agonist-induced increases in [Ca(2+)](i) were also inhibited by dominant negative MEK-1 and the MEK inhibitor, PD89059, but not by an inhibitor of PKC. Direct activation of PKC by a phorbol ester activated MAPK and stimulated peptide secretion without a concomitant increase in [Ca(2+)](i). Inhibition of MEK blocked both bombesin- and phorbol 12-myristate 13-acetate-induced secretion. GRP-R-regulated secretion is initiated by an increase in [Ca(2+)](i); however, elevated [Ca(2+)](i) is insufficient to stimulate secretion in the absence of activation of PKC and the downstream MEK/MAPK pathways. We demonstrated that the activity of MEK is important for maintaining elevated [Ca(2+)](i) levels induced by GRP-R activation, suggesting that MEK may affect receptor-regulated secretion by modulating the activity of Ca(2+)-sensitive PKC.  相似文献   

17.
Capsazepine is thought to be a selective antagonist of vanilloid type 1 receptors; however, its other in vitro effect on different cell types is unclear. In human MG63 osteosarcoma cells, the effect of capsazepine on intracellular Ca(2+) concentrations ([Ca(2+)](i)) and cytotoxicity was explored by using fura-2 and tetrazolium, respectively. Capsazepine caused a rapid rise in [Ca(2+)](i) in a concentration-dependent manner with an EC(50) value of 100 microM. Capsazepine-induced [Ca(2+)](i) rise was partly reduced by removal of extracellular Ca(2+), suggesting that the capsazepine-induced [Ca(2+)](i) rise was composed of extracellular Ca(2+) influx and intracellular Ca(2+). In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a monophasic [Ca(2+)](i) rise, after which the increasing effect of capsazepine on [Ca(2+)](i) was inhibited by 75%. Conversely, pretreatment with capsazepine to deplete intracellular Ca(2+) stores totally prevented thapsigargin from releasing more Ca(2+). U73122, an inhibitor of phospholipase C, abolished histamine (an inositol 1,4,5-trisphosphate-dependent Ca(2+) mobilizer)-induced, but not capsazepine-induced, [Ca(2+)](i) rise. Overnight treatment with 1-100 microM capsazepine inhibited cell proliferation in a concentration-dependent manner. These findings suggest that in human MG63 osteosarcoma cells, capsazepine increases [Ca(2+)](i) by stimulating extracellular Ca(2+) influx and also by causing intracellular Ca(2+) release from the endoplasmic reticulum via a phospholiase C-independent manner. Capsazepine may be mildly cytotoxic.  相似文献   

18.
19.
Treatment of Madin-Darby canine kidney (MDCK) cells with the peptide hormone angiotensin II (Ang II) results in an increase in the concentrations of cytosolic free calcium ([Ca(2+)](i)) and sodium ([Na(+)](i)) with a concomitant decrease in cytosolic free Mg(2+) concentration ([Mg(2+)](i)). In the present study we demonstrate that this hormone-induced decrease in [Mg(2+)](i) is independent of [Ca(2+)](i) but dependent on extracellular Na(+). [Mg(2+)](i), [Ca(2+)](i), and [Na(+)](i) were measured in Ang II-stimulated MDCK cells by fluorescence digital imaging using the selective fluoroprobes mag-fura-2AM, fura-2AM, and sodium-binding benzofuran isophthalate (acetoxymethyl ester), respectively. Ang II decreased [Mg(2+)](i) and increased [Na(+)](i) in a dose-dependent manner. These effects were inhibited by irbesartan (selective AT(1) receptor blocker) but not by PD123319 (selective AT(2) receptor blocker). Imipramine and quinidine (putative inhibitors of the Na(+)/Mg(2+) exchanger) and removal of extracellular Na(+) abrogated Ang II-mediated [Mg(2+)](i) effects. In cells pretreated with thapsigargin (reticular Ca(2+)-ATPase inhibitor), Ang II-stimulated [Ca(2+)](i) transients were attenuated (p < 0.01), whereas agonist-induced [Mg(2+)](i) responses were unchanged. Clamping the [Ca(2+)](i) near 50 nmol/liter with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) inhibited Ang II-induced [Ca(2+)](i) increases but failed to alter Ang II-induced [Mg(2+)](i) responses. Benzamil, a selective blocker of the Na(+)/Ca(2+) exchanger, inhibited [Na(+)](i) but not [Mg(2+)](i) responses. Our data demonstrate that in MDCK cells, AT(1) receptors modulate [Mg(2+)](i) via a Na(+)-dependent Mg(2+) transporter that is not directly related to [Ca(2+)](i). These data support the notion that rapid modulation of [Mg(2+)](i) is not simply a result of Mg(2+) redistribution from intracellular buffering sites by Ca(2+) and provide evidence for the existence of a Na(+)-dependent, hormonally regulated transporter for Mg(2+) in renally derived cells.  相似文献   

20.
Multiple mechanisms that maintain Ca(2+) homeostasis and provide for Ca(2+) signalling operate in the somatas and neurohypophysial nerve terminals of supraoptic nucleus (SON) neurones. Here, we examined the Ca(2+) clearance mechanisms of SON neurones from adult rats by monitoring the effects of the selective inhibition of different Ca(2+) homeostatic molecules on cytosolic Ca(2+) ([Ca(2+)](i)) transients in isolated SON neurones. In addition, we measured somatodendritic vasopressin (AVP) release from intact SON tissue in an attempt to correlate it with [Ca(2+)](i) dynamics. When bathing the cells in a Na(+)-free extracellular solution, thapsigargin, cyclopiazonic acid (CPA), carbonyl cyanide 3-chlorophenylhydrazone (CCCP), and the inhibitor of plasma membrane Ca(2+)-ATPase (PMCA), La(3+), all significantly slowed down the recovery of depolarisation (50 mM KCl)-induced [Ca(2+)](i) transients. The release of AVP was stimulated by 50 mM KCl, and the decline in the peptide release was slowed by Ca(2+) transport inhibitors. In contrast to previous reports, our results show that in the fully mature adult rats: (i) all four Ca(2+) homeostatic pathways, the Na(+)/Ca(2+) exchanger, the endoplasmic reticulum Ca(2+) pump, the plasmalemmal Ca(2+) pump and mitochondria, are complementary in actively clearing Ca(2+) from SON neurones; (ii) somatodendritic AVP release closely correlates with intracellular [Ca(2+)](i) dynamics; (iii) there is (are) Ca(2+) clearance mechanism(s) distinct from the four outlined above; and (iv) Ca(2+) homeostatic systems in the somatas of SON neurones differ from those expressed in their terminals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号