首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Morphological studies of a conditionally temperature-sensitive ribonucleic acid polymerase mutant of Bacillus subtilis have revealed that sporulation is inhibited at stage II when the cells are grown at 47.5 C. Growth and sporulation occur normally at 30 C with the mutant. The mutant grows normally at 47.5 C but is prevented from sporulating at the nonpermissive temperature by an abnormal septation during forespore membrane formation which prevents the subsequent engulfment process (stage III). The mutation affects the normal functioning of ribonucleic acid polymerase at the nonpermissive temperature resulting in abortive sporulation.  相似文献   

3.
A single site mutant of Bacillus subtilis with a streptovaricin-resistant RNA polymerase has been isolated; this mutation caused temperature-sensitive sporulation, but had no effect on vegetative growth. The mutant (ts710) temperature-sensitive period irreversibly affected the middle and late stages of sporulation. Mutant cells grown at the nonpermissive temperature exhibited abnormal serine protease accumulation, serine esterase accumulation, alkaline phosphatase accumulation, RNA polymerase template specificity changes, and pulse-labeled RNA synthesis profiles. The accumulation of metal protease was not affected at the nonpermissive temperature. Attempts to isolate single site mutants which were streptolydigin-resistant, and temperature-sensitive for sporulation, were unsuccessful.  相似文献   

4.
The Streptomyces coelicolor obg gene, which encodes a putative GTP-binding protein of the Obg/Gtp1 family, was characterized. The obg gene was essential for viability. Introduction of multiple copies of obg into wild-type S. coelicolor suppressed aerial mycelium formation. A single amino acid substitution at any of six positions was introduced into the GTP binding site of Obg, and the mutated proteins were expressed in wild-type cells. ObgP168 → V exerted a more accentuated suppressive effect on aerial mycelium formation than did the wild-type Obg protein. In contrast, ObgG171 → A accelerated the development of aerial mycelium. These results show that Obg protein functions as a pivotal regulator for the onset of cell differentiation through its ability to bind GTP. Western analysis revealed that expression of obg is regulated in a growth phase-dependent manner, indicating a sharp decrease just after onset of aerial mycelium development or at the end of vegetative growth. Obg was a membrane-bound protein as determined by immunoelectron microscopy.  相似文献   

5.
We fused obg, encoding an essential GTP-binding protein in Bacillus subtilis, to the LacI-repressible, IPTG (isopropyl-beta-D-thiogalactopyranoside)-inducible promoter Pspac. Depletion of Obg, following removal of IPTG, caused a defect in sporulation and in expression of sporulation genes that are activated by Spo0A approximately P. These defects were significantly relieved by a mutation in spo0A (rvtA11) that bypasses the normal phosphorylation pathway, indicating that Obg might normally be required, either directly or indirectly, to stimulate activity of the phosphorelay that activates Spo0A.  相似文献   

6.
S Okamoto  M Itoh    K Ochi 《Journal of bacteriology》1997,179(1):170-179
Morphological differentiation in microorganisms is usually accompanied by a decrease in intracellular GTP pool size, as has been demonstrated in bacillaceae, streptomycetaceae, and yeasts. The obg gene, which codes for a GTP-binding protein belonging to the GTPase superfamily of proteins, was cloned from Streptomyces griseus IFO13189. The gene is located just downstream of the genes for ribosomal proteins L21 and L27, encoded a protein of 478 amino acids (51 kDa), and possessed three consensus motifs which confer GTP-binding ability; Obg protein expressed in Escherichia coli bound GTP, as demonstrated using a UV cross-linking method. Introduction of multiple copies of obg into wild-type S. griseus suppressed aerial mycelium development in cells on solid media. However, no effect on streptomycin production was detected, indicating that Obg is involved in the regulation of the onset of morphological but not physiological differentiation. Multiple copies of obg also suppressed submerged spore formation in liquid culture. Southern hybridization studies indicated that genes homologous to obg exist widely in streptomycetes, and an obg homolog was successfully cloned from S. coelicolor A3(2). We propose that by monitoring the intracellular GTP pool size, the Obg protein is involved in sensing changes in the nutritional environment leading ultimately to morphological differentiation.  相似文献   

7.
Aspartate transcarbamylase is synthesized during exponential growth of Bacillus subtilis and is inactivated when the cells enter the stationary phase. This work is a study of the regulation of aspartate transcarbamylase synthesis during growth and the stationary phase. Using specific immunoprecipitation of aspartate transcarbamylase from extracts of cells pulse-labeled with tritiated leucine, we showed that the synthesis of the enzyme decreased very rapidly at the end of exponential growth and was barely detectable during inactivation of the enzyme. Synthesis of most cell proteins continued during this time. When the cells ceased growing because of pyrimidine starvation of a uracil auxotroph, however, synthesis and inactivation occurred simultaneously. Measurement of pools of pyrimidine nucleotides and guanosine tetra- and pentaphosphate demonstrated that failure to synthesize aspartate transcarbamylase in the stationary phase was not explained by simple repression by these compounds. The cessation of aspartate transcarbamylase synthesis may reflect the shutting off of a "vegetative gene" as part of the program of differential gene expression during sporulation. However, aspartate transcarbamylase synthesis decreased normally at the end of exponential growth at the nonpermissive temperature in a mutant strain that is temperature-sensitive in sporulation and RNA polymerase function. Cessation of aspartate transcarbamylase synthesis appeared to be normal in three other temperature-sensitive RNA polymerase mutants and in several classes of spo0 mutants.  相似文献   

8.
9.
Sporulation-specific translational discrimination in Bacillus subtilis   总被引:14,自引:0,他引:14  
The Bacillus subtilis 30 S ribosomal subunit has been probed for sporulationspecific functions. A single site mutant with a streptomycin-resistant 30 S ribsomal subunit has been isolated; this mutation resulted in temperature-sensitive sporulation. The temperature-sensitive mutation was expressed throughout most of the sporulation sequence. Mutant cells grown at the non-permissive temperature failed to accumulate proteolytic activity, antibiotic activity, or alkaline phosphatase activity, and hence were blocked at or near stage 0 in the sporulation sequence. Pulse labeled protein synthesis profiles were deranged during postexponential growth phase in mutant cells incubated at the non-permissive temperature. These results suggest the possibility of sporulation-specific translational control.  相似文献   

10.
A thermosensitive sporulation mutant of Bacillus subtilis containing a mutation in the secY gene was isolated and characterized. No asymmetric septum specific to the sporulation was detected by electron microscopy at the nonpermissive temperature, indicating that the block occurred at a very early stage of sporulation. Furthermore, competence development in the mutant cell was affected even at the sporulation-proficient temperature. It is assumed that the SecY protein of B. subtilis has multiple roles both in the regulation of spore formation and in stationary-phase-associated phenomena.  相似文献   

11.
Growth of temperature-sensitive mutant Bacillus cereus T JS22-C occurred normally at the restrictive temperature (37 degrees C), but sporulation was blocked at stage 0. The production of extracellular and intracellular proteases and of alkaline phosphatase occurred at 37 degrees C, but the expression of a functional tricarboxylic acid cycle did not. At the permissive temperature (26 degrees C), the mutant sporulated at a slightly lower frequency (60%) and at a lower rate than the parent strain. The oxidation of organic acids, which accumulate in the growth medium began at T0 in cultures of the parent strain but was delayed until about T3 in cultures of the mutant. Later events in sporulation were also delayed in the mutant by about 3 h. Experiments in which the temperature of growth was shifted from 37 to 26 degrees C or from 26 to 37 degrees C at various times showed that the temperature-sensitive event began approximately 1 h after the end of exponential growth and ended when the cells reached the end of stage II (septum formation). The absence of a functional tricarboxylic acid cycle in cells of the mutant grown at 37 degrees C or shifted from 26 to 37 degrees C before T1 did not appear to be due to a lesion in one of the structural genes of the tricarboxylic acid cycle but was more likely due to the inability of the cells to derepress the synthesis of some of the enzymes of that cycle.  相似文献   

12.
An essential guanine nucleotide-binding protein, Obg, of Bacillus subtilis has been characterized with respect to its enzymatic activity for GTP. The protein was seen to hydrolyze GTP with a Km of 5.4 microM and a kcat of 0.0061 min-1 at 37 degrees C. GDP was a competitive inhibitor of this hydrolysis, with an inhibition constant of 1.7 microM at 37 degrees C. The dissociation constant for GDP from the Obg protein was 0.5 microM at 4 degrees C and was estimated to be 1.3 microM at 37 degrees C. Approximately 80% of the purified protein was capable of binding GDP. In addition to hydrolysis of GTP, Obg was seen to autophosphorylate with this substrate. Subsequent release of the covalent phosphate proceeds at too slow a rate to account for the overall rate of GTP hydrolysis, indicating that in vitro hydrolysis does not proceed via the observed phosphoamidate intermediate. It was speculated that the phosphorylated form of the enzyme may represent either a switched-on or a switched-off configuration, either of which may be normally induced by an effector molecule. This enzyme from a temperature-sensitive mutant of Obg did not show significantly altered GTPase activity at the nonpermissive temperature.  相似文献   

13.
We examined two mutants of D. discoideum which are temperature-sensitive for development. At the nonpermissive temperature one mutant becomes arrested in development during the transition from the finger to the migrating slug. Temperature-shift experiment indicates that the temperature-sensitive period begins at considerably earlier tip-forming stage. The other mutant becomes arrested at the Mexican hat stage and the temperature-sensitive period coinsided with this stage. The analysis of protein synthesis by two-dimensional gels, however, showed specific changes at the nonpermissive temperature at an earlier finger-forming stage.
These results indicate the presence of a control of late development by proteins at early stages.  相似文献   

14.
Four isogenic strains of temperature-sensitive septationless mutants, whose mutations are located on different genes, were used to study the periods of action of the gene products required for the initiation of septum formation during the cell cycle of Bacillus subtilis. The shift-up experiments, in which portions of a synchronous culture of each mutant were transferred to the nonpermissive temperature, showed that the transition point, at which cells attained the ability to divide at the nonpermissive temperature in the cell cycle, was strain specific. Furthermore, the heat shock experiments, in which portions of a synchronous culture were subjected to the nonpermissive temperature before the transition point for a fixed period and shifted back to the permissive temperature, showed that the time interval between the shift-back and the subsequent cell division was specific to each strain but was independent of the age of heat shock. These results led us to the idea that the initiation of septum formation in B. subtilis requires the timed action of the four gene products, each of which functions at a specific stage in the cell cycle. In addition, the result with DNA elongation mutant MK-526, which is also septation defective, supported our previous findings that the initiation of septum formation requires the termination of DNA replication in the previous cell cycle.  相似文献   

15.
Bacillus subtilis mutants with temperature-sensitive growth on complex media were screened for defects in phospholipid metabolism. One mutant was isolated that showed temperature-sensitive net synthesis of phosphatidylethanolamine. The mutant did not accumulate phosphatidylserine at the nonpermissive temperature. In the presence of hydroxylamine, wild-type B. subtilis accumulated phosphatidylserine at both 32 and 45 degrees C, whereas the mutant did only at 32 degrees C. In vitro phosphatidylethanolamine synthesis with bacterial membranes is no more temperature sensitive with mutant membranes than with wild-type membranes. The mutation probably affects the synthesis indirectly, possibly by altering a membrane protein. The mutant bacteria grew at the nonpermissive temperature, 45 degrees C, in a phosphate buffer-based minimal medium, although net synthesis of phosphatidylethanolamine was also temperature sensitive in this medium. One mutation caused both temperature-sensitive growth on complex media and temperature-sensitive net synthesis of phosphatidylethanolamine. The mutation is linked to aroD by transformation.  相似文献   

16.
A mammalian temperature-sensitive mutant tsAF8 shows cell cycle arrest at nonpermissive temperatures in mid-G1 phase. DNA sequence comparison of the largest subunit of RNA polymerase II (Rpb1) from the wild-type and the mutant shows that the mutant phenotype results from a (hemizygous) C-to-A variation at nucleotide 944 in one rpb1 allele, giving rise to an Ala-to-Asp substitution at residue 315 in the protein. This amino acid substitution was introduced into the Schizosaccharomyces pombe rpb1 gene. Whereas tsAF8 cells showed growth defects and altered Rpb1 distribution at nonpermissive temperatures, yeast cells harboring this amino acid substitution did not show apparent temperature sensitivity. The effect of another temperature-sensitive Rpb1 mutation was also small. These results suggest that mutation of the rpb1 gene, which is critical in mammalian cells, may not be deleterious in yeast cells.  相似文献   

17.
18.
The adenovirus type 2 (Ad2) host range mutant Ad2hr400 grows efficiently in cultured monkey cells at 37 degrees C, but is cold sensitive for plaque formation and late gene expression at 32.5 degrees C. After nitrous acid mutagenesis of an Ad2hr400 stock, cold-resistant variants were selected in CV1 monkey cells at 32.5 degrees C. One such variant, Ad2ts400, was also temperature sensitive (ts) for growth in both CV1 and HeLa cells. Marker rescue analysis has been used to show that the two phenotypes, cold resistant and temperature sensitive, are due to two independent mutations, each of which resides in a different segment of the gene encoding the 72-kilodalton DNA binding protein (DBP). The cold-resistant mutation (map coordinates 63.6 to 66) is a host range alteration that enhances the ability of the virus to express late genes and grow productively in monkey cells at 32.5 degrees C. The temperature-sensitive mutation is in the same complementation group and maps to the same segment of the DBP gene (map coordinates 61.3 to 63.6) as the well-characterized DBP mutant Ad5ts125. Like Ad5ts125, Ad2ts400 is unable to replicate viral DNA or to properly shut off early mRNA expression at the nonpermissive temperature. Two sets of experiments with Ad2ts400 suggest that DBP contains separate functional domains. First, when CV1 cells are coinfected at the nonpermissive temperature with Ad2 plus Ad2ts400 (Ad2 allows DNA replication and entry into, but not completion of, the late phase of infection), normal late gene expression and productive growth occur. Second, temperature shift experiments show that, although DNA replication is severely restricted at the nonpermissive temperature in ts400-infected monkey cells, late gene expression occurs normally. These results indicate that the DBP activity required for normal late gene expression in monkey cells is functional even when the DBP's DNA replication activity is disrupted.  相似文献   

19.
20.
Fruiting-body formation in the bacterium Myxococcus xanthus consists of a temporal sequence of cellular aggregation and sporulation. To examine the developmental stages more closely, we established synchronous and reproducible conditions for fruiting-body formation. Mutants that are temperature sensitive for fruiting-body formation were isolated and analyzed under these conditions. The terminal morphologies of the mutant strains at the nonpermissive temperature were found to resemble intermediate stages of fruiting-body formation and therefore were grouped in the following phenotypic classes: (i) rough mutants, which show no aggregation; (ii) swirl mutants, which show defective aggregation; (iii) flat-mound mutants and translucent-mound mutants, mutants which aggregate but show very low levels of sporulation. The mutants were characterized by temperature-shift experiments and found to exhibit discrete and reproducible temperature-sensitive periods. The ends of the temperature-sensitive periods in the various mutants covered a broad range of the developmental cycle. No correlation was found between the terminal morphologies at the restrictive temperature and the timing of the temperature-sensitive periods. However, the terminal morphologies correlated well with sporulation. The rough and swirl mutants produced normal numbers of myxospores at 34 degrees C even though they failed to aggregate. In contrast, the flat-mound and translucent-mound mutants, which aggregate normally, produced very few spores. The translucent-mound mutants were also temperature sensitive for induction of glycerol spores. The results indicate that both aggregation and sporulation are initiated early in the developmental cycle and that these processes are largely independent of each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号