首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trophically transmitted parasites often alter their intermediate host's phenotype, thereby predisposing hosts to increased predation. This is generally considered to be a parasite strategy evolved to enhance transmission to the next host. However, the adaptive value of host manipulation is not clear, as it may be associated with costs, such as increased susceptibility to predator species that are unsuitable next hosts for the parasites. Thus, it has been proposed that, to be adaptive, manipulation should be specific by predisposing hosts more strongly to predation by target hosts (next host in the life cycle) than to non-hosts. Here we formally evaluate this prediction, and show that manipulation does not have to be specific to be adaptive. However, when manipulation is nonspecific, it needs to effectively increase the overall predation risk of infected hosts if it is to increase the parasite transmission probability. Thus, when initial predation risk is low, even highly nonspecific manipulation strategies can be adaptive. However, when initial predation risk is high, manipulation needs to be more specific to increase parasite transmission success. Therefore, nonspecific host manipulation may evolve in nature, but the adaptive value of a certain manipulation strategy can vary among different parasite populations depending on the variation in initial predation risk.  相似文献   

2.
The highly prevalent parasite Toxoplasma gondii manipulates its host's behavior. In infected rodents, the behavioral changes increase the likelihood that the parasite will be transmitted back to its definitive cat host, an essential step in completion of the parasite's life cycle. The mechanism(s) responsible for behavioral changes in the host is unknown but two lines of published evidence suggest that the parasite alters neurotransmitter signal transduction: the disruption of the parasite-induced behavioral changes with medications used to treat psychiatric disease (specifically dopamine antagonists) and identification of a tyrosine hydroxylase encoded in the parasite genome. In this study, infection of mammalian dopaminergic cells with T. gondii enhanced the levels of K+-induced release of dopamine several-fold, with a direct correlation between the number of infected cells and the quantity of dopamine released. Immunostaining brain sections of infected mice with dopamine antibody showed intense staining of encysted parasites. Based on these analyses, T. gondii orchestrates a significant increase in dopamine metabolism in neural cells. Tyrosine hydroxylase, the rate-limiting enzyme for dopamine synthesis, was also found in intracellular tissue cysts in brain tissue with antibodies specific for the parasite-encoded tyrosine hydroxylase. These observations provide a mechanism for parasite-induced behavioral changes. The observed effects on dopamine metabolism could also be relevant in interpreting reports of psychobehavioral changes in toxoplasmosis-infected humans.  相似文献   

3.
Many trophically transmitted parasites manipulate their intermediate host phenotype, resulting in higher transmission to the final host. However, it is not known if manipulation is a fixed adaptation of the parasite or a dynamic process upon which selection still acts. In particular, local adaptation has never been tested in manipulating parasites. In this study, using experimental infections between six populations of the acanthocephalan parasite Pomphorhynchus laevis and its amphipod host Gammarus pulex, we investigated whether a manipulative parasite may be locally adapted to its host. We compared adaptation patterns for infectivity and manipulative ability. We first found a negative effect of all parasite infections on host survival. Both parasite and host origins influenced infection success. We found a tendency for higher infectivity in sympatric versus allopatric combinations, but detailed analyses revealed significant differences for two populations only. Conversely, no pattern of local adaptation was found for behavioral manipulation, but manipulation ability varied among parasite origins. This suggests that parasites may adapt their investment in behavioral manipulation according to some of their host's characteristics. In addition, all naturally infected host populations were less sensitive to parasite manipulation compared to a naive host population, suggesting that hosts may evolve a general resistance to manipulation.  相似文献   

4.
Recent studies correlate chronic Toxoplasma gondii (T. gondii) infection with behavioral changes in rodents; additionally, seropositivity in humans is reported to be associated with behavioral and neuropsychiatric diseases. In this study we investigated whether the described behavioral changes in a murine model of chronic toxoplasmosis are associated with changes in synaptic plasticity and brain neuronal circuitry. In mice chronically infected with T. gondii, magnetic resonance imaging (MRI) data analysis displayed the presence of heterogeneous lesions scattered throughout all brain areas. However, a higher density of lesions was observed within specific regions such as the somatosensory cortex (SSC). Further histopathological examination of these brain areas indicated the presence of activated resident glia and recruited immune cells accompanied by limited alterations of neuronal viability. In vivo diffusion-tensor MRI analysis of neuronal fiber density within the infected regions revealed connectivity abnormalities in the SSC. Altered fiber density was confirmed by morphological analysis of individual, pyramidal and granule neurons, showing a reduction in dendritic arbor and spine density within the SSC, as well as in the hippocampus. Evaluation of synapse efficacy revealed diminished levels of two key synaptic proteins, PSD95 and synaptophysin, within the same brain areas, indicating deficits in functionality of the synaptic neurotransmission in infected mice. Our results demonstrate that persistent T. gondii infection in a murine model results in synaptic deficits within brain structures leading to disturbances in the morphology of noninfected neurons and modified brain connectivity, suggesting a potential explanation for the behavioral and neuropsychiatric alterations.KEY WORDS: Parasites, Behavioral manipulation, Neuronal connectivity  相似文献   

5.
This article is part of a Special Issue "Neuroendocrine-Immune Axis in Health and Disease." Behavioural and neurophysiological traits and responses associated with anxiety and predation-related fear have been well documented in rodent models. Certain parasites and pathogens which rely on predation for transmission appear able to manipulate these, often innate, traits to increase the likelihood of their life-cycle being completed. This can occur through a range of mechanisms, such as alteration of hormonal and neurotransmitter communication and/or direct interference with the neurons and brain regions that mediate behavioural expression. Whilst some post-infection behavioural changes may reflect 'general sickness' or a pathological by-product of infection, others may have a specific adaptive advantage to the parasite and be indicative of active manipulation of host behaviour. Here we review the key mechanisms by which anxiety and predation-related fears are controlled in mammals, before exploring evidence for how some infectious agents may manipulate these mechanisms. The protozoan Toxoplasma gondii, the causative agent of toxoplasmosis, is focused on as a prime example. Selective pressures appear to have allowed this parasite to evolve strategies to alter the behaviour in its natural intermediate rodent host. Latent infection has also been associated with a range of altered behavioural profiles, from subtle to severe, in other secondary host species including humans. In addition to enhancing our knowledge of the evolution of parasite manipulation in general, to further our understanding of how and when these potential changes to human host behaviour occur, and how we may prevent or manage them, it is imperative to elucidate the associated mechanisms involved.  相似文献   

6.
Toxoplasma gondii is a ubiquitous intracellular parasite which chronically infects 30–50% of the human population. While acquired infection is primarily asymptomatic several studies have suggested that such infections may contribute to neurological and psychiatric symptoms. Previous studies in rodents have demonstrated that T. gondii infection does not just kill its host, but alters the behavioral repertoire of an infected animal, making it more likely that predation with occur completing the parasite life cycle. The aim of the present study was to evaluate the behavioral changes in C57BL/6 mice chronically infected with the avirulent T. gondii (ME49, a Type II strain), in a comprehensive test battery. Infected mice demonstrated profound and widespread brain pathology, motor coordination and sensory deficits. In contrast, cognitive function, anxiety levels, social behavior and the motivation to explore novel objects were normal. The observed changes in behavior did not represent “gross” brain damage or dysfunction and were not due to targeted destruction of specific areas of the brain. Such changes point out the subtle interaction of this parasite with its intermediate hosts and are consistent with ideas about increased predation being an outcome of infection.  相似文献   

7.
Afonso C  Paixão VB  Costa RM 《PloS one》2012,7(3):e32489
The intracellular parasite Toxoplasma has an indirect life cycle, in which felids are the definitive host. It has been suggested that this parasite developed mechanisms for enhancing its transmission rate to felids by inducing behavioral modifications in the intermediate rodent host. For example, Toxoplasma-infected rodents display a reduction in the innate fear of predator odor. However, animals with Toxoplasma infection acquired in the wild are more often caught in traps, suggesting that there are manipulations of intermediate host behavior beyond those that increase predation by felids. We investigated the behavioral modifications of Toxoplasma-infected mice in environments with exposed versus non-exposed areas, and found that chronically infected mice with brain cysts display a plethora of behavioral alterations. Using principal component analysis, we discovered that most of the behavioral differences observed in cyst-containing animals reflected changes in the microstructure of exploratory behavior and risk/unconditioned fear. We next examined whether these behavioral changes were related to the presence and distribution of parasitic cysts in the brain of chronically infected mice. We found no strong cyst tropism for any particular brain area but found that the distribution of Toxoplasma cysts in the brain of infected animals was not random, and that particular combinations of cyst localizations changed risk/unconditioned fear in the host. These results suggest that brain cysts in animals chronically infected with Toxoplasma alter the fine structure of exploratory behavior and risk/unconditioned fear, which may result in greater capture probability of infected rodents. These data also raise the possibility that selective pressures acted on Toxoplasma to broaden its transmission between intermediate predator hosts, in addition to felid definitive hosts.  相似文献   

8.
One of the most fascinating examples of parasite-induced host manipulation is that of hairworms, first, because they induce a spectacular "suicide" water-seeking behavior in their terrestrial insect hosts and, second, because the emergence of the parasite is not lethal per se for the host that can live several months following parasite release. The mechanisms hairworms use to increase the encounter rate between their host and water remain, however, poorly understood. Considering the selective landscape in which nematomorph manipulation has evolved as well as previously obtained proteomics data, we predicted that crickets harboring mature hairworms would display a modified behavioral response to light. Since following parasite emergence in water, the cricket host and parasitic worm do not interact physiologically anymore, we also predicted that the host would recover from the modified behaviors. We examined the effect of hairworm infection on different behavioral responses of the host when stimulated by light to record responses from uninfected, infected, and ex-infected crickets. We showed that hairworm infection fundamentally modifies cricket behavior by inducing directed responses to light, a condition from which they mostly recover once the parasite is released. This study supports the idea that host manipulation by parasites is subtle, complex, and multidimensional.  相似文献   

9.
Many parasitologists are betting heavily on proteomic studies to explain biochemical host-parasite interactions and, thus, to contribute to disease control. However, many "parasitoproteomic" studies are performed with powerful techniques but without a conceptual approach to determine whether the host genomic responses during a parasite infection represent a nonspecific response that might be induced by any parasite or any other stress. In this article, a new conceptual approach, based on evolutionary concepts of immune responses of a host to a parasite, is suggested for parasitologists to study the host proteome reaction after parasite invasion. Also, this new conceptual approach can be used to study other host-parasite interactions such as behavioral manipulation.  相似文献   

10.
Numerous parasites with complex life cycles are able to manipulate the behaviour of their intermediate host in a way that increases their trophic transmission to the definitive host. Pomphorhynchus laevis, an acanthocephalan parasite, is known to reverse the phototactic behaviour of its amphipod intermediate host, Gammarus pulex, leading to an increased predation by fish hosts. However, levels of behavioural manipulation exhibited by naturally-infected gammarids are extremely variable, with some individuals being strongly manipulated whilst others are almost not affected by infection. To investigate parasite age and parasite intensity as potential sources of this variation, we carried out controlled experimental infections on gammarids using parasites from two different populations. We first determined that parasite intensity increased with exposure dose, but found no relationship between infection and host mortality. Repeated measures confirmed that the parasite alters host behaviour only when it reaches the cystacanth stage which is infective for the definitive host. They also revealed, we believe for the first time, that the older the cystacanth, the more it manipulates its host. The age of the parasite is therefore a major source of variation in parasite manipulation. The number of parasites within a host was also a source of variation. Manipulation was higher in hosts infected by two parasites than in singly infected ones, but above this intensity, manipulation did not increase. Since the development time of the parasite was also different according to parasite intensity (it was longer in doubly infected hosts than in singly infected ones, but did not increase more in multi-infected hosts), individual parasite fitness could depend on the compromise between development time and manipulation efficiency. Finally, the two parasite populations tested induced slightly different degrees of behavioural manipulation.  相似文献   

11.
Pathogen-induced host phenotypic changes are widespread phenomena that can dramatically influence host–vector interactions. Enhanced vector attraction to infected hosts has been reported in a variety of host–pathogen systems, and has given rise to the parasite manipulation hypothesis whereby pathogens may adaptively modify host phenotypes to increase transmission from host to host. However, host phenotypic changes do not always favour the transmission of pathogens, as random host choice, reduced host attractiveness and even host avoidance after infection have also been reported. Thus, the effects of hosts’ parasitic infections on vector feeding behaviour and on the likelihood of parasite transmission remain unclear. Here, we experimentally tested how host infection status and infection intensity with avian Plasmodium affect mosquito feeding patterns in house sparrows (Passer domesticus). In separate experiments, mosquitoes were allowed to bite pairs containing (i) one infected and one uninfected bird and (ii) two infected birds, one of which treated with the antimalarial drug, primaquine. We found that mosquitoes fed randomly when exposed to both infected and uninfected birds. However, when mosquitoes were exposed only to infected individuals, they preferred to bite the non-treated birds. These results suggest that the malarial parasite load rather than the infection itself plays a key role in mosquito attraction. Our findings partially support the parasite manipulation hypothesis, which probably operates via a reduction in defensive behaviour, and highlights the importance of considering parasite load in studies on host–vector–pathogen interactions.  相似文献   

12.
Many trophically transmitted parasites have complex life cycles: they pass through at least one intermediate host before reproducing in their final host. Despite their economic and theoretical importance, the evolution of such cycles has rarely been investigated. Here, combining a novel modeling approach with experimental data, we show for the first time that an optimal transfer time between hosts exists for a "model parasite," the tapeworm Schistocephalus solidus , from its first (copepod) to its second (fish) intermediate host. When transferring between hosts around this time, (1) parasite performance in the second intermediate host, (2) reproductive success in the final host, and (3) fitness in the next generation is maximized. At that time, the infected copepod's behavior changes from predation suppression to predation enhancement. The optimal time for switching manipulation results from a trade-off between increasing establishment probability in the next host and reducing mortality in the present host. Our results show that these manipulated behavioral changes are adaptive for S. solidus , rather than an artifact, as they maximize parasite fitness.  相似文献   

13.
In nature the prevalence of Leishmania infection in whole sand fly populations can be very low (<0.1%), even in areas of endemicity and high transmission. It has long since been assumed that the protozoan parasite Leishmania can manipulate the feeding behavior of its sand fly vector, thus enhancing transmission efficiency, but neither the way in which it does so nor the mechanisms behind such manipulation have been described. A key feature of parasite development in the sand fly gut is the secretion of a gel-like plug composed of filamentous proteophosphoglycan. Using both experimental and natural parasite-sand fly combinations we show that secretion of this gel is accompanied by differentiation of mammal-infective transmission stages. Further, Leishmania infection specifically causes an increase in vector biting persistence on mice (re-feeding after interruption) and also promotes feeding on multiple hosts. Both of these aspects of vector behavior were found to be finely tuned to the differentiation of parasite transmission stages in the sand fly gut. By experimentally accelerating the development rate of the parasites, we showed that Leishmania can optimize its transmission by inducing increased biting persistence only when infective stages are present. This crucial adaptive manipulation resulted in enhanced infection of experimental hosts. Thus, we demonstrate that behavioral manipulation of the infected vector provides a selective advantage to the parasite by significantly increasing transmission.  相似文献   

14.
Previous investigations suggest that the infection of the cyprinid roach, Rutilus rutilus, with the larval plerocercoid forms of the cestode, Ligula intestinalis, creates behavioural and morphological changes in the fish host, potentially of adaptive significance to the parasite in promoting transmission to definitive avian hosts. Here we consider whether these behavioural changes are important in shaping the distribution of parasite individuals across the fish population. An examination of field data illustrates that fish infected with a single parasite were more scarce than expected under the negative binomial distribution, and in many months were more scarce than burdens of two, three or more, leading to a bimodal distribution of worm counts (peaks at 0 and >1). This scarcity of single-larval worm infections could be accounted for a priori by a predominance of multiple infection. However, experimental infections of roach gave no evidence for the establishment of multiple worms, even when the host was challenged with multiple intermediate crustacean hosts, each multiply infected. A second hypothesis assumes that host manipulation following an initial single infection leads to an increased probability of subsequent infection (thus creating a contagious distribution). If manipulated fish are more likely to encounter infected first-intermediate hosts (through microhabitat change, increased ingestion, or both), then host manipulation could act as a powerful cause of aggregation. A number of scenarios based on contagious distribution models of aggregation are explored, contrasted with alternative compound Poisson models, and compared with the empirical data on L. intestinalis aggregation in their roach intermediate hosts. Our results indicate that parasite-induced host manipulation in this system can function simultaneously as both a consequence and a cause of parasite aggregation. This mutual interaction between host manipulation and parasite aggregation points to a set of ecological interactions that are easily missed in most experimental studies of either phenomenon.  相似文献   

15.
Toxoplasma gondii causes retinitis and encephalitis. Avoiding targeting by autophagosomes is key for its survival because T. gondii cannot withstand lysosomal degradation. During invasion of host cells, T. gondii triggers epidermal growth factor receptor (EGFR) signalling enabling the parasite to avoid initial autophagic targeting. However, autophagy is a constitutive process indicating that the parasite may also use a strategy operative beyond invasion to maintain blockade of autophagic targeting. Finding that such a strategy exists would be important because it could lead to inhibition of host cell signalling as a novel approach to kill the parasite in previously infected cells and treat toxoplasmosis. We report that T. gondii induced prolonged EGFR autophosphorylation. This effect was mediated by PKCα/PKCβ ? Src because T. gondii caused prolonged activation of these molecules and their knockdown or incubation with inhibitors of PKCα/PKCβ or Src after host cell invasion impaired sustained EGFR autophosphorylation. Addition of EGFR tyrosine kinase inhibitor (TKI) to previously infected cells led to parasite entrapment by LC3 and LAMP‐1 and pathogen killing dependent on the autophagy proteins ULK1 and Beclin 1 as well as lysosomal enzymes. Administration of gefitinib (EGFR TKI) to mice with ocular and cerebral toxoplasmosis resulted in disease control that was dependent on Beclin 1. Thus, T. gondii promotes its survival through sustained EGFR signalling driven by PKCα/β ? Src, and inhibition of EGFR controls pre‐established toxoplasmosis.  相似文献   

16.
Mice infected with Nematospiroides dubius were incapable of responding normally to i.p. or i.v. challenge with SRBC. The HA and PFC response to SRBC in infected animals was characterized by a severe depression of antibody to SRBC on day 4 and a reduced HA peak titre during the following week. The greatest depression of the response to SRBC was associated with an interval of 14 days between infection and the administration of antigen, suggesting that a particular stage of the parasite contributed significantly to immunodepression during this critical period. It was proposed that a combination of parasite induced damage to the intestine, release of parasite secretory/excretory products and loss of appetite by the host produced trauma during which the host was incapable of responding normally. However, mice given low-level and long-standing infections also showed reduced responses to SRBC, although these animals were not severely depressed. It is possible that this generalized weakening of host immunocompetence is the inevitable consequence of a parasite mechanism which operates more specifically to suppress the expression of homologous immunity at the intestinal level.  相似文献   

17.
Fatal attraction in rats infected with Toxoplasma gondii   总被引:3,自引:0,他引:3  
We tested the hypothesis that the parasite Toxoplasma gondii manipulates the behaviour of its intermediate rat host in order to increase its chance of being predated by cats, its feline definitive host, thereby ensuring the completion of its life cycle. Here we report that, although rats have evolved anti-predator avoidance of areas with signs of cat presence, T. gondii's manipulation appears to alter the rat's perception of cat predation risk, in some cases turning their innate aversion into an imprudent attraction. The selectivity of such behavioural changes suggests that this ubiquitous parasite subtly alters the brain of its intermediate host to enhance predation rate whilst leaving other behavioural categories and general health intact. This is in contrast to the gross impediments frequently characteristic of many other host parasite systems. We discuss our results in terms of their potential implications both for the epidemiology of toxoplasmosis and the neurological basis of anxiety and cognitive processes in humans and other mammals.  相似文献   

18.

Background

The highly prevalent parasite Toxoplasma gondii reportedly manipulates rodent behavior to enhance the likelihood of transmission to its definitive cat host. The proximate mechanisms underlying this adaptive manipulation remain largely unclear, though a growing body of evidence suggests that the parasite-entrained dysregulation of dopamine metabolism plays a central role. Paradoxically, the distribution of the parasite in the brain has received only scant attention.

Methodology/Principal Findings

The distributions of T. gondii cysts and histopathological lesions in the brains of CD1 mice with latent toxoplasmosis were analyzed using standard histological techniques. Mice were infected per orally with 10 tissue cysts of the avirulent HIF strain of T. gondii at six months of age and examined 18 weeks later. The cysts were distributed throughout the brain and selective tropism of the parasite toward a particular functional system was not observed. Importantly, the cysts were not preferentially associated with the dopaminergic system and absent from the hypothalamic defensive system. The striking interindividual differences in the total parasite load and cyst distribution indicate a probabilistic nature of brain infestation. Still, some brain regions were consistently more infected than others. These included the olfactory bulb, the entorhinal, somatosensory, motor and orbital, frontal association and visual cortices, and, importantly, the hippocampus and the amygdala. By contrast, a consistently low incidence of tissue cysts was recorded in the cerebellum, the pontine nuclei, the caudate putamen and virtually all compact masses of myelinated axons. Numerous perivascular and leptomeningeal infiltrations of inflammatory cells were observed, but they were not associated with intracellular cysts.

Conclusion/Significance

The observed pattern of T. gondii distribution stems from uneven brain colonization during acute infection and explains numerous behavioral abnormalities observed in the chronically infected rodents. Thus, the parasite can effectively change behavioral phenotype of infected hosts despite the absence of well targeted tropism.  相似文献   

19.
Host manipulation is a common strategy by which parasites alter the behaviour of their host to enhance their own fitness. In nature, hosts are usually infected by multiple parasites. This can result in a conflict over host manipulation. Studies of such a conflict in experimentally infected hosts are rare. The cestode Schistocephalus solidus (S) and the nematode Camallanus lacustris (C) use copepods as their first intermediate host. They need to grow for some time inside this host before they are infective and ready to be trophically transmitted to their subsequent fish host. Accordingly, not yet infective parasites manipulate to suppress predation. Infective ones manipulate to enhance predation. We experimentally infected laboratory-bred copepods in a manner that resulted in copepods harbouring (i) an infective C plus a not yet infective C or S, or (ii) an infective S plus a not yet infective C. An infective C completely sabotaged host manipulation by any not yet infective parasite. An infective S partially reduced host manipulation by a not yet infective C. We hence show experimentally that a parasite can reduce or even sabotage host manipulation exerted by a parasite from a different species.  相似文献   

20.
The incidence of babesiosis, Lyme disease and other tick-borne diseases has increased steadily in Europe and North America during the last five decades. Babesia microti is transmitted by species of Ixodes, the same ticks that transmit the Lyme disease-causing spirochete, Borrelia burgdorferi. B. microti can also be transmitted through transfusion of blood products and is the most common transfusion-transmitted infection in the U.S.A. Ixodes ticks are commonly infected with both B. microti and B. burgdorferi, and are competent vectors for transmitting them together into hosts. Few studies have examined the effects of coinfections on humans and they had somewhat contradictory results. One study linked coinfection with B. microti to a greater number of symptoms of overall disease in patients, while another report indicated that B. burgdorferi infection either did not affect babesiosis symptoms or decreased its severity. Mouse models of infection that manifest pathological effects similar to those observed in human babesiosis and Lyme disease offer a unique opportunity to thoroughly investigate the effects of coinfection on the host. Lyme disease has been studied using the susceptible C3H mouse infection model, which can also be used to examine B. microti infection to understand pathological mechanisms of human diseases, both during a single infection and during coinfections. We observed that high B. microti parasitaemia leads to low haemoglobin levels in infected mice, reflecting the anaemia observed in human babesiosis. Similar to humans, B. microti coinfection appears to enhance the severity of Lyme disease-like symptoms in mice. Coinfected mice have lower peak B. microti parasitaemia compared to mice infected with B. microti alone, which may reflect attenuation of babesiosis symptoms reported in some human coinfections. These findings suggest that B. burgdorferi coinfection attenuates parasite growth while B. microti presence exacerbates Lyme disease-like symptoms in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号