首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The ability of oligo- and polymers of the basic amino acids L-lysine, L-arginine, L-histidine and L-ornithine to induce lipid intermixing and membrane fusion among vesicles containing various anionic phospholipids has been investigated. Among vesicle consisting of either phosphatidylinositol or mixtures of phosphatidic acid and phosphatidylethanolamine rapid and extensive lipid intermixing, but not complete fusion, was induced at neutral pH by poly-L-ornithine or L-lysine peptides of five or more residues. When phosphatidylcholine was included in the vesicles, the lipid intermixing was severely inhibited. Such lipid intermixing was also much less pronounced among phosphatidylserine vesicles. Poly-L-arginine provoked considerable leakage from the various anionic vesicles and caused significantly less lipid intermixing than L-lysine peptides at neutral pH. When the addition of basic amino acid polymer was followed by acidification to pH 5-6, vesicle fusion was induced. Fusion was more pronounced among vesicles containing phosphatidylserine or phosphatidic acid than among those containing phosphatidylinositol, and occurred also with vesicles whose composition resembles that of cellular membranes (i.e., phosphatidylcholine/phosphatidylethanolamine/phosphatidylserine, 50:30:20, by mol). Liposomes with this composition are resistant to fusion by Ca2+ or by acidification after lectin-mediated contact. The tight interaction among vesicles at neutral pH, resulting in lipid intermixing, does not seem to be necessary for the fusion occurring after acidification, but the basic peptides nevertheless appear to play a more active role in the fusion process than simply bringing the vesicles in contact. However, protonation of the polymer side chains and transformation of the polymer into a polycation does not explain the need for acidification, since the pH-dependence was quite similar for poly(L-histidine)- and poly(L-lysine)-mediated fusion.  相似文献   

2.
Ca2+-induced fusion of glycolipid-phospholipid vesicles containing several different anionic phospholipids was investigated, with and without lectin-mediated intervesicle contact. In vesicles containing phosphatidylserine, phosphatidylinositol or its mono- or diphosphate as the anionic phospholipid fusion was induced only at 1–10 mM Ca2+ both in the absence and presence of lectin. In contrast, the Ca2+-threshold for fusion of phosphatidate-containing vesicles was reduced to 0.1 mM Ca2+ by lectin-mediated intermembrane contact.  相似文献   

3.
Ca2+-induced fusion of glycolipid-phospholipid vesicles containing several different anionic phospholipids was investigated, with and without lectin-mediated intervesicle contact. In vesicles containing phosphatidylserine, phosphatidylinositol or its mono- or diphosphate as the anionic phospholipid fusion was induced only at 1–10 mM Ca2+ both in the absence and presence of lectin. In contrast, the Ca2+-threshold for fusion of phosphatidate-containing vesicles was reduced to ?0.1 mM Ca2+ by lectin-mediated intermembrane contact.  相似文献   

4.
Proton-induced fusion of oleic acid-phosphatidylethanolamine liposomes   总被引:2,自引:0,他引:2  
Liposomes composed of oleic acid and phosphatidylethanolamine (3:7 mole ratio) aggregate, become destabilized, and fuse below pH 6.5 in 150 mM NaCl. Fusion is monitored by (i) the intermixing of internal aqueous contents of liposomes, utilizing the quenching of aminonaphthalene-3,6,8-trisulfonic acid (ANTS) by N,N'-p-xylylenebis(pyridinium bromide) (DPX) encapsulated in two separate populations of vesicles, (ii) a resonance energy transfer assay for the dilution of fluorescent phospholipids from labeled to unlabeled liposomes, (iii) irreversible changes in turbidity, and (iv) quick-freezing freeze-fracture electron microscopy. Destabilization is followed by the fluorescence increase caused by the leakage of coencapsulated ANTS/DPX or of calcein. Ca2+ and Mg2+ also induce fusion of these vesicles at 3 and 4 mM, respectively. The threshold for fusion is at a higher pH in the presence of low (subfusogenic) concentrations of these divalent cations. Vesicles composed of phosphatidylserine/phosphatidylethanolamine or of oleic acid/phosphatidylcholine (3:7 mole ratio) do not aggregate, destabilize, or fuse in the pH range 7-4, indicating that phosphatidylserine and phosphatidylcholine cannot be substituted for oleic acid and phosphatidylethanolamine, respectively, for proton-induced membrane fusion. Freeze-fracture replicas of oleic acid/phosphatidylethanolamine liposomes frozen within 1 s of stimulation with pH 5.3 display larger vesicles and vesicles undergoing fusion, with membrane ridges and areas of bilayer continuity between them. The construction of pH-sensitive liposomes is useful as a model for studying the molecular requirements for proton-induced membrane fusion in biological systems and for the cytoplasmic delivery of macromolecules.  相似文献   

5.
Dynamic light scattering has been used to study the temperature dependence of Ca2+-induced fusion of phosphatidylserine vesicles and mixed vesicles containing phosphatidylserine and different phosphatidylcholines. The final vesicle size after Ca2+ and EDTA incubation serves as a measure of the extent of fusion. With phosphatidylserine vesicles, the extent of fusion shows a sharp maximum at an incubation temperature which depends on the Ca2+ concentration between 0.8 and 2 mM. The shift in the fusion peak temperature with Ca2+ concentration is similar to the typical shift in the phase transition temperature with divalent cation concentration in acidic phospholipids. The results suggest a direct correlation between the fusion peak temperature and the phase transition temperature in the presence of Ca2+ prior to fusion. With mixed vesicles containing up to 33% of a phosphatidylcholine in at least 2 mM Ca2+, the extent of fusion as a function of incubation temperature also shows a maximum. The fusion peak temperature is essentially independent of the quantity and type of phosphatidylcholine and the Ca2+ concentration, and identical to that with pure phosphatidylserine in excess Ca2+. The results imply that Ca2+- induced molecular segregation occurs first, and fusion subsequently takes place between pure phosphatidylserine domains.  相似文献   

6.
Recent studies suggest that phosphoinositide kinases may participate in intracellular trafficking or exocytotic events. Because both of these events ultimately require fusion of biological membranes, the susceptibility of membranes containing polyphosphoinositides (PPIs) to divalent cation-induced fusion was investigated. Results of these investigations indicated that artificial liposomes containing PPI or phosphatidic acid required lower Ca2+ concentrations for induction of membrane fusion than similar vesicles containing phosphatidylserine, phosphatidylinositol, or phosphatidylcholine. This trend was first observed in liposomes composed solely of one type of phospholipid. In addition, however, liposomes designed to mimic the phospholipid composition of the endofacial leaflet of plasma membranes (i.e., liposomes composed of combinations of PPI, phosphatidylethanolamine, and phosphatidylcholine) also required lower Ca2+ concentrations for induction of aggregation and fusion. Liposomes containing PPI and phosphatidic acid also had increased sensitivity to Mg(2+)-induced fusion, an observation that is particularly intriguing given the intracellular concentration of Mg2+ ions. Moreover, the fusogenic effects of Ca2+ and Mg2+ were additive in vesicles containing phosphatidylinositol bisphosphate. These data suggest that enzymatic modification of the PPI content of intracellular membranes could be an important mechanism of fusion regulation.  相似文献   

7.
Modulation of membrane fusion by calcium-binding proteins.   总被引:4,自引:0,他引:4       下载免费PDF全文
The effects of several Ca2+-binding proteins (calmodulin, prothrombin, and synexin) on the kinetics of Ca2+-induced membrane fusion were examined. Membrane fusion was assayed by following the mixing of aqueous contents of phospholipid vesicles. Calmodulin inhibited slightly the fusion of phospholipid vesicles. Bovine prothrombin and its proteolytic fragment 1 had a strong inhibitory effect on fusion. Depending on the phospholipid composition, synexin could either facilitate or inhibit Ca2+-induced fusion of vesicles. The effects of synexin were Ca2+ specific. 10 microM Ca2+ was sufficient to induce fusion of vesicles composed of phosphatidic acid/phosphatidylethanolamine (1:3) in the presence of synexin and 1 mM Mg2+. We propose that synexin may be involved in intracellular membrane fusion events mediated by Ca2+, such as exocytosis, and discuss possible mechanisms facilitating fusion.  相似文献   

8.
Synexin, a soluble adrenal medullary and liver protein which causes calcium-dependent aggregation of isolated chromaffin granules, was isolated and purified according to published procedures. The effects of synexin on the kinetics of membrane fusion were examined. Membrane fusion was assayed by following the mixing of aqueous contents of phospholipid vesicles. Synexin lowers the threshold of CA2+ concentration required for fusion of large unilamellar vesicles of phosphatidylserine and a mixture of phosphatidylserine with phosphatidylethanolamine. synexin also increases drastically the initial rate of fusion. the initial rate of fusion increases with the quantity of synexin present in the reaction mixture. In the presence of 1-2 mM Ca2+ and 50 microM phospholipid, synexin at 20 to 40 micrograms/ml increases the rate of fusion by two orders of magnitude. Mg2+ does not support synexin-induced fusion. With vesicles containing a mixture of phosphatidylserine with phosphatidylcholine, synexin enhances aggregation in the presence of CA2+, without promoting fusion. Synexin may play a role in exocytosis by promoting fusion of membranes containing specific phospholipids in the presence of Ca2+.  相似文献   

9.
Effects of phorbol ester and teleocidin on Ca2+-induced fusion of liposomes   总被引:1,自引:0,他引:1  
The effects of different types of lipid membrane defects on Ca2+-induced fusion of liposomes containing phosphatidylserine (PS) were investigated using fluorescent probes. Teleocidin enhanced the fusion of phospholipid vesicles in an assay system using terbium/dipicolinic acid during mixing of internal aqueous phases of vesicles upon fusion. 12-O-Tetradecanoylphorbol-13-acetate (TPA) suppressed the fusion. This latter phenomenon was also observed by measuring the excitation energy transfer. The promotion of membrane fusion by teleocidin was ascribed to dehydration of the membrane surface, the suppressive effect of TPA to desorption of Ca2+ from the membrane surface. Thus, Ca2+-induced fusion of PS vesicles was shown to be sensitive to defects of the membrane surface, but insensitive to defects of the hydrophobic core of the lipid membrane.  相似文献   

10.
The effect of incorporation of glycophorin, the major integral sialoglycoprotein of the erythrocyte membrane, into bovine brain phosphatidylserine (PS) vesicles on the Ca2+-induced fusion of these vesicles has been investigated. Fusion was monitored by the terbium-dipicolinic acid fluorescence assay for the mixing of aqueous contents of the vesicles and by a resonance energy transfer assay that follows the intermixing of membrane lipids. The Ca2+-induced fusion of PS vesicles is completely prevented by incorporation of glycophorin (molar ratio of PS/glycophorin = 400-500:1) for Ca2+ concentrations up to 50 mM. The ability to fuse is partially restored after treating the glycophorin-containing vesicles with neuraminidase, which removes the negatively charged sialic acid residues of glycophorin. Fusion is further facilitated by trypsin treatment, removing the entire extravesicular glycosylated head group of glycophorin. However, Ca2+-induced fusion of enzyme-treated glycophorin-PS vesicles proceeds at a slower rate and to a smaller extent than fusion of protein-free PS vesicles. The influence of the aggregation state of the glycophorin molecules on fusion has been investigated in experiments using wheat germ agglutinin (WGA). Addition of WGA to the glycophorin-PS vesicles does not induce fusion. However, upon subsequent addition of Ca2+, distinct fusion occurs concomitantly with release of vesicle contents. The inhibition of Ca2+-induced fusion of PS vesicles by incorporation of glycophorin is explained by a combination of steric hindrance and electrostatic repulsion between the vesicles by the glycosylated head group of glycophorin and a direct bilayer stabilization by the intramembranous hydrophobic part of the glycophorin molecule.  相似文献   

11.
Glycolipid-phospholipid vesicles containing phosphatidate and phosphatidylethanolamine were found to undergo proton-induced fusion upon acidification of the suspending medium from pH 7.4 to pH 6.5 or lower, as determined by an assay for lipid intermixing based on fluorescence resonance energy transfer. Lectinmediated contact between the vesicles was required for fusion. Incorporation of phosphatidylcholine in the vesicles inhibited proton-induced fusion. Vesicles in which phosphatidate was replaced by phosphatidylserine underwent fusion only when pH was reduced below 4.5, while no significant fusion occured (pH ? 3.5) when the anionic phospholipid was phosphatidylinositol. It is suggested that partial protonation of the polar headgroup of phosphatidate and phosphatidylserine, respectively, causes a sufficient reduction in the polarity and hydration of the vesicle surface to trigger fusion at sites of intermembrane contact.  相似文献   

12.
In biological membranes, the anionic characteristics of the polar headgroup of phosphatidic acids are responsible for structural changes induced by Ca2+ in many cellular processes. The very simple headgroup structure of dipalmitoylphosphatidic acid (DPPA) offers particular advantages as a model to study the interactions between Ca2+ and natural phosphatidic acids such as cardiolipin and phosphatidylserine. The effects of calcium ions on DPPA membranes have been studied as a function of temperature by potentiometry and by Raman, ESR and 31P-NMR spectroscopies. The protons in monosodic DPPA liposomes have been considered as a probe to detect pH variations resulting from introduction of Ca2+ inside the membrane. This method has also allowed us to determine the stoichiometry of this reaction: 2 DPPA(H) + Ca2+----Ca(DPPA)2 + 2H+. 31P-NMR spectroscopy has been used to detect reorganization-condensation phenomena in multilamellar vesicles of DPPA under the influence of calcium and temperature. Furthermore, the temperature profiles obtained from Raman spectra for Ca(DPPA)2 membranes provide conclusive evidence that Ca2+ induces major reorganization of the phosphatidic acid component into a highly ordered phase. Quantitative estimates of the degree of motional restriction of spin-labeled soaps embedded inside membranes composed of DPPA with or without Ca2+ have been made using ESR technique. These results are discussed and compared to those found previously for a natural phosphatidic acids such as phosphatidylserine.  相似文献   

13.
A sensitive method which utilizes fluorescence energy transfer to assay Ca2+ -or Mg2+ -mediated fusion of phospholipid vesicles is reported. More than 85% quenching results when phosphatidylserine vesicles labelled with dansyl phosphatidylethanolamine (donor) are fused with vesicles labelled with rhodamine phosphatidylethanolamine (acceptor) in the presence of 5 mM CaCl2 or 10 mM MgCl2. Higher concentrations of divalent cations are required to obtain maximal quenching when phosphatidylserine is partially replaced with phosphatidylethanolamine or phosphatidylcholine. The rate of vesicle fusion is dependent upon the concentrations of both cation and vesicles. Maximum quenching occurs within 5 min using phosphatidylserine vesicles and 5 mM Ca2+, but quenching is incomplete even after 20 h with 0.8--2 mM Ca2+. This probably reflects the heterogeneous size distribution of these vesicles, since the extent of fusion was found to correlated with vesicle size. Binding of antibody to membrane-localized phenobarbital hapten effectively blocks Ca2+ -mediated vesicle fusion. This effect can be inhibited by preincubation of the antibody with phenobarbital. Leakage of tempocholine from intact vesicles induced by 5 mM Ca2+ occurs even when fusion is prevented by bound antibody. This demonstrates that fusion is not a necessary requirement for Ca2+ -induced leakage.  相似文献   

14.
We have studied the effect of physiological concentrations of different diacylglycerols on Ca(2+)-induced fusion between phosphatidylserine vesicles. We monitored vesicle fusion as mixing of membrane lipids under conditions where the limiting factor was the aggregation and also in conditions where this aggregation was not the limiting factor. We found that diacylglycerols have a different modulating effect on the Ca(2+)-induced fusion: i) depending on their interfacial conformation, so that 1,2-isomers of diacylglycerols containing unsaturated or short saturated acyl chains stimulated fusion and their 1,3-isomers did not, and ii) depending on their specific type of bilayer interior perturbation, so that diacylglycerols containing unsaturated or short chain saturated acyl chains stimulated fusion but those containing long-chain saturated acyl chains did not. These requirements resembled those required for the diacylglycerol activation of protein kinase C, suggesting that diacylglycerol acts in both the specific activation of this enzyme and the induction of membrane fusion through the same perturbation of lipid structure. We found that polylysine affected the stimulatory role of 1,2-dioleoylglycerol differently, depending on whether aggregation was the limiting factor of fusion. When we studied the effect of very low concentrations of diacylglycerols on the bulk structural properties of phosphatidylserine, we found that they neither significantly perturbed the thermotropic transitions of phosphatidylserine nor affected the interaction of Ca2+ with the phosphate group of phosphatidylserine. The underlying mechanism of fusion between phosphatidylserine vesicles is discussed.  相似文献   

15.
In PC12 pheochromocytoma cells whose phospholipids had been prelabelled with [3H]palmitic acid, bradykinin increased the production of [3H]phosphatidic acid. The increase in [3H]phosphatidic acid occurred within 1-2 min. before the majority of the increase in [3H]diacylglycerol. When the phospholipids were prelabeled with [3H]choline, bradykinin increased the intracellular release of [3H]choline. The production of phosphatidic acid and choline suggests that bradykinin was increasing the activity of phospholipase D. Transphosphatidylation is a unique property of phospholipase D. In cells labeled with [3H]palmitic acid, bradykinin stimulated the transfer of phosphatidyl groups to both ethanol and propanol to form [3H]phosphatidylethanol and [3H]phosphatidylpropanol, respectively. The effect of bradykinin on [3H]phosphatidic acid and [3H]phosphatidylethanol formation was partially dependent on extracellular Ca2+. In cells treated with nerve growth factor, carbachol also increased [3H]phosphatidylethanol formation. To investigate the substrate specificity of phospholipase D, cells were labeled with [14C]stearic acid and [3H]palmitic acid, and then incubated with ethanol in the absence or presence of bradykinin. The 14C/3H ratio of the phosphatidylethanol that accumulated in response to bradykinin was almost identical to the 14C/3H ratio of phosphatidylcholine. The 14C/3H ratio in phosphatidic acid and diacylglycerol was higher than the ratio in phosphatidylcholine. These data provide additional support for the idea that bradykinin activates a phospholipase D that is active against phosphatidylcholine. The hydrolysis of phosphatidylcholine by phospholipase D accounts for only a portion of the phosphatidic acid and diacylglycerol that accumulates in bradykinin-stimulated cells: bradykinin evidently stimulates several pathways of phospholipid metabolism in PC12 cells.  相似文献   

16.
The effect of atrazine on Ca2+ induced fusion of cardiolipin(CL) and phosphatidylserine (PS) vesicles is studied by Tb3+/dipicolinic acid fluorescence and turbidity measurements. The interaction of herbicide with CL and PS membranes is studied by DPH fluorescence polarization. At low concentrations the pesticide partially inhibits fusion, especially in CL vesicles. Higher concentrations of atrazine decrease inhibition of fusion in CL, while fusion is slightly increased in PS. The Ca2(+)-induced increase of turbidity is not affected by atrazine in both PS and CL aggregation experiments. DPH polarization measurements show a perturbation only of the membrane hydrophobic core of PS, in presence of Ca2+. It is hypothesized that this biphasic effect shown by low and high atrazine concentrations on Ca2(+)-induced fusion of vesicles is due to a different localization of the pesticide in the membrane.  相似文献   

17.
Divalent cation-induced fusion of large unilamellar vesicles (approx. 0.1 micron diameter) made of phosphatidylserine (PS) or phosphatidylglycerol (PG) has been studied. Intermixing of aqueous contents during fusion was followed by the Tb/dipicolinic acid fluorescence assay, and intermixing of membrane components by resonance energy transfer between fluorescent lipid probes. Both assays gave identical threshold concentrations for Ca2+, which were 2 mM for PS and 15 mM for PG. The dependencies of the initial rate of fusion on the concentration of PG vesicles determined by either assay were identical, the order of this dependence being 1.2 in the concentration range of 5-200 microM lipid. For PS liposomes, this order was found to be 1.5 in the fluorescent lipid assay. No leakage of contents was detected during the fusion of PG vesicles. Mg2+ inhibited the Ca2+-induced fusion of PS vesicles, but did not cause any fusion by itself, consistent with previous results with the Tb/dipicolinic acid assay.  相似文献   

18.
R A Parente  B R Lentz 《Biochemistry》1986,25(5):1021-1026
The sensitivity of the fluorescence lifetime of 1-palmitoyl-2-[[2-[4- (6-phenyl-trans-1,3,5-hexatrienyl)phenyl]ethyl]carbonyl]- 3-sn-phosphatidylcholine (DPHpPC) to its local concentration in lipid bilayers was used to monitor both lipid mixing and phase separation occurring during membrane vesicle fusion. Vesicles containing 2 mol % DPHpPC were mixed with a 10-fold excess of vesicles devoid of probe. Upon addition of a fusogen, mixing of bilayer lipids associated with fusion was followed as an increase in the fluorescence lifetime of DPHpPC. Ca2+-induced fusion of phosphatidylserine vesicles served to test the method and was shown to have an exponential half-time of 7 s. Phase separation (between the phosphatidylserine head groups of bulk lipid and the phosphatidylcholine head groups of the probe) was monitored by DPHpPC under the same conditions used to follow lipid mixing due to fusion. Phase separation was not significant until 10 min after Ca2+ addition and was completely reversible by disodium ethylenediaminetetraacetate addition. Vesicle aggregation induced by Ca2+ addition to mixed phosphatidylserine/phosphatidylcholine vesicles did not alter the DPHpPC lifetime, indicating that close association of vesicles did not promote intervesicular exchange of the probe. In addition, we have investigated the effects of CA2+ on the fluorescence properties of this probe and of the head-group-labeled fluorescent probes N-(4-nitro-2,1,3-benzoxadiazolyl)phosphatidylethanolamine and N-(lissamine Rhodamine B sulfonyl)dioleoyl-phosphatidylethanolamine, which are used in the fluorescence energy transfer assay of Struck et al.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The effect of several monovalent cations on the Ca2+-induced aggregation and fusion of sonicated phosphatidylserine (PS) vesicles is studied by monitoring the mixing of internal compartments of the fusing vesicles using the Tb/dipicolinic acid assay. The dissociation of the fluorescent Tb-dipicolinate complex which accompanies Ca2+-induced vesicle fusion is determined directly and is due to leakage of contents and entry of medium into vesicles. PS vesicles do not fuse when the medium contains only monovalent cations (at pH 7.4), regardless of the cation concentration or whether there is aggregation of the vesicles. A mass-action kinetic analysis of the data provides estimates for the rate of aggregation, C11, and for the rate of fusion per se, f11. Values of f11 increase dramatically with reduction in monovalent cation concentration and are primarily determined by binding ratios of Ca2+ or Mg2+ per PS. With 300 mM of monovalent cations, the fusion per se is essentially rate-limiting to the overall fusion process and values of f11 are significantly larger with the monovalent cations which bind the least, i.e., according to the sequence tetramethylammonium greater than K+ greater than Na+ greater than Li+. With monovalent cations in concentrations of 100 mM or less, the aggregation is rate-limiting to the fusion and the overall initial fusion rates are determined by an interplay between aggregation and fusion rates. Under conditions of fast aggregation, the Ca2+-induced fusion of small PS vesicles can occur within milliseconds or less.  相似文献   

20.
Dynamic light scattering has been used to study the temperature dependence of Ca2+-induced fusion of phosphatidylserine vesicles and mixed vesicles containing phosphatidylserine and different phosphatidylcholines. The final vesicle size after Ca2+ and EDTA incubation serves as a measure of the extent of fusion. With phosphatidylserine vesicles, the extent of fusion shows a sharp maximum at an incubation temperature which depends on the Ca2+ concentration between 0.8 and 2 mM. The shift in the fusion peak temperature with Ca2+ concentration is similar to the typical shift in the phase transition temperature with divalent cation concentration in acidic phospholipids. The results suggest a direct correlation between the fusion peak temperature and the phase transition temperature in the presence of Ca2+ prior to fusion. With mixed vesicles containing up to 33% of a phosphatidylcholine in at least 2 mM Ca2+, the extent of fusion as a function of incubation temperature also shows a maximum. The fusion peak temperature is essentially independent of the quantity and type of phosphatidylcholine and the Ca2+ concentration, and identical to that with pure phosphatidylserine in excess Ca2+. The results imply that Ca2+-induced molecular segregation occurs first, and fusion subsequently takes place between pure phosphatidylserine domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号