首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In an effort to examine the consequences of phase state changes on protein structures, optical absorption spectra of several bovine hemoglobin derivatives in lyophilized, ammonium sulfate-precipitated, and crystalline states were examined. Absorption spectra were used to compare protein conformations. Differences between solution and several solid state spectra were apparent. They were greatest for lyophilized preparations, were inhibited by ligand binding, the tightest binding ligand being the most effective inhibitor, and were substantially or totally reversible upon dissolving the solid state protein. Though the magnitude of spectral changes varied, they all indicated characteristically different proportions of the protein were converted to a reversible hemichrome in each type of solid state preparation. The extent of hemichrome formation was correlated with the degree to which the protein tends to be dehydrated in each solid state preparation. This may reflect the role of water in determining the three-dimensional structure of hemoglobin. Absorption spectra of solid state hemoglobin preparations were obtained from photoacoustic spectra using a novel method for spectral analysis. Results presented here demonstrate the utility of this procedure in probing structures of solid state proteins.  相似文献   

2.
Starch is subjected to chemical treatments such as cross-linking or hydroxypropylation to meet the material requirements for food uses or controlled release in the pharmaceutical industries. In this work, two types of cross-linking formulations have been employed for the preparation of high amylose starch for use as an excipient for sustained drug release. The structural differences and chain dynamics of the modified starches in the dry and hydrated states have been compared by the use of variable contact time cross polarization-magic angle spinning solid state (13)C NMR spectroscopy.  相似文献   

3.
Fluorescence spectroscopy has been used to measure changes in the tertiary structure of proteins in the solution state. The sensitivity of fluorescence to the protein tryptophan environment has made it a useful tool for studying protein conformation and stability. Using fluorescence spectroscopy to probe structural alterations in lyophilized proteins has been limited due to technical challenges and overwhelming background light scattering. We have investigated the possibility of analyzing lyophilized proteins using the Cary-Eclipse spectrofluorometer by monitoring the fluorescence of the protein therapeutic after subjecting the lyophilized cake to heat-induced accelerated degradation. We have been able to obtain reproducible fluorescence spectra, detecting possible structural changes under these conditions. Fluorescence and circular dichroism spectroscopic analyses of the reconstituted proteins indicated that changes in fluorescence intensities observed in the solid state could be correlated to that in solution and to possible tertiary structural changes. Size exclusion chromatography analysis of protein Y subject to accelerated degradation showed a correlation between decreasing fluorescence intensity and increasing protein Y tetramer in solution, consistent with long-term stability. This suggests that solid state, intrinsic protein fluorescence measurements using the Cary-Eclipse holder may be feasible for long-term stability studies and formulation development.  相似文献   

4.
Partial site-specific assignments are reported for the solid state NMR spectra of light-harvesting complex 1, a 160 kDa integral membrane protein. The assignments were derived from 600 MHz (15)N-(13)CO-(13)Calpha and (15)N-(13)Calpha-(13)CX correlation spectra, using uniformly (13)C, (15)N enriched hydrated material, in an intact and precipitated form. Sequential assignments were verified using characteristic (15)N-(13)Calpha-(13)Cbeta side chain chemical shifts observed in 3D experiments. Tertiary contacts found in 2D DARR spectra of the selectively (13)C enriched sample provided further confirmatory evidence for the assignments. The assignments include the region of the Histidine ligands binding the Bacteriochlorophyll chromophore. The chemical shifts of Calpha and Cbeta resonances indicated the presence of typical alpha-helical secondary structure, consistent with previous studies.  相似文献   

5.
High resolution 13C NMR spectroscopy of live cells has been used to show that poly-beta-hydroxybutyrate (PHB) is predominantly in a mobile state within the storage granules of Alcaligenes eutrophus, Methylobacterium extorquens, and Methylobacterium AM1. Comparison of chemical and NMR analysis of PHB indicates that about 70% of the polymer in A. eutrophus gives sharp observable resonances. Temperature-dependent line widths and relaxation rates together with nuclear Overhauser effect measurements demonstrate that the observed material is effectively a mobile amorphous elastomer that is well above its glass transition temperature. The hydroxyvalerate-hydroxybutyrate copolymer produced by propionate-fed A. eutrophus has virtually the same mobility as the homopolymer. Evidence is presented indicating that water is an integral component of the PHB granule and that this component acts as a plasticizer for the polymer. These observations strongly suggest that the enzyme(s) responsible for PHB biosynthesis and consumption operate only on mobile hydrated material and that the solid granules characteristic of dried cells are partially artifactual. This model is supported by a reinterpretation of previously inexplicable biochemical results.  相似文献   

6.
We demonstrate that high-resolution multidimensional solid state NMR methods can be used to correlate many backbone and side chain chemical shifts for hydrated micro-crystalline U-13C,15N Basic Pancreatic Trypsin Inhibitor (BPTI), using a field strength of 800 MHz for protons, magic angle sample spinning rates of 20 kHz and proton decoupling field strengths of 140 kHz. Results from two homonuclear transfer methods, radio frequency driven dipolar recoupling and spin diffusion, were compared. Typical 13C peak line widths are 0.5 ppm, resulting in C-C and C-CO regions that exhibit many resolved peaks. Two-dimensional carbon–carbon correlation spectra of BPTI have sufficient resolution to identify and correlate many of the spin systems associated with the amino acids. As a result, we have been able to assign a large number of the spin systems in this protein. The agreement between shifts measured in the solid state and those in solution is typically very good, although some shifts near the ion binding sites differ by at least 1.5 ppm. These studies were conducted with approximately 0.2 to 0.4 mol of enriched material; the sensitivity of this method is apparently adequate for other biological systems as well.  相似文献   

7.
Gordon-Mills  Elizabeth  Tate  Max  Hounslow  Andrea 《Hydrobiologia》1990,204(1):629-636
Both solid state (CP-MAS) and gel state (using standard solution state conditions) 13C NMR spectroscopy have been used to characterize a range of red algae that produce either agar or carrageenan. These techniques allow rapid determination of phycocolloid type within the algal tissue before extensive and time-consuming extractions and fractionations are carried out.The gel state technique can be used on living or dried material. Gel state spectra give high resolution and, because of the expectation that they will be correlated with the extractable phycocolloid, provide promise of a powerful technique for screening potentially useful red algae.  相似文献   

8.
Lei Huang  Ann E. McDermott 《BBA》2008,1777(9):1098-1108
Partial site-specific assignments are reported for the solid state NMR spectra of light-harvesting complex 1, a 160 kDa integral membrane protein. The assignments were derived from 600 MHz 15N-13CO-13Cα and 15N-13Cα-13CX correlation spectra, using uniformly 13C, 15N enriched hydrated material, in an intact and precipitated form. Sequential assignments were verified using characteristic 15N-13Cα-13Cβ side chain chemical shifts observed in 3D experiments. Tertiary contacts found in 2D DARR spectra of the selectively 13C enriched sample provided further confirmatory evidence for the assignments. The assignments include the region of the Histidine ligands binding the Bacteriochlorophyll chromophore. The chemical shifts of Cα and Cβ resonances indicated the presence of typical α-helical secondary structure, consistent with previous studies.  相似文献   

9.
S N Krapunov  A I Dragan 《Biofizika》1989,34(3):357-363
Absorption and fluorescence spectra of some tyrosine-containing proteins were analysed. Comparison of the peculiarities of fluorescence and absorption of the tyrosine chromophore in the model compounds and proteins suggested a new classification of the states of tyrosine residues in proteins: I -- tyrosyls with hydrated OH-group (lambda mf approximately equal to 304 nm); II -- tyrosyls, whose hydroxyl group forms the hydrogen bond inside the protein in a hydrophobic surrounding or in the globular fold in structured water layer (lambda mf = 306-307 nm); III -- tyrosyls whose OH-group is deprotonated in the excited state (lambda mf approximately equal to 330-350 nm).  相似文献   

10.
Structure of Acetobacter cellulose composites in the hydrated state   总被引:1,自引:0,他引:1  
The structure of composites produced by the bacterium Acetobacter xylinus have been studied in their natural, hydrated, state. Small-angle X-ray diffraction and environmental scanning electron microscopy has shown that the ribbons have a width of 500 A and contain smaller semi-crystalline cellulose microfibrils with an essentially rectangular cross-section of approximately 10 x 160 A(2). Incubation of Acetobacter in xyloglucan or pectin results in no changes in the size of either the microfibrils or the ribbons. Changes in the cellulose crystals are seen upon dehydration of the material, resulting in either a reduction in crystal size or an increase in crystal disorder.  相似文献   

11.
The effect of hydration on the molecular dynamics of soft wheat gluten was investigated by solid state NMR. For this purpose, we recorded static and MAS 1H spectra and SPE, CP, and other selective 13C spectra under MAS and dipolar decoupling conditions on samples of dry and H2O and D2O hydrated gluten. Measurements of carbon-proton CP times and several relaxation times (proton T1, T and T2, and carbon T1) were also performed. The combination of these techniques allowed both site-specific and domain-averaged motional information to be obtained in different characteristic frequency ranges. Domains with different structural and dynamic behaviour were identified and the changes induced by hydration on the dynamics of different domains could be monitored. The proton spin diffusion process was exploited to get information on the degree of mixing among different gluten domains. The results are consistent with the “loop and train” model proposed for hydrated gluten.  相似文献   

12.
Molecular Rigidity in Dry and Hydrated Onion Cell Walls   总被引:4,自引:0,他引:4       下载免费PDF全文
Solid-state nuclear magnetic resonance relaxation experiments can provide information on the rigidity of individual molecules within a complex structure such as a cell wall, and thus show how each polymer can potentially contribute to the rigidity of the whole structure. We measured the proton magnetic relaxation parameters T2 (spin-spin) and T1p (spin-lattice) through the 13C-nuclear magnetic resonance spectra of dry and hydrated cell walls from onion (Allium cepa L.) bulbs. Dry cell walls behaved as rigid solids. The form of their T2 decay curves varied on a continuum between Gaussian, as in crystalline solids, and exponential, as in more mobile materials. The degree of molecular mobility that could be inferred from the T2 and T1p decay patterns was consistent with a crystalline state for cellulose and a glassy state for dry pectins. The theory of composite materials may be applied to explain the rigidity of dry onion cell walls in terms of their components. Hydration made little difference to the rigidity of cellulose and most of the xyloglucan shared this rigidity, but the pectic fraction became much more mobile. Therefore, the cellulose/xyloglucan microfibrils behaved as solid rods, and the most significant physical distinction within the hydrated cell wall was between the microfibrils and the predominantly pectic matrix. A minor xyloglucan fraction was much more mobile than the microfibrils and probably corresponded to cross-links between them. Away from the microfibrils, pectins expanded upon hydration into a nonhomogeneous, but much softer, almost-liquid gel. These data are consistent with a model for the stress-bearing hydrated cell wall in which pectins provide limited stiffness across the thickness of the wall, whereas the cross-linked microfibril network provides much greater rigidity in other directions.  相似文献   

13.
Radicals induced by gamma-irradiation in sucrose, in the solid state at different temperatures and in aqueous solution, have been studied by the spin-trapping method. Electron spin resonance (ESR) combined with high performance liquid chromatography (HPLC) then spectra analysis with a simulation program (VOYONS), revealed seven main radical species. Their nitrogen and hydrogen splitting constants were compared with those obtained from fructose and glucose units. Assignments of chemical structures are discussed for three radical species.  相似文献   

14.
This work describes the application of (1)H magic angle spinning (MAS) nmr to the study of hydrated 1Dx5 wheat high-M(r) subunit. 1Dx5 is a water-insoluble 88 kDa protein, associated with good baking performance, and whose structure in the solid and low-hydration states is not known. High-resolution MAS (HR-MAS) results in a threefold resolution improvement of the (1)H spectra of the hydrated wheat protein, compared to standard MAS. The spectral resolution achieved enables, for the first time, two-dimensional nmr methods to be employed for the study of hydrated 1Dx5 and the assignment of the spectrum to be carried out on the basis of total correlated spectroscopy and (13)C/(1)H correlation experiments. Considerable shifts are observed for some resonances, relative to the chemical shifts of amino acids in solution, indicating that specific interactions occur in the hydrated protein network. Two main environments are identified for glutamine residues, Q(1) and Q(2), and these were characterized in terms of possible conformation and relative dynamics, with the basis of comparison between the single 90 degrees spectrum and the Carr-Purcel-Heiboom-Gill (CPMG) spectrum. The Q(1) residues are proposed to be situated in protein segments that adopt the beta-sheet conformation and that remain relatively hindered, possibly by hydrogen bonds involving the glutamine amide groups. On the other hand, Q(2) residues are proposed to be situated in a more mobile environment, adopting a looser conformation, possibly a beta-turn conformation. Based on the proximity of the Q(2) residues with glycine residues, as viewed by the nuclear Overhauser effect spectroscopy experiment, it is proposed that the protein segments that form the more mobile (or loop) sections of the network are rich in both glutamine and glycine residues.  相似文献   

15.
The function of the arabinan and galactan side-chains of pectin remains unknown. We describe 13C NMR experiments designed to yield spectra from the most mobile polymer components of hydrated cell walls isolated from a range of plant species. In pectin-rich cell walls, these corresponded to the pectic side-chains. The arabinan side-chains were in general more mobile than the galactans, but the long galactan side-chains of potato pectin showed high mobility. Due to motional line-narrowing effects these arabinan and galactan chains gave 13C NMR spectra of higher resolution than has previously been observed from 'solid' biopolymers. These spectra were similar to those reported for the arabinan and galactan polymers in the solution state, implying time-averaged conformations resembling those found in solution. The mobility of the highly esterified galacturonan in citrus cell walls overlapped with the lower end of the mobility range characteristic of the pectic side-chains. The cellulose-rich cell walls of flax phloem fibres gave spectra of low intensity corresponding to mobile type II arabinogalactans. Cell walls from oat coleoptiles appeared to contain no polymers as mobile as the pectic arabinans and galactans in primary cell walls of the other species examined. These properties of the pectic side-chains suggest a role in interacting with water.  相似文献   

16.
We have developed a holistic protein structure estimation technique using amide I band Raman spectroscopy. This technique combines the superposition of reference spectra for pure secondary structure elements with simultaneous aromatic, fluorescence, and solvent background subtraction, and is applicable to solution, suspension, and solid protein samples. A key component of this technique was the calculation of the reference spectra for ordered helix, unordered helix, and sheet, turns, and unordered structures from a series of well-characterized reference proteins. We accurately account for the overlap between the amide I and non-amide I regions and allow for different scattering efficiencies for different secondary structures. For hydrated samples, we allowed for the possibility that bound water spectra differ from the bulk water spectra. Our computed reference spectra compare well with previous experimental and theoretical results in the literature. We have demonstrated the use of these reference spectra for the estimation of secondary structures of proteins in solution, suspension, and dry solid forms. The agreement between our structure estimates and the corresponding determinations from X-ray crystallography is good.  相似文献   

17.
A computer-assisted method for analyzing photoacoustic spectra has been developed. Using this analysis, the relative absorption spectrum and either the chromophore concentration or thermal diffusivity characteristic of a sample can be derived from its photoacoustic spectrum. We have demonstrated the accuracy of the method by analyzing photoacoustic spectra of solution and crystalline-phase bovine cyanide methemoglobin. BASIC and FORTRAN routines used to collect and to analyze photoacoustic spectra are described. Photoacoustic spectroscopy can be used in conjunction with the analytical method presented here to obtain accurate absorption spectra from a variety of solid, opaque, and/or turbid samples.  相似文献   

18.
J L Koenig  B G Frushour 《Biopolymers》1972,11(12):2505-2520
The Raman spectra of three globular proteins, beef pancreas chymotrypsinogen A, beef pancreas ribonuclease, and hen egg white ovalbumin have been obtained in the solid state and aqueous solution. X-ray diffraction and circular dichroism evidence have indicated that these proteins have a low α-helical content and a large fraction of the residues in the unordered and β-sheet conformation. The frequencies and intensities of the amide I and amide III lines are consistent with assignments based on the Raman spectra of polypeptides. The intense amide III lines observed in all the spectra would be expected for proteins with a low fraction of the residues in the α-helical conformation. Several spectra changes occur upon dissolution of the proteins in water and may be associated with further hydration of the proteins. The spectrum of thermally denatured chymotrypsinogen is presented. A 3 cm–1 decrease in the frequency of the amide I line of the protein dissolved in D2O upon heating was observed. This observation is consistent with a denaturation mechanism allowing only slight changes in the secondary structure but an increase in solvent penetration upon going from the native to the reversibly denatured state.  相似文献   

19.
Using far- and near-UV circular dichroism, viscosity, tryptophan fluorescence, NMR spectra, binding of a hydrophobic probe, and microcalorimetry, we have shown that the apo form of human retinol-binding protein (RBP) at neutral pH is in a rigid state with properties similar to those of holo-RBP. On the contrary, at acidic pH apo-RBP is in the molten globule state which has been earlier revealed for a number of proteins under mild denaturing conditions. We have also shown that, at equilibrium, the pH-induced retinol release from holo-RBP parallels denaturation of the apoprotein. These findings are consistent with our hypothesis that the transformation of RBP into the molten globule state is involved in the mechanism whereby retinol is delivered to target cells. In particular, a local acidic pH near the membrane surface of target cells might cause the transition of RBP to the molten globule state as well as the release of retinol.  相似文献   

20.
Natural abundance solid-state 13C-NMR spin-lattice relaxation experiments in the laboratory (T1) and off-resonance rotating (T(1rho)) frames were applied for qualitative comparison of the internal molecular dynamics of barstar, hen egg white lysozyme and bacteriophage T4 lysozyme in both the microcrystalline and the rehydrated (water content is 50% of the protein mass) lyophilized states. The microcrystalline state of proteins provides a better spectral resolution; however, less is known about the local structure and dynamics in the different states. We found by visual comparison of both T1 and T(1rho) relaxation decays of various resonance bands of the CPMAS spectra that within the ns-mus range of correlation times there is no appreciable difference in the internal dynamics between rehydrated lyophilized and crystalline states for all three proteins tested. This suggests that the internal conformational dynamics depends weakly if at all on inter-protein interactions in the solid state. Hence, physical properties of globular proteins in a fully hydrated solid state seem to be similar to those in solution. This result at least partly removes concerns about biological relevance of studies of globular proteins in the solid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号