首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Photosynthetic photon flux density (PPFD) at 15 cm above the ground was measured at 20 microsites in gaps and grass patches within aMiscanthus sinensis Anderss community at 10 s intervals during 5 days every month from May to September 1989. Microsite light availability, which was characterized by daily total PPFD, sunfleck PPFD (PPFD above a threshold value of 50 or 400 μmol m−2 s−1) and the diffuse site factor, showed evident seasonal changes, with a marked reduction between June and July due to the rapid growth of the grass canopy. The monthly median value of daily total PPFD among the microsites decreased from 10.3 mol m−2 day−1 in May to 0.77 mol m−2 day−1 in September, with a reduction in the diffuse site factor from 31 to 4%. During the summer, the median value of the total time of sunflecks exceeding 50 μmol m−2 s−1 contributed 7–18% of measurement time, but the contribution of these sunflecks to daily total PPFD ranged from 29 to 59%. There was considerable microsite variation in light availability throughout the measurement period. Rank correlation analysis revealed that some microsites, such as those in gaps, consistently received more total PPFD, more sunfleck PPFD and had a higher diffuse site factor than those in grass patches. The diffuse site factor had a linearly positive relationship with daily total PPFD and total sunfleck PPFD for the 20 microsites during the measurement period, confirming that the diffuse site factor is a useful index for microsite light availability withinM. sinensis canopies.  相似文献   

2.
Detailed measurements of diurnal variations in photosynthetic photon flux density (PPFD) were made at seven locations within the canopy of aMiscanthus sinensis grassland to evaluate the light conditions of microsites for heliophilic tree seedlings. Multiple regression analysis revealed that the short-term light fluctuation on a clear day was highly dependent on the wind speed and solar elevation angle, whereas on a cloudy day it was mainly determined by the PPFD incident from above the canopy. The relative PPFD at 40 cm aboveground varied from 0.065 to 0.252, depending on sky conditions and the sensor's position in relation to clumped patches ofM. sinensis. On a clear day, the proportion of PPFD readings above 100 μmol·m−2·s−1 contributed by sunflecks ranged between 25.4% and 82.0%. Computer simulation showed that the contribution of sunflecks to the daily carbon gain ofQuercus serrata seedlings may range from 11% to 65%. The mean relative PPFD measured under diffuse light conditions was linearly related to the daily total PPFD and the daily carbon gain by single leaves ofQ. serrata seedlings. This suggests that the relative PPFD under diffuse light conditions provides an appropriate measure of site-specific light availability within a grass canopy.  相似文献   

3.
Seasonal variation in the light environment on the forest floor of a deciduous forest was investigated with special reference to sunflecks. Diurnal variations and seasonal changes in frequency and irradiation period of the sunflecks (sunfleck duration) were measured. The hourly total sunfleck duration varied seasonally; that is, 30–40 min in spring and autumn and about 15–20 min in summer. There was no large variation in the hourly sunfleck duration during daytime hours (from 9.00 to 15.00 h). The emergence frequency of sunflecks was 1.3–4.8 per h with two peaks, one in the morning and one in the afternoon. The mean duration of a sunfleck, however, showed a characteristic daily pattern with a peak around noon. Sunfleck duration was long around noon, ranging from 12 to 18 min, and short around 10.00 and 14.00 h, ranging from 6 to 10 min. Using the light photosynthesis curves ofPyrola japonica andSyneilesis palmata (Koizumi & Oshima 1985), the contribution of sunflecks to the dry matter production of these understory species was evaluated. It was shown that the sunflecks contributed 7–10% of the carbon gain inS. palmata, but only 2–3% of that inP. japonica.  相似文献   

4.
Spatial heterogeneity in light availability for tree seedlings under the canopy of a temperate pine forest was studied. Six-day measurements at 10-s intervals revealed a great variety in the temporal patterns of photosynthetic photon flux density (PPFD) and histograms among observation days and microsites; mean daily total PPFD relative to full sun varied from 1.5% to 10.4% depending on the microsites. The occurrence and duration of PPFD above 80 μmol m−2 s−1, which might reflect sunfleck activity, varied greatly among the microsites. However, several simple empirical relationships were found between some parameters characterizing microsite light availability and sunfleck activity; the diffuse site factor was correlated well with other parameters, including daily total PPFD, daily totals and daily summed durations of high PPFD above any examined threshold level, and its contribution to daily total PPFD. Diffuse site factors which were obtained for 700 microsites within an area of 28 m2 on three different occasions during the growing season showed high correlations within the microsite. Based on the regressed relationship between the relative growth rate of current-year seedlings ofQuercus serrata and the microsite diffuse site factor and the results of area-survey measurement of the diffuse site factor, an estimation was made of the abundance of potential ‘safe-sites’ for seedling growth of the species; the ‘safe sites’ were estimated to cover 40% and 0% of the total area of the sunny and shady sites of the forest, respectively.  相似文献   

5.
The survival of dipterocarp seedlings in the understorey of south‐east Asian rain forests is limited by their ability to maintain a positive carbon balance. Photosynthesis during sunflecks is an important component of carbon gain. Field measurements demonstrated that Shorea leprosula seedlings in a rain forest understorey received a high proportion of daily photon flux density at temperatures supra‐optimal for photosynthesis (72% at ≥30 °C, 14% at ≥35 °C). To investigate the effect of high temperatures on photosynthesis during sunflecks, gas exchange and chlorophyll fluorescence measurements were made on seedlings grown in controlled environment conditions either, under uniform, saturating irradiance (approximately 539 µmol m?2 s?1) or, shade/fleck sequences (approximately 30 µmol m?2 s?1/approximately 525 µmol m?2 s?1) at two temperatures, 28 or 38 °C. The rate of light‐saturated photosynthesis, under uniform irradiance, was inhibited by 40% at 38 °C compared with 28 °C. However, during the shade/fleck sequence, photosynthesis was inhibited by 59% at 38 °C compared with 28 °C. The greater inhibition of photosynthesis during the shade/fleck sequence, when compared with uniform irradiance, was driven by the lower efficiency of dynamic photosynthesis combined with lower steady‐state rates of photosynthesis. These results suggest that, contrary to current dogma, sunfleck activity may not always result in significant carbon gain. This has important consequences for seedling regeneration processes in tropical forests as well as for leaves in other canopy positions where sunflecks make an important contribution to total photon flux density.  相似文献   

6.
Rates of net photosynthesis (P N) and transpiration (E), and leaf temperature (TL) of maintenance leaves of tea under plucking were affected by photosynthetic photon flux densities (PPFD) of 200–2 200 μmol m−2 s−1. P N gradually increased with the increase of PPFD from 200 to 1 200 μmol m−2 s−1 and thereafter sharply declined. Maximum P N was 13.95 μmol m−2 s−1 at 1 200 μmol m−2 s−1 PPFD. There was no significant variation of P N among PPFD at 1 400–1 800 μmol m−2 s−1. Significant drop of P N occurred at 2 000 μmol m−2 s−1. PPFD at 2 200 μmol m−2 s−1 reduced photosynthesis to 6.92 μmol m−2 s−1. PPFD had a strong correlation with TL and E. Both TL and E linearly increased from 200 to 2 200 μmol m−2 s−1 PPFD. TL and E were highly correlated. The optimum TL for maximum P N was 26.0 °C after which P N declined significantly. E had a positive correlation with P N.  相似文献   

7.
Canopy tree recruitment is inhibited by evergreen shrubs in many forests. In the southern Appalachian mountains of the USA, thickets of Rhododendron maximum L. restrict dominant canopy tree seedling survival and persistence. Using R. maximum as a model system, we examined available light under the thickets and the photosynthetic responses of seedlings of canopy tree species. We tested the hypothesis that the additional shading from under R. maximum drives carbon gain in seedlings below the threshold for growth and survival. A reduction in light under the thicket was found where canopy openness (derived from canopy photographs) under R. maximum was half the amount measured in forest without R. maximum. R.␣maximum also reduced direct radiation by 50% and diffuse radiation by 12–29% compared to forest without the shrub layer. Mean mid-day PPFD (photosynthetically active photon flux density between 1000 and 1400 h) under R. maximum (obtained from quantum sensors) was below 10 mol m−2 s−1 on both clear and overcast days and the amount of sunflecks greater than 10 mol m−2 s−1 PPFD was only 0–20 min per day. In contrast, forest without R. maximum received a mean PPFD of 18–25 mol m−2 s−1 on clear days and a cumulative sunfleck duration of 100–220 min per day in all sky conditions. Consistent with light availability between the sites, daily carbon gain in Quercus rubra L. seedlings was lower in forest with R. maximum compared to forest where the shrub was absent. The presence of the shrub layer also significantly suppressed average mid-day photosynthesis of both Q. rubra and Prunus serotina Ehrt. seedlings on 8 out of 11 measurement dates. However, parameters derived from light response curves between seedlings growing in forest sites with or without a thicket of R. maximum was significantly different only in A max (maximum photosynthetic rate), indicating a lack of further acclimation to the deeper shade under R. maximum. While the additional shade cast by R. maximum is sufficient to prevent the regeneration of tree seedlings under this shrub, there was sufficient heterogeneity in light under the thicket to imply that deep shade only partially explains the complete inhibition of regenerating canopy trees under R. maximum.  相似文献   

8.
Maize (Zea mays L.) seedlings of two cultivars (cv. Bastion adapted to W. Europe, and cv. Batan 8686 adapted to the highlands of Mexico), raised in a glasshouse (19–25 °C), were transferred to 4.5 or 9 °C at photon flux density (PPFD) of 950 μmol m−2 s−1 with 10-h photoperiod for 58 h and then allowed to recover at 22 °C for 16 h (14 h dark and 2 h at PPFD of 180 μmol m−2 s−1). The ultrastructural responses after 4 h or 26 h at 4.5 °C were the disappearance of starch grains in the bundle sheath chloroplasts and the contraction of intrathylakoid spaces in stromal thylakoids of the mesophyll chloroplasts. At this time, bundle sheath chloroplasts of cv. Batan 8686 formed peripheral reticulum. Prolonged stress at 4.5 °C (50 h) caused plastid swelling and the dilation of intrathylakoid spaces, mainly in mesophyll chloroplasts. Bundle sheath chloroplasts of cv. Batan 8686 seedlings appeared well preserved in shape and structure. Batan 8686 had also higher net photosynthetic rates during chilling and recovery than Bastion. Extended leaf photobleaching developed during the recovery period after chilling at 4.5 °C. This was associated with collapsed chloroplast envelopes, disintegrated chloroplasts and very poor staining.  相似文献   

9.
Primary photochemistry of photosystem II (F v/F m) of the Antarctic hair grass Deschampsia antarctica growing in the field (Robert Island, Maritime Antarctic) and in the laboratory was studied. Laboratory plants were grown at a photosynthetic photon flux density (PPFD) of 180 μmol m−2 s−1 and an optimal temperature (13 ± 1.5°C) for net photosynthesis. Subsequently, two groups of plants were exposed to low temperature (4 ± 1.5°C day/night) under two levels of PPFD (180 and 800 μmol m−2 s−1) and a control group was kept at 13 ± 1.5°C and PPFD of 800 μmol m−2 s−1. Chlorophyll fluorescence was measured during several days in field plants and weekly in the laboratory plants. Statistically significant differences were found in F v/F m (=0.75–0.83), F 0 and F m values of field plants over the measurement period between days with contrasting irradiances and temperature levels, suggesting that plants in the field show high photosynthetic efficiency. Laboratory plants under controlled conditions and exposed to low temperature under two light conditions showed significantly lower F v/F m and F m. Moreover, they presented significantly less chlorophyll and carotenoid content than field plants. The differences in the performance of the photosynthetic apparatus between field- and laboratory-grown plants indicate that measurements performed in ex situ plants should be interpreted with caution.  相似文献   

10.
The effects of temperature, irradiance, and daylength on Sargassum horneri growth were examined at the germling and adult stages to discern their physiological differences. Temperature–irradiance (10, 15, 20, 25, 30°C × 20, 40, 80 μmol photons m−2s−1) and daylength (8, 12, 16, 24 h) experiments were carried out. The germlings and blades of S. horneri grew over a wide range of temperatures (10–25°C), irradiances (20–80 μmol photons m−2s−1), and daylengths (8–24 h). At the optimal growth conditions, the relative growth rates (RGR) of the germlings were 21% day−1 (25°C, 20 μmol photons m−2s−1) and 13% day−1 (8 h daylength). In contrast, the RGRs of the blade weights were 4% day−1 (15°C, 20 μmol photons m−2s−1) and 5% day−1 (12 h daylength). Negative growth rates were found at 20 μmol photons m−2s−1 of 20°C and 25°C treatments after 12 days. This phenomenon coincides with the necrosis of S. horneri blades in field populations. In conclusion, we found physiological differences between S. horneri germlings and adults with respect to daylength and temperature optima. The growth of S. horneri germlings could be enhanced at 25°C, 20 μmol photons m−2s−1, and 8 h daylength for construction of Sargassum beds and restoration of barren areas.  相似文献   

11.
Previously, we found a significant association between photosystem II efficiency (ΦPSII) and photochemical reflectance index (PRI) measured at predawn among different species at different elevations and throughout several seasons. However, this relationship has not been evaluated under varied levels of illumination. Here, we used the Taiwan species Pinus taiwanensis (a conifer distributed at 750–3,000 m a.s.l.), Stranvaesia niitakayamensis (an evergreen tree, 1,700–3,100 m) and two Miscanthus spp. (perennial C4 Gramineae, coastline–3,200 m) to elucidate the ΦPSII–PRI relationship. We studied six levels of photosynthetic photon flux density (PPFD) (0, 200, 400, 800, 1,200 and 2,000 μmol m−2 s−1) over several growth seasons at high (2,600 m a.s.l.) and low (800 m a.s.l.) elevation sites. In comparing the same species or genus, ΦPSII and PRI were closely correlated in darkness or under the same level of PPFD, with data obtained from different seasons and elevations pooled for regression analysis. Because both the intercept and slope of the ΦPSII–PRI equation showed a negative curvilinear correlation with PPFD, we could fit an empirical regression model, ΦPSII = c + d·ln(PPFD) + e·[ln(PPFD)]2 + f·PRI + g·PRI·ln(PPFD) + h·PRI·[ln(PPFD)]2, for multiple regression analysis. Using this model, we found a close correlation between the estimated and measured ΦPSII (r 2 = 0.842−0.937, P < 0.001) for all four species examined and for mango (Mangifera indica) measured under both artificial illumination and sunlight (data from Weng et al. 2010). This empirical regression model could simulate both seasonal and diurnal variations of leaf-scale photosynthetic efficiency at high and low elevations.  相似文献   

12.
Microstegium vimineum (Trin.) A. Camus, a shade-tolerant C4 grass, has spread throughout the eastern United States since its introduction in 1919. This species invades disturbed understory habitats along streambanks and surrounding mesic forests, and has become a major pest in areas such as Great Smoky Mountains National Park. The focus of this study was to characterize the photosynthetic induction responses of M. vimineum, specifically its ability to utilize low light and sunflecks, two factors that may be critical to invasive abilities and survival in the understory. In addition, we were curious about the ability of a grass with the C4 photosynthetic pathway to respond to sunflecks. Plants were grown under 25% and 50% ambient sunlight, and photosynthetic responses to both steady-state and variable light were determined. Plants grown in both 25% and 50% ambient sun became 90% light saturated between 750–850 μmol m−2 s−1; however, plants grown in 50% ambient sun had significantly higher maximum steady-state photosynthetic rates (16.09 ± 1.37 μmol m−2 s−1 vs. 12.71 ± 1.18 μmol m−2 s−1). Both groups of plants induced to 50% of the steady-state rate in 3–5 min, while it took 10–13 min to reach 90% of maximum rates, under both flashing and steady-state light. For both groups of plants, stomatal conductance during induction reached maximum rates in 6–7 min, after which rates decreased slightly. Upon return to low light, rates of induction loss and stomatal closure were very rapid in both groups of plants, but were more rapid in those grown in high light. Rapid induction and the ability to induce under flashing light may enable this species to invade and dominate mesic understory habitats, while rapid induction loss due to stomatal closure may prevent excess water loss when low light constrains photosynthesis. The C4 pathway itself does not appear to present an insurmountable barrier to the ability of this grass species to respond to sunflecks in an understory environment. Received: 21 February 1997 / Accepted: 10 October 1997  相似文献   

13.
D. R. Young  W. K. Smith 《Oecologia》1979,43(2):195-205
Summary The temperature and water relations of the herbaceous, understory, congeners Arnica cordifolia and Arnica latifolia were evaluated in relation to the sunfleck dynamics of their respective microhabitats. Arnica cordifolia microhabitats had more frequent, longer, and more intense sunflecks than those of A. latifolia which led to higher leaf temperatures (31°C versus 15°C) and transpirational fluxes (65 g cm-2 s-1 versus 16 g cm-2 s-1). Stomatal closure did not occur in response to high leaf temperatures and low stem water potentials during natural sunfleck exposures, even though plants were observed to wilt during midday, especially A. cordifolia. Experimentally, an artificial midday sunfleck of about 165 min caused plants of A. cordifolia not to regain turgor after 8 h in shade compared to a sunfleck duration of about 90 min for plants of A. latifolia. However, these sunfleck intervals occurred naturally only during the early morning and late afternoon when solar intensities were minimal. Also, A. cordifolia populations had over twice as many plants that were sunlit (>40% of total) compared with A. latifolia (<20% of total) at any particular time during a day. The small-scale distribution of both species appears tightly coupled to the sunfleck dynamics of their respective microhabitats due to the lack of stomatal action which would reduce transpiration and improve plant water status under sunlit conditions.  相似文献   

14.
Petunia × hybrida was grown under high (H), medium (M) and low (L) light intensity [photoperiod; 16 h d−1, photosynthetic photon flux density (PPFD); 360, 120 and 40 μmol m−2 s−1, respectively] as well as under end-of-day (EOD) red (R) and far-red (FR) light quality treatments [photoperiod; 14.5 h d−1, PPFD; 30 μmol m−2 s−1 EOD; 15 min, Control (C) light; without EOD light treatment]. Shoot growth, leaf anatomical and photosynthetic responses as well as the responses of peroxidase (POD) isoforms and their specific activities following transition to flowering (1–6 weeks) were evaluated. Flower bud formation of Petunia × hybrida was achieved at the end of the 4th week for H light treatment and on the end of the 6th week for FR light treatment. No flower bud formation was noticed in the C and R light treatments. H and M light treatments induced lower chlorophyll (Chla, Chlb, Chla+b) concentrations in comparison to L light. On the other hand R and FR light chlorophyll content were similar to C light. Photosynthetic parameters [CO2 assimilation rate (A), transpiration rate (E) and stomatal conductance (g s) values] were higher in the H light treated plants in comparison to M and L light treated plants. A, E and g s values of R and FR light were similar to C light plants. Leaf anatomy revealed that total leaf thickness, thickness of the contained tissues (epidermis, palisade and spongy parenchyma) and relative volume percentages of the leaf histological components were differently affected within the light intensity and the light quality treatments. POD specific activities increased from the 1st to the 6th week during transition to flowering. Native-PAGE analysis revealed the appearance of four anionic POD (A1–A4) isoforms in all light treatments. On the basis of the leaf anatomical, photosynthetic and plant morphological responses, the production of high quality Petunia × hybrida plants with optimal flowering times could be achieved through the control of both light intensity and light quality. The appearance of A1 and A2 anionic POD isoforms could be also used for successful scheduling under light treatments.  相似文献   

15.
Two 60-day experiments were conducted to study the influence of photon flux density (PFD) and temperature on the attachment and development of Gloiopeltis tenax and Gloiopeltis furcata tetraspores. In the first experiment, tetraspores of the two Gloiopeltis species were incubated at five temperature ranges (8°C, 12°C, 16°C, 20°C, 24°C) under a constant PFD of 80 μmol photons m−2 s−1 with a photoperiod of 12:12. In a second experiment, tetraspores were incubated under five PFD gradients (30, 55, 80, 105, 130 μmol photons m−2 s−1) at a constant temperature of 16°C with a photoperiod of 12:12. Maximum density of attached tetraspores was observed at 16°C for both species. Maximum per cent of spore germinating into disc was recorded at 12–16°C for G. tenax and 8–12°C for G. furcata. Maximum per cent of discs producing erect axes for G. tenax and G. furcata were recorded at 24°C and 20°C, respectively. Light had no significant effect on tetraspore attachment and developing into disc, but it affected the growth, sprouting and survival of its discs. Under 30–55 μmol photons m−2 s−1, the discs of the two species of Gloiopeltis did not form thallus until the end of the experiment. Optimum PFD range for G. tenax discs was 80–105 μmol photons m−2 s−1, whilst it was 80–130 μmol photons m−2 s−1 for G. furcata. Results presented in this study are expected to assist the progress of artificial seeding of Gloiopeltis.  相似文献   

16.
In crowns of chestnut trees the absorption of radiant energy is not homogeneous; leaves from the south (S) side are the most irradiated, but leaves from the east (E) and west (W) sides receive around 70 % and those from north (N) face less than 20 % of the S irradiation. Compared to the S leaves, those from the N side were 10 % smaller, their stomata density was 14 % smaller, and their laminae were 21 % thinner. N leaves had 0.63 g(Chl) m−2, corresponding to 93 % of total chlorophyll (Chl) amount in leaves of S side. The ratios of Chl a/b were 2.9 and 3.1 and of Chl/carotenoids (Car) 5.2 and 4.8, respectively, in N and S leaves. Net photosynthetic rate (P N) was 3.9 μmol(CO2) m−2 s−1 in S leaves, in the E, W, and N leaves 81, 77, and 38 % of that value, respectively. Morning time (10:00 h) was the period of highest P N in the whole crown, followed by 13:00 h (85 % of S) and 16:00 h with 59 %. Below 500 μmol m−2 s−1 of photosynthetic photon flux density (PPFD), N leaves produced the highest P N, while at higher PPFD, the S leaves were most active. In addition, the fruits from S side were 10 % larger than those from the N side.  相似文献   

17.
The effect of light intensity (50–300 μmol photons m−2 s−1) and temperature (15–50°C) on chlorophyll a, carotenoid and phycobiliprotein content in Arthronema africanum biomass was studied. Maximum growth rate was measured at 300 μmol photons m−2 s−1 and 36°C after 96 h of cultivation. The chlorophyll a content increased along with the increase in light intensity and temperature and reached 2.4% of dry weight at 150 μmol photons m−2 s−1 and 36°C, but it decreased at higher temperatures. The level of carotenoids did not change significantly under temperature changes at illumination of 50 and 100 μmol photons m−2 s−1. Carotenoids were about 1% of the dry weight at higher light intensities: 150 and 300 μmol photons m−2 s−1. Arthronema africanum contained C-phycocyanin and allophycocyanin but no phycoerythrin. The total phycobiliprotein content was extremely high, more than 30% of the dry algal biomass, thus the cyanobacterium could be deemed an alternative producer of C-phycocyanin. A highest total of phycobiliproteins was reached at light intensity of 150 μmol photons m−2 s−1 and temperature of 36°C, C-phycocyanin and allophycocyanin amounting, respectively, to 23% and 12% of the dry algal biomass. Extremely low (<15°C) and high temperatures (>47°C) decreased phycobiliprotein content regardless of light intensity.  相似文献   

18.
Low-cost alternatives for the micropropagation of banana   总被引:3,自引:0,他引:3  
A 90% resource cost reduction in tissue culture of banana was achieved by replacing tissue culture grade sucrose and Gelrite in the medium with locally available commercial sugar and a starch/Gelrite mixture and by using sun light instead of artificial light. The micropropagation of Musa `Grande Naine' by shoot tip culture was used as model. Thirteen commercial sugars from different countries were tested. Best results were achieved using white and light brown sugars with low electrical conductivity. Sugars of cane or sugar beet origin were suitable. Starches of corn or potato could partially substitute for Gelrite and agar. In all experiments, micropropagation rates under natural light conditions were equal to or higher than under the controlled conditions of a growth room with PPFD of 65 μmol m−2 s−1 and a 16-h photoperiod. Plants were exposed to average PPFD levels of 58–96 μmol m−2 s−1 and photoperiods ranged from 8–16 hours. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
We compared the responses of sun and shade acclimated saplings of Picea abies and Pinus cembra to excess photosynthetic photon flux density (PPFD) equivalently exceeding the level for saturating net photosynthetic rate (P N). Exposure for 2 h up to 2000 μmol(photon) m−2 s−1 did not affect radiant energy saturated P N. Photoinhibition of photosynthesis was indicated by a small (10 %) reduction of the potential efficiency of photosystem 2 as derived from measurements of chlorophyll fluorescence (FV/FM). However, the extent of FV/FM reduction and half-time for recovery were similar in sun and shade acclimated saplings of both species. Furthermore, the effect on FV/FM was not stronger when the plants were exposed to excess PPFD at 5 °C instead of 15 °C. Frost-hardening of plants increased slightly their resistance to excess PPFD. Establishment of these conifer saplings usually acclimated to shade in their natural habitat may hardly be endangered by a sudden increase of PPFD, e.g., by gap formation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
Primula nutans Georgi is widely distributed in hummock-and-hollow wetlands on the Qinghai-Tibetan Plateau. To assess the ecophysiology of this species in responding to microenvironments, we examined the photosynthetic characteristics and individual carbon gain of plants growing in different microsites from a hummock-and-hollow wetland on the Qinghai-Tibetan Plateau and under laboratory conditions. Plants from wetland hummock microsites showed significantly higher light-saturated photosynthetic CO2 uptake (A max) than those from microsites in hollows at a controlled temperature of 15°C in leaf chamber. Leaf dark respiration rate (R) was only significantly higher in plants from hummocks than hollows at the measuring temperature of 35°C. Optimum temperature for A max was 15°C for all plants in the field despite different microsites. In plants growing under laboratory conditions differing in light and temperature, both A max and R were significantly higher under higher growth light (photosynthetic photon flux density, PPFD: 800 or 400 μmol m−2 s−1) than low light of 90 μmol m−2 s−1. No statistically significant differences in A max and R existed in plants differing in growing temperatures. Estimates derived from the photosynthetic parameters of field plants, and microsite environmental measures including PPFD, air temperature and soil temperature showed that the optimum mean daily temperature for net daily carbon gain was around 10°C and the net daily carbon gain was largely limited under lower daily total PPFD. These results suggest that the differences in A max and R in P. nutans are strongly affected by growing light regimes but not by temperature regimes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号