首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Citrate transport via CitS of Klebsiella pneumoniae has been shown to depend on the presence of Na+. This transport system has been expressed in Escherichia coli, and uptake of citrate in E. coli membrane vesicles via this uptake system was found to be an electrogenic process, although the pH gradient is the main driving force for citrate uptake (M. E. van der Rest, R. M. Siewe, T. Abee, E. Schwartz, D. Oesterhelt, and W. N. Konings, J. Biol. Chem. 267:8971-8976, 1992). Analysis of the affinity constants for the different citrate species at different pH values of the medium indicates that H-citrate2- is the transported species. Since the electrical potential across the membrane is a driving force for citrate transport, this indicates that transport occurs in symport with at least three monovalent cations. Citrate efflux is stimulated by Na+ concentrations of up to 5 mM but inhibited by higher Na+ concentrations. Citrate exchange, however, is stimulated by all Na+ concentrations, indicating sequential events in which Na+ binds before citrate for translocation followed by a release of Na+ after release of citrate. CitS has, at pH 6.0 and in the presence of 5 mM citrate on both sides of the membrane, an apparent affinity (K(app)) for Na+ of 200 microM. The Na+/citrate stoichiometry was found to be 1. It is postulated that H-citrate2- is transported via CitS in symport with one Na+ and at least two H+ ions.  相似文献   

2.
The effects of the Na+ gradient and pH on phosphate uptake were studied in brush-border membrane vesicles isolated from rat kidney cortex. The initial rates of Na(+)-dependent phosphate uptake were measured at pH 6.5, 7.5 and 8.5 in the presence of sodium gluconate. At a constant total phosphate concentration, the transport values at pH 7.5 and 8.5 were similar, but at pH 6.5 the influx was 31% of that at pH 7.5. However, when the concentration of bivalent phosphate was kept constant at all three pH values, the effect of pH was less pronounced; at pH 6.5, phosphate influx was 73% of that measured at pH 7.5. The Na(+)-dependent phosphate uptake was also influenced by a transmembrane pH difference; an outwardly directed H+ gradient stimulated the uptake by 48%, whereas an inwardly directed H+ gradient inhibited the uptake by 15%. Phosphate on the trans (intravesicular) side stimulated the Na(+)-gradient-dependent phosphate transport by 59%, 93% and 49%, and the Na(+)-gradient-independent phosphate transport by 240%, 280% and 244%, at pH 6.5, 7.5 and 8.5 respectively. However, in both cases, at pH 6.5 the maximal stimulation was seen only when the concentration of bivalent trans phosphate was the same as at pH 7.5. In the absence of a Na+ gradient, but in the presence of Na+, an outwardly directed H+ gradient provided the driving force for the transient hyperaccumulation of phosphate. The rate of uptake was dependent on the magnitude of the H+ gradient. These results indicate that: (1) the bivalent form of phosphate is the form of phosphate recognized by the carrier on both sides of the membrane; (2) protons are both activators and allosteric modulators of the phosphate carrier; (3) the combined action of both the Na+ (out/in) and H+ (in/out) gradients on the phosphate carrier contribute to regulate efficiently the re-absorption of phosphate.  相似文献   

3.
Phosphate uptake by yeast at pH 7.2 is mediated by two mechanisms, one of which has a Km of 30 micronM and is independent of sodium, and a sodium-dependent mechanism with a Km of 0.6 micronM, both Km values with respect to monovalent phosphate. The sodium-dependent mechanism has two sites with affinity for Na+, with affinity constants of 0.04 and 29 mM. Also lithium enhances phosphate uptake; the affinity constants for lithium are 0.3 and 36 mM. Other alkali ions do not stimulate phosphate uptake at pH 7.2. Ribidium has no effect on the stimulation of phosphate uptake by sodium. Phosphate and arsenate enhance sodium uptake at pH 7.2. The Km of this stimulation with regard to monovalent orthophosphate is about equal to that of the sodium-dependent phosphate uptake. The properties of the cation binding sites of the phosphate uptake mechanism and those of the phosphate-dependent cation transport mechanism have been compared. The existence of a separate sodium-phosphate cotransport system is proposed.  相似文献   

4.
The regulation by thyroid hormone of phosphate transport in primary cultured chick renal cells was examined. The more physiologically active L-analogs of triiodothyronine and thyroxine, but not the D-analogs of the hormones, stimulated the Na+-dependent phosphate uptake system. Na+-independent phosphate uptake and Na+-dependent uptakes of alpha-methylglucoside and L-proline were unaffected. The increase in Na+-dependent phosphate uptake was concentration dependent, exhibited an induction period, and was blocked by inhibitors of RNA and protein synthesis. The stimulation of phosphate uptake by triiodothyronine was due to an increased Vmax rather than to an altered affinity for phosphate. These findings demonstrate that thyroid hormone acts directly on renal cells to modulate phosphate transport and suggest that the renal cell system may serve as a model to examine the mechanism by which thyroid hormone controls gene expression and regulates plasma membrane transport function.  相似文献   

5.
Neutral amino acid transport is largely unexplored in astrocytes, although a role for these cells in blood-brain barrier function is suggested by their close apposition to cerebrovascular endothelium. This study examined the uptake into mouse astrocyte cultures of alpha-aminoisobutyric acid (AIB), a synthetic model substrate for Na+-dependent system A transport. Na+-dependent uptake of AIB was characteristic of system A in its pH sensitivity, kinetic properties, regulatory control, and pattern of analog inhibition. The rate of system A transport declined markedly with increasing age of the astrocyte cultures. There was an unexpectedly active Na+-independent component of AIB uptake that declined less markedly than system A transport as culture age increased. Although the saturability of the Na+-independent component and its pattern of analog inhibition were consistent with system L transport, the following properties deviated: (1) virtually complete inhibition of Na+-independent AIB uptake by characteristic L system substrates, suggesting unusually high affinity of the transporter; (2) apparent absence of trans-stimulation of AIB influx; (3) unusually concentrative uptake at steady state (the estimated distribution ratio for 0.2 mM AIB was 55); and (4) susceptibility to inhibition by N-ethylmaleimide. Direct study of the uptake of system L substrates in astrocytes is needed to confirm the present indications of high affinity and concentrative Na+-independent transport.  相似文献   

6.
The transport routes for threonine in a primate kidney epithelial cell line (BSC-1) grown as monolayer in continuous cell culture were studied. We discovered at least four different transport systems for threonine uptake. The Na(+)-dependent route shows biphasic kinetics with a low and high affinity parameter. The apparent kinetic constants for Km1 and Km2 were 0.3 and 36 mM with apparent Vmax values of 6.3 and 90 nmol/mg protein/min, respectively. The high affinity, low Km component resembles system ASC activity, with respect to substrate selectivity. The Na(+)-independent route also exhibits biphasic kinetics. A high affinity component (apparent Km of 1.0 mM, and apparent Vmax of 7.2 nmol/mg protein/min) is sensitive to inhibition by leucine and the aminoendolevo-rotatory isomer of 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid, suggesting participation by system L. The low affinity component (apparent Km of 10.2 mM, and apparent Vmax of 71 nmol/mg protein/min) was specifically inhibited by threonine, serine, and alanine and could be assigned to system asc. The discrimination between system L and asc is based upon differences in pH sensitivity, trans stimulation, and Ki values. In addition, the effects of harmaline, a suspected sodium transport site inhibitor, have been studied. Harmaline noncompetitively inhibited Na(+)-dependent threonine uptake but had no effect on Na(+)-independent transport of threonine. This report is the first to present evidence for the presence of system asc in renal epithelial cells. The physiological and biochemical significance of our findings are discussed.  相似文献   

7.
Characteristics of succinate transport were determined in basolateral and brush-border membrane vesicles (BLMV and BBMV, respectively) isolated in parallel from rabbit renal cortex. The uptake of succinate was markedly stimulated by the imposition of an inwardly directed Na+ gradient, showing an "overshoot" phenomenon in both membrane preparations. The stimulation of succinate uptake by an inwardly directed Na+ gradient was not significantly affected by pH clamp or inhibition of Na(+)-H+ exchange. The Na(+)-dependent and -independent succinate uptakes were not stimulated by an outwardly directed pH gradient. The Na dependence of succinate uptake exhibited sigmoidal kinetics, with Hill coefficients of 2.17 and 2.38 in BLMV and BBMV, respectively. The Na(+)-dependent succinate uptake by BLMV and BBMV was stimulated by a valinomycin-induced inside-negative potential. The Na(+)-dependent succinate uptake by BLMV and BBMV followed a simple Michaelis-Menten kinetics, with an apparent Km of 22.20 +/- 4.08 and 71.52 +/- 0.14 microM and a Vmax of 39.0 +/- 3.72 and 70.20 +/- 0.96 nmol/(mg.min), respectively. The substrate specificity and the inhibitor sensitivity of the succinate transport system appeared to be very similar in both membranes. These results indicate that both the renal brush-border and basolateral membranes possess the Na(+)-dependent dicarboxylate transport system with very similar properties but with different substrate affinity and transport capacity.  相似文献   

8.
The uptake of monovalent cations by yeast via the monovalent cation uptake mechanism is inhibited by phosphate. The inhibition of Rb+ uptake shows saturation kinetics and the phosphate concentration at which half-maximal inhibition is observed is equal to the Km of phosphate for the sodium-independent phosphate uptake mechanism. The kinetic coefficients of Rb+ and TI+ uptake are affected by phosphate: the maximal rate of uptake is decreased and the apparent affinity constants for the translocation sites are increased. In the case of Na+ uptake, the inhibition by phosphate may be partly or completely compensated by stimulation of Na+ uptake via a sodium-phosphate cotransport mechanism. Phosphate effects a transient stimulation of the efflux of the lipophilic cation dibenzyldimethylammonium from preloaded yeast cells and a transient inhibition of dibenzyldimethylammonium uptake. Possibly, the inhibition of monovalent cation uptake in yeast can be explained by a transient depolarization of the cell membrane by phosphate.  相似文献   

9.
The uptake of Ca2+ and Sr2+ by the yeast Saccharomyces cerevisiae is energy dependent, and shows a deviation from simple Michaelis-Menten kinetics. A model is discussed that takes into account the effect of the surface potential and the membrane potential on uptake kinetics. The rate of Ca2+ and Sr2+ uptake is influenced by the cell pH and by the medium pH. The inhibition of uptake at low concentration of Ca2+ and Sr2+ at low pH may be explained by a decrease of the surface potential. The inhibition of Ca2+ and Sr2+ uptake by monovalent cations is independent of the divalent cation concentration. The inhibition shows saturation kinetics, and the concentration of monovalent cation at which half-maximal inhibition is observed, is equal to the affinity constant of this ion for the monovalent cation transport system. The inhibition of divalent cation uptake by monovalent cations appears to be related to depolarization of the cell membrane. Phosphate exerts a dual effect on uptake of divalent cations: and initial inhibition and a secondary stimulation. The inhibition shows saturation kinetics, and the inhibition constant is equal to the affinity constant of phosphate for its transport mechanism. The secondary stimulation can only partly be explained by a decrease of the cell pH, suggesting interaction of intracellular phosphate, or a phosphorylated compound, with the translocation mechanism.  相似文献   

10.
The modulation of serotonin uptake kinetics by Na+, Cl-, H+, and K+ was investigated in brush-border membrane vesicles prepared from normal human term placentas. The presence of Na+ and Cl- in the external medium was mandatory for the function of the serotonin transporter. In both cases, the initial uptake rate of serotonin was a hyperbolic function of the ion concentration, indicating involvement of one Na+ and one Cl- per transport of one serotonin molecule. The apparent dissociation constant for Na+ and Cl- was 145 and 79 mM, respectively. The external Na+ increased the Vmax of the transporter and also increased the affinity of the transporter for serotonin. The external Cl- also showed similar effects on the Vmax and the Kt, but its effect on the Kt was small compared to that of Na+. The presence of an inside-acidic pH, with or without a transmembrane pH gradient, stimulated the NaCl-dependent serotonin uptake. The effect of internal [H+] on the transport function was to increase the Vmax and decrease the affinity of the transporter for serotonin. The presence of K+ inside the vesicles also greatly stimulated the initial rates of serotonin uptake, and the stimulation was greater at pH 7.5 than at pH 6.5. This stimulation was a hyperbolic function of the internal K+ concentration at both pH values, indicating involvement of one K+ per transport of one serotonin molecule. The apparent dissociation constant for K+ was 5.6 mM at pH 6.5 and 4.0 mM at pH 7.5. The effects of internal [K+] on the uptake kinetics were similar to those of internal [H+].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The energy-dependent uptake of calcium by inverted membrane vesicles of Escherichia coli was investigated. Methods for preparation and storage of the vesicles were devised to allow for the maximal activity and stability of the calcium transport system. The pH and temperature optima for the reaction were observed to occur at pH 8.0 AND 30 DEGREES, RESPECTIVELY. The eft was found that the extent of the reaction depended on the presence of phosphate or oxalate. Phosphate was found to enter the vesicles at a rate slower than that of calcium. A Ca2+:Pi ratio of approximately 1.5 was found, suggesting formation of Ca3(PO4)2. Monovalent cations stimulated calcium uptake, with the order of effectiveness being K+ is greater than Na+ is greater than Li+ is greater than NH4+. Inhibition was found with certain divalent cations, but these also inhibited the electron transport chain. Of the divalent cations examined only Mg2+ and Sr2+ inhibited calcium transport without a corresponding inhibition of respiration. Calcium transport exhibited biphasic Kinetics, with a low affinity system and a high affinity system. The low affinity system showed a Km of 0.34 mM and a Vmax of 85 nmol/min/mg of protein. The kinetic constants of the high affinity system were 4.5 muM and 2 nmol/min/mg of protein. The energy for calcium transport could be derived from the electron transport chain by oxidation of NADH, D-lactate, and succinate, in order of their effectiveness. Respiration-driven calcium transport was inhibited by inhibitors of the electron transport chain and by uncouplers of oxidative phosphorylation. ATP could also be used to supply enerty for calcium transport. The ATP-driven reaction was inhibited by inhibitors of the Mg2+ATPase and by an antiserum prepared against that protein, demonstrating that that enzyme is involved in the utilization of ATP for active transport in inverted vesicles.  相似文献   

12.
Thiomethyl-beta-galactoside (TMG) accumulation via the melibiose transport system was studied in lactose transport-negative strains of Escherichia coli. TMG uptake by either intact cells or membrane vesicles was markedly stimulated by Na+ or Li+ between pH 5.5 and 8. The Km for uptake of TMG was approximately 0.2 mM at an external Na+ concentration of 5 mM (pH 7). The alpha-galactosides, melibiose, methyl-alpha-galactoside, and o-nitrophenyl-alpha-galactoside had a high affinity for this system whereas lactose, maltose and glucose had none. Evidence is presented for Li+-TMG or Na+-TMG cotransport.  相似文献   

13.
The Na+-independent leucine transport system is resolved into two components by their different affinity (Km about 44 microM and 8.0 mM) for leucine in the Chang liver cell. Treatment of the cells with N-ethylmaleimide (1 mM) specifically stimulates the high-affinity component of the Na+-independent system by greatly increasing its Vmax value, whereas the Vmax value of the low-affinity component is markedly lowered. The stimulatory effect of N-ethylmaleimide on leucine transport is reduced by prior treatment of the cells with 2,4-dinitrophenol, but this phenomenon seems to be irrelevant to the ATP-depleting action of the uncoupler. The treatment with 2,4-dinitrophenol has been found not to be inhibitory on the subsequent Na+-independent leucine uptake itself. Treatment with dibucaine, a phospholipid-interacting drug, also reduces to varying degrees (depending on its concentration) the stimulatory effect of N-ethylmaleimide on the subsequent leucine uptake, although pretreatment with dibucaine can stimulate the Na+-independent leucine uptake itself. We conclude that the stimulatory effect of N-ethylmaleimide on leucine transport is not correlated with the energy level of cell, but involves the perturbation of the membrane bilayer structures.  相似文献   

14.
W Berner  R Kinne    H Murer 《The Biochemical journal》1976,160(3):467-474
Uptake of Pi into brush-border membrane vesicles isolated from rat small intestine was investigated by a rapid filtration technique. The following results were obtained. 1. At pH 7.4 in the presence of a NaCl gradient across the membrane (sodium concentration in the medium higher than sodium concentration in the vesicles), phosphate was taken up by a saturable transport system, which was competitively inhibited by arsenate. Phosphate entered the same osmotically reactive space as D-glucose, which indicates that transport into the vesicles rather than binding to the membranes was determined. 2. The amount of phosphate taken up initially was increased about fourfold by lowering the pH from 7.4 to 6.0.3. When Na+ was replaced by K+, Rb+ or Cs+, the initial rate of uptake decreased at pH 7.4 but was not altered at pH 6.0.4. Experiments with different anions (SCN-,Cl-, SO42-) and with ionophores (valinomycin, monactin) showed that at pH 7.4 phosphate transport in the presence of a Na+ gradient is almost independent of the electrical potential across the vesicle membrane, whereas at pH 6.0 phosphate transport involves the transfer of negative charge. It is concluded that intestinal brush-border membranes contain a Na+/phosphate co-transport system, which catalyses under physiological conditions an electroneutral entry of Pi and Na+ into the intestinal epithelial cell. In contrast with the kidney, probably univalent phosphate and one Na+ ion instead of bivalent phosphate and two Na+ ions are transported together.  相似文献   

15.
In this study, we examined the molecular and functional characterization of choline uptake into cultured rat cortical astrocytes. Choline uptake into astrocytes showed little dependence on extracellular Na+. Na+-independent choline uptake was saturable and mediated by a single transport system, with an apparent Michaelis-Menten constant (Km) of 35.7 +/- 4.1 microm and a maximal velocity (Vmax) of 49.1 +/- 2.0 pmol/mg protein/min. Choline uptake was significantly decreased by acidification of the extracellular medium and by membrane depolarization. Na+-independent choline uptake was inhibited by unlabeled choline, acetylcholine and the choline analogue hemicholinium-3. The prototypical organic cation tetrahexylammonium (TEA), and other n-tetraalkylammonium compounds such as tetrabutylammonium (TBA) and tetrahexylammonium (THA), inhibited Na+-independent choline uptake, and their inhibitory potencies were in the order THA > TBA > TEA. Various organic cations, such as 1-methyl-4-tetrahydropyridinium (MPP+), clonidine, quinine, quinidine, guanidine, N-methylnicotinamide, cimetidine, desipramine, diphenhydramine and verapamil, also interacted with the Na+-independent choline transport system. Corticosterone and 17beta-estradiol, known inhibitors of organic cation transporter 3 (OCT3), did not cause any significant inhibition. However, decynium22, which inhibits OCTs, markedly inhibited Na+-independent choline uptake. RT-PCR demonstrated that astrocytes expressed low levels of OCT1, OCT2 and OCT3 mRNA, but the functional characteristics of choline uptake are very different from the known properties of these OCTs. The high-affinity Na+-dependent choline transporter, CHT1, is not expressed in astrocytes as evidenced by RT-PCR. Furthermore, mRNA for choline transporter-like protein 1 (CTL1), and its splice variants CTL1a and CTL1b, was expressed in rat astrocytes, and the inhibition of CTL1 expression by RNA interference completely inhibited Na+-independent choline uptake. We conclude that rat astrocytes express an intermediate-affinity Na+-independent choline transport system. This system seems to occur through a CTL1 and is responsible for the uptake of choline and organic cations in these cells.  相似文献   

16.
OK cells, derived from an American opossum kidney, were analyzed for proximal tubular transport functions. In monolayers, L-glutamate, L-proline, L-alanine, and alpha-methyl-glucopyranoside (alpha-methyl D-glucoside) were accumulated through Na+-dependent and Na+-independent transport pathways. D-Glucose and inorganic sulfate were accumulated equally well in the presence or absence of Na+. Influx of inorganic phosphate was only observed in the presence of Na+. Na+/alpha-methyl D-glucoside uptake was preferentially inhibited by phlorizin and D-glucose uptake by cytochalasin B. An amiloride-sensitive Na+-transport was also identified. In isolated apical vesicles (enriched 8-fold in gamma-glutamyltransferase), L-glutamate, L-proline, L-alanine, alpha-methyl D-glucoside and inorganic phosphate transport were stimulated by an inwardly directed Na+-gradient as compared to an inwardly directed K+-gradient. L-Glutamate transport required additionally intravesicular K+. D-Glucose transport was similar in the presence of a Na+- and a K+-gradient. Na+/alpha-methyl D-glucoside uptake was inhibited by phlorizin whereas cytochalasin B had no effect on Na+/D-glucose transport. An amiloride-sensitive Na+/H+ exchange mechanism was also found in the apical vesicle preparation. It is concluded that the apical membrane of OK cells contains Na+-coupled transport systems for amino acids, hexoses, protons and inorganic phosphate. D-Glucose appears a poor substrate for the Na+/hexose transport system.  相似文献   

17.
The uptake of L-phenylalanine into brush border microvilli vesicles and basolateral plasma membrane vesicles isolated from rat kidney cortex by differential centrifugation and free flow electrophoresis was investigated using filtration techniques. Brush border microvilli but not basolateral plasma membrane vesicles take up L-phenylalanine by an Na+-dependent, saturable transport system. The apparent affinity of the transport system for L-phenylalanine is 6.1 mM at 100 mM Na+ and for Na+ 13mM at 1 mM L-phenylalanine. Reduction of the Na+ concentration reduces the apparent affinity of the transport system for L-phenylalanine but does not alter the maximum velocity. In the presence of an electrochemical potential difference of Na+ across the membrane (etaNao greater than etaNai) the brush border microvilli accumulate transiently L-phenylalanine over the concentration in the incubation medium (overshoot pheomenon). This overshoot and the initial rate of uptake are markedly increased when the intravesicular space is rendered electrically more negative by membrane diffusion potentials induced by the use of highly permeant anions, of valinomycin in the presence of an outwardly directed K+ gradient and of carbonyl cyanide p-trifluoromethoxyphenylhydrazone in the presence of an outward-directed proton gradient. These results indicate that the entry of L-phenylalanine across the brush border membrane into the proximal tubular epithelial cells involves cotransport with Na+ and is dependent on the concentration difference of the amino acid, on the concentration difference of Na+ and on the electrical potential difference. The exit of L-phenylalanine across the basolateral plasma membranes is Na+-independent and probably involves facilitated diffusion.  相似文献   

18.
The present study examined the functional characteristics of L-DOPA transporters in two functionally different clonal subpopulations of opossum kidney (OKLC and OKHC) cells. The uptake of L-DOPA was largely Na+-independent, though in OKHC cells a minor component (approximately 15%) required extracellular Na+. At least two Na+-independent transporters appear to be involved in L-DOPA uptake. One of these transporters has a broad specificity for small and large neutral amino acids, is stimulated by acid pH and inhibited by 2-aminobicyclo(2,2,l)-heptane-2-carboxylic acid (BCH; OKLC, Ki = 291 mM; OKHC, Ki = 380 mM). The other Na+-independent transporter binds neutral and basic amino acids and also recognizes the di-amino acid cystine. [14C]-L-DOPA efflux from OKLC and OKHC cells over 12 min corresponded to a small amount of intracellular [14C]-L-DOPA. L-Leucine, nonlabelled L-DOPA, BCH and L-arginine, stimulated the efflux of [14C]-L-DOPA in a Na+-independent manner. It is suggested that L-DOPA uses at least two major transporters, systems LAT-2 and b0,+. The transport of L-DOPA by LAT-2 corresponds to a Na+-independent transporter with a broad specificity for small and large neutral amino acids, stimulated by acid pH and inhibited by BCH. The transport of L-DOPA by system b0,+ is a Na+-independent transporter for neutral and basic amino acids that also recognizes cystine. LAT-2 was found equally important at the apical and basolateral membranes, whereas system b0,+ had a predominant distribution in apical membranes.  相似文献   

19.
The effect of changes in extracellular pH (pHo) and intracellular pH (pHi) on Na+-dependent and Na+-independent inorganic phosphate (Pi) transport in Ehrlich cells was investigated. In the presence of Na+, acutely reducing pHo from 7.30 to 5.50 results first in a transient (approximately 7 min) stimulation of Pi transport. The enhanced rate of transport is a saturable function of the extracellular [H+]; the Ks equals 2.3 X 10(-6) M (pHo 6.68). However, Pi transport is progressively inhibited as pHi falls below 6.50. The effect of pHi on Pi transport measured at various intracellular [Na+] suggests that inhibition develops as a consequence of H+ interaction with an intracellular Na+ site(s) on the Na+-dependent carrier. At pHo 7.4, about 15% of the steady state Pi flux persists in the absence of Na+. However, when pHo is reduced, transport is stimulated to the same extent and with the same time course and kinetic characteristics as in the presence of Na+. Thus, H+ stimulated Pi transport does not require Na+, raising the possibility that the Na+-independent component is mediated by the anion (Cl-) exchanger.  相似文献   

20.
ASCT1 protein is a member of the glutamate transporter superfamily, which shows system ASC selectivity and properties and has been characterized as a Na+-dependent neutral amino-acid exchanger. Here, by using ASCT1-expressing oocytes, the uptake of alanine and glutamate was measured to investigate ASCT1's ability to mediate a concentrative transport of alanine, ASCT1's sodium dependence, and the influence of pH on the mutual inhibition between alanine and glutamate. Alanine uptake was measured after 30 min incubation. Kinetic analysis of the Na+ dependence of alanine uptake showed an apparent K0.5 (affinity constant) value for Na+ of 23.1 +/- 4.3 mM (mean +/- SE). Concentration dependence of alanine uptake was tested at 100 and 1 mM Na+, with apparent K0.5 values of 0.16 +/- 0.04 and 1.8 +/- 0.4 mM, respectively, at pH 7.5, and 0.21 +/- 0.06 and 1.9 +/- 0.3 mM at pH 6. Vmax was not modified between 100 and 1 mM Na+ at either pH. ASCT1 actively transports alanine and accumulates it in the cytosol even when the Na+ concentration in the medium was as low as 1-3 mM. 22Na uptake studies revealed that Na+ transport was stimulated by the presence of alanine in the medium. Our results demonstrate that ASCT1 is able to mediate a concentrative transport of alanine, which is Na+-dependent but not coupled to the Na+ gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号