首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Caffeic acid phenethyl ester has been shown to have anti-inflammatory and anti-cancer effects. We examined the effects of caffeic acid phenethyl ester on lipopolysaccharide-induced production of nitric oxide and prostaglandin E(2), and expression of inducible nitric oxide synthase and cyclooxygenase-2 in RAW 264.7 macrophages. We also investigated the effects of caffeic acid phenethyl ester on lipopolysaccharide-induced septic shock in mice. Our results indicate that caffeic acid phenethyl ester inhibits lipopolysaccharide-induced nitric oxide and prostaglandin E(2) production in a concentration-dependent manner and inhibits inducible nitric oxide synthase and cyclooxygenase-2 in RAW 264.7 cells, without significant cytotoxicity. To further examine the mechanism responsible for the inhibition of inducible nitric oxide synthase and cyclooxygenase-2 expression by caffeic acid phenethyl ester, we examined the effect of caffeic acid phenethyl ester on lipopolysaccharide-induced nuclear factor-kappaB activation and the phosphorylation of mitogen-activated protein kinases. Caffeic acid phenethyl ester treatment significantly reduced nuclear factor-kappaB translocation and DNA-binding in lipopolysaccharide-stimulated RAW 264.7 cells. This effect was mediated through the inhibition of the degradation of inhibitor kappaB and by inhibition of both p38 mitogen-activated protein kinase and extracellular signal-regulated kinase phosphorylation, at least in part by inhibiting the generation of reactive oxygen species. Furthermore, caffeic acid phenethyl ester rescued C57BL/6 mice from lethal lipopolysaccharide-induced septic shock, while decreasing serum levels of tumor necrosis factor-alpha and interleukin-1beta. Collectively, these results suggest that caffeic acid phenethyl ester suppresses the induction of cytokines by lipopolysaccharide, as well as inducible nitric oxide synthase and cyclooxygenase-2 expression, by blocking nuclear factor-kappaB and p38/ERK activation. These findings provide mechanistic insights into the anti-inflammatory and chemopreventive actions of caffeic acid phenethyl ester in macrophages.  相似文献   

2.
Giraud AS  Pereira PM  Thim L  Parker LM  Judd LM 《Peptides》2004,25(5):803-809
Endogenous trefoil (TFF) peptides have reparative and anti-inflammatory actions in colitis because luminal application in vivo potently reduces inflammatory indices and accelerates healing. Since chronic production of NO via inducible nitric oxide synthase activity (iNOS) leads to tissue damage and inflammation, we tested whether TFF2 could inhibit NO production in a monocyte cell line in response to bacterial endotoxin, and in vivo by measuring inflammatory indices and nitrated protein expression in rat colon after colitis induction. We showed that TFF2 can inhibit iNOS and NO in monocytes and inflammatory compartment size in vivo, and conclude that trefoils can regulate monocyte NO-mediated inflammation in colitis.  相似文献   

3.
Two neolignans were isolated from leaves of Perilla frutescens (Labiatae) as inhibitors of nitric oxide syntheses (IC50 5.9 microM and 53.5 microM, respectively) and tumor necrosis factor-alpha in lipopolysaccharide-activated RAW 264.7 cells. Their structures were identified as 1beta,2alpha,3beta,4alpha-1,2-dimethyl-3,4-bis-(2,4,5-trimethoxyphenyl)-cyclobutane (magnosalin), and 1alpha,2beta,3beta,4alpha-1,2-dimethyl-3,4-bis-(2,4,5-trimethoxyphenyl)-cyclobutane (andamanicin), and their activities were confirmed as resulted from the suppressed expression of inducible nitric oxide synthase enzyme and from the secretion of tumor necrosis factor-alpha from activated macrophages.  相似文献   

4.
5.
p38 belongs to the mitogen-activated protein kinase family and plays a crucial role in cellular responses to both cytokines and various stresses. We investigated the role of p38 in the healing of experimental gastric ulcers. Gastric ulcers were induced by submucosal injection of acetic acid solution into male rats. Western blotting and a kinase assay examined the p38 activity and phosphorylation state in ulcerated tisue. After orally administering FR167653 (p38 kinase inhibitor) for 3 to 14 days, the production level of cytokines and the protein-level expression of cyclooxygenase and inducible nitric oxide synthase were examined by enzyme-linked immunosorbent assay and Western blotting. Only in fibroblasts and macrophages/monocytes in ulcerated tissue, p38 was found to be phosphorylated with an elevated kinase activity level. FR 167653 inhibited the activity of p38, yet had no effect on its phosphorylation state. The drug significantly impaired ulcer healing (without affecting acid secretion) and angiogenesis in the ulcer base. The production of interleukin-1beta and tumor necrosis factor-alpha were significantly reduced after FR167653 treatment. In addition the expression of cyclooxygenase-2 and inducible nitric oxide synthase proteins increased PGE2 generation and NOx secretion in the ulcerated stomach were suppressed by FR167653. From these findings, we conclude that p38, activated by gastric ulceration, might play some role in the healing of gastic ulcers in rats.  相似文献   

6.
Type I diabetes mellitus is an autoimmune disease characterized by the selective destruction of the insulin-secreting beta-cell found in pancreatic islets of Langerhans. Cytokines such as interleukin-1 (IL-1), interferon-gamma (IFN-gamma), and tumor necrosis factor-alpha (TNF-alpha) mediate beta-cell dysfunction and islet degeneration, in part, through the induction of the inducible isoform of nitric-oxide synthase and the production of nitric oxide by beta-cells. Cytokines also stimulate the expression of the inducible isoform of cyclooxygenase, COX-2, and the production of prostaglandin E(2) (PGE(2)) by rat and human islets; however, the role of increased COX-2 expression and PGE(2) production in mediating cytokine-induced inhibition of islet metabolic function and viability has been incompletely characterized. In this study, we have shown that treatment of rat islets with IL-1beta or human islets with a cytokine mixture containing IL-1beta + IFN-gamma +/- TNF-alpha stimulates COX-2 expression and PGE(2) formation in a time-dependent manner. Co-incubation of rat and human islets with selective COX-2 inhibitors SC-58236 and Celecoxib, respectively, attenuated cytokine-induced PGE(2) formation. However, these inhibitors failed to prevent cytokine-mediated inhibition of insulin secretion or islet degeneration. These findings indicate that selective inhibition of COX-2 activity does not protect rat and human islets from cytokine-induced beta-cell dysfunction and islet degeneration and, furthermore, that islet production of PGE(2) does not mediate these inhibitory and destructive effects.  相似文献   

7.
A potent Nonsterodial Anti-inflammatory Drug (NSAID) candidates has been conceived and built by an assembly of a hydrophilic, fluorescent and COX-2 inhibiting units in the same molecule. The isatinimino-acridinedione core (TM-7) was achieved in a simple three step synthetic procedure viz (i) a multicomponent reaction between dimedone, aldehyde and amine to furnish the nitroacridinedione (4), (ii) reduction step and (iii) schiff’s-base condensation with isatin. The excellent anti-inflammatory pharmacological efficiency of the drug was established by in vivo biological experiments. Accordingly, it was found that the treatment with the synthesized isatinimino analogues (dosage: 30 mg/kg) inhibited protein expression of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and nuclear factor kappa B (NF-κB) as well as production of prostaglandin E2 (PGE2), nitric oxide (NO), tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), and interleukin-6 (IL-6) levels induced by carrageenan. Further, a comparative molecular modeling analysis of TM-7 carried out with the crystal structure of aspirin acetylated human COX-2 suggested effectively binding and efficient accommodation inside the active site’s gorge.  相似文献   

8.
The current study investigated the immunomodulatory potential of ethyl acetate soluble supernatant of Lactobacillus casei (LC-EAS) in vitro. The effect of LC-EAS on nitric oxide release was analyzed in RAW 264.7 cells, wherein, an inhibition in nitric oxide production through suppression of inducible nitric oxide synthase mRNA expression was observed. Evaluation of LC-EAS on LPS-induced peripheral blood mononuclear cells showed a down-regulation in TNF-α and IL-6 genes and an upregulation of IL-10. An inhibition in the protein expression of NF-κB, ERK1/2 and STAT3 phosphorylation confirms the immunomodulatory potential of LC-EAS. The effect of LC-EAS on in vitro intestinal epithelial cells was investigated using HT-29 human colon adenocarcinoma cancer cells. LC-EAS exhibited an inhibition of NF-κB and ERK1/2 phosphorylation, whereas STAT3 phosphorylation was unregulated. To evaluate the downstream target of STAT3 upregulation, expression of the intestinal trefoil factor TFF3 which is a NF-κB regulator and STAT3 downstream target was studied. LC-EAS was observed to elevate TFF3 mRNA expression. Overall the study shows that the anti-inflammatory potential of LC-EAS is through inhibition of NF-κB in different cell types.  相似文献   

9.
Microglial activation has been implicated in neurodegenerative diseases. Therefore, inhibition of inflammation mediated by microglia is a strategy in neurodegenerative disease therapy. In this study, we isolated cryptotanshinone and 15,16-dihydrotanshinone I from Salvia miltiorrhiza, a traditional Korean herb medicine, by bioactivity-guided fractionation based on inhibitory effect on nitric oxide in a lipopolysaccharide-stimulated BV-2 cells, a murine microglial cell line. 15,16-Dihydotanshinoe I suppressed the expression of not only inducible nitric oxide synthase but also of interleukin-1beta, tumor necrosis factor-alpha, and of TNF-alpha converting enzyme.  相似文献   

10.
Butein has been reported to exert anti-inflammatory effect but the possible mechanism involved is still unclear. Here, we report the inhibitory effect of butein on nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) gene expression. Butein also inhibited the induction of tumor necrosis factor-alpha and cyclooxygenase 2 by LPS. To further investigate the mechanism responsible for the inhibition of iNOS gene expression by butein, we examined the effect of butein on LPS-induced nuclear factor-kappaB (NF-kappaB) activation. The LPS-induced DNA binding activity of NF-kappaB was significantly inhibited by butein, and this effect was mediated through inhibition of the degradation of inhibitory factor-kappaB and phosphorylation of Erk1/2 MAP kinase. Furthermore, increased binding of the osteopontin alphavbeta3 integrin receptor by butein may explain its inhibitory effect on LPS-mediated NO production. Taken together, these results suggest that butein inhibits iNOS gene expression, providing possible mechanisms for its anti-inflammatory action.  相似文献   

11.
《Phytomedicine》2014,21(3):298-306
Microglia-involved neuroinflammation is thought to promote brain damage in various neurodegenerative disorders. Therefore, novel therapeutics suppressing microglia over-activation could prove useful for neuroprotection in inflammation-mediated neurodegenerative diseases. DSF-52 is a novel sesquiterpene dimer compound isolated from medical plant Artemisia argyi by our group. In this study, we investigated whether DSF-52 inhibited the neuroinflammatory responses in lipopolysaccharide (LPS)-activated microglia. Our findings showed that DSF-52 inhibited the production of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), as well as mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), interleukin-1β (IL-1β), granulocyte-macrophage colony-stimulating factor (GM-CSF) and macrophage inflammatory protein-1α (MIP-1α) in LPS-activated BV-2 microglia. Moreover, DSF-52 markedly up-regulated mRNA levels of anti-inflammatory cytokine IL-10. Mechanism study indicated that DSF-52 suppressed Akt/IκB/NF-κB inflammation pathway against LPS treatment. Also, DSF-52 down-regulated the phosphorylation levels of JNK and p38 MAPKs, but not ERK. Furthermore, DSF-52 blocked Jak2/Stat3 dependent inflammation pathway through inhibiting Jak2 and Stat3 phosphorylation, as well as Stat3 nuclear translocation. We concluded that the inhibitory ability of DSF-52 on microglia-mediated neuroinflammation may offer a novel neuroprotective modality and could be potentially useful in inflammation-mediated neurodegenerative diseases.  相似文献   

12.
A novel synthetic 3,4-dihydropyrimidinone derivative, compound D22 (ethyl 6-methyl-4-(3-phenoxyphenyl)-2-thioxo-3,4-dihydropyrimidine-5-carboxylate), was found to exert anti-inflammatory properties in lipopolysaccharide-stimulated microglial BV-2 cells. Compound D22 reduced the pro-inflammatory factors such as nitric oxide, prostaglandin E(2), tumor necrosis factor-α and interleukin-1β. Moreover, it suppressed the expressions of inducible NO synthase and cyclooxygenase-2. Compound D22 inhibited the activation of mitogen-activated protein kinases. When compound D22-conditioned media from BV-2 cells were applied to N2a cells, neuronal cell death was inhibited via suppression of caspase-3 activation and regulation of Bcl-2 and Bax proteins expression. These results suggest that compound D22 may be useful for treating neurodegenerative diseases related with neuroinflammation.  相似文献   

13.
The effect of prostaglandtn E(2), iloprost and cAMP on both nitric oxide and tumour necrosis factor-alpha release in J774 macrophages has been studied. Both prostaglandin E(2) and iloprost inhibited, in a concentration-dependent fashion, the lipopolysaccharide-induced generation of nitric oxide and tumour necrosis factor-alpha. The inhibitory effect of these prostanoids seems to be mediated by an increase of the second messenger cAMP since it was mimicked by dibutyryl cAMP and potentiated by the selective type IV phosphodiesterase inhibitor RO-20-1724. Our results suggest that the inhibition of nitric oxide release by prostaglandin E(2) and iloprost in lipopolysaccharide-activated J774 macrophages may be secondary to the inhibition of tumour necrosis factor-alpha generation, which in turn is likely to be mediated by cAMP.  相似文献   

14.
15.
Successful implantation and placentation requires that extravillous cytotrophoblast acquires an endovascular phenotype and remodels uterine spiral arteries. Defects in this mechanism correlate with severe obstetric complications as implantation failure and preeclampsia. Lysophosphatidic acid (LPA) participates in embryo implantation and contributes to vascular physiology in different biological systems. However, the role of LPA on trophoblast endovascular transformation has not been studied. Due to difficulties in studying human pregnancy in vivo, we adopted a pharmacological approach in vitro to investigate LPA action in various aspects of trophoblast endovascular response, such as the formation of endothelial capillary‐like structures, migration, and proliferation. The HTR‐8/SVneo cell line established from human first trimester cytotrophoblast was used to model the acquisition of the endovascular phenotype by the invading trophoblast. LPA increased HTR‐8/SVneo tube formation, migration (wound healing assay and phalloidin staining) and proliferation (MTT assay). LPA G protein‐coupled receptors, LPA1 and LPA3, were expressed in HTR‐8/SVneo. By using selective antagonists, we showed that enhanced tubulogenesis was mediated by LPA3. In addition, cyclooxygenase‐2 and inducible nitric oxide synthase pathways participated in LPA‐stimulated tubulogenesis. Inducible nitric oxide synthase was activated downstream cyclooxygenase‐2. Furthermore, prostaglandin E2 and a nitric oxide donor (SNAP) increased trophoblast tube formation in a concentration‐dependent manner. Finally, we observed that cyclooxygenase‐2 and inducible nitric oxide synthase were localized in the nucleus, and LPA did not modify their cellular distribution. Our results show that LPA‐triggered regulatory pathways promote trophoblast endovascular response in vitro, suggesting a new role for LPA during spiral artery remodeling at the maternal‐fetal interface.  相似文献   

16.
Antimicrobial peptide P18 markedly inhibited the expression of inducible nitric oxide synthase (iNOS), tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 beta (IL-1beta) in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells, whereas magainin 2 did not inhibit these activities. P18 dose-dependently reduced nitric oxide (NO) production by LPS-stimulated RAW 264.7 macrophage cells, with complete inhibition at 20 microg P18 ml(-1). In contrast, P18 had no effect on NO production and the expression of iNOS mRNA and iNOS protein by interferon-gamma (IFN-gamma)-stimulated RAW264.7 cells, suggesting P18 selectively inhibits LPS-stimulated inflammatory responses in macrophages. An LAL assay showed that P18 has strong LPS-neutralizing activity, indicating that P18 inhibits the inflammatory responses in LPS-stimulated macrophages by direct binding to LPS. Collectively, our results indicate that P18 has promising therapeutic potential as a novel anti-inflammatory as well as antimicrobial agent.  相似文献   

17.
Glial activation and neuroinflammatory processes play an important role in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and HIV dementia. Activated glia cells can secrete various proinflammatory cytokines and neurotoxic mediators, which may influence neuronal cell survival. Recent studies have demonstrated that glia cell-mediated neuroinflammation is also related to the pathophysiology of schizophrenia. In the present study, anti-inflammatory and neuroprotective effects of antipsychotics were investigated using cultured brain cells as a model. The results showed that spiperone significantly decreased the production of nitric oxide in lipopolysaccharide-stimulated BV-2 microglia cells, primary microglia and primary astrocyte cultures. Spiperone also significantly inhibited nitric oxide production in adenosine 5'-triphosphate (ATP)-stimulated primary microglia cultures. Spiperone markedly decreased the production of tumor necrosis factor-alpha in BV-2 microglia cells. Spiperone attenuated the expression of inducible nitric oxide synthase and proinflammatory cytokines such as interleukin-1beta and tumor necrosis factor-alpha at mRNA levels in BV-2 microglia cells. Spiperone inhibited nuclear translocation and DNA binding of the p65 subunit of nuclear factor kappa B (NF-kappaB), inhibitor of kappa B (IkappaB) degradation, and phosphorylation of p38 mitogen-activated protein kinase in the lipopolysaccharide-stimulated BV-2 microglia cells. Moreover, spiperone was neuroprotective, as the drug reduced microglia-mediated neuroblastoma cell death in the microglia/neuron co-culture. These results imply that the antipsychotic spiperone has anti-inflammatory and neuroprotective effects in the central nervous system by modulating glial activation.  相似文献   

18.
Epidemiological studies suggest that the treatments of anti-inflammatory agents and anti-oxidants slow the progress of neurological diseases. Lignans are anti-oxidants and phytoestrogens found in a variety of plants. In this study, we investigated the neuroprotective effect of macelignan on glutamate-induced neurotoxicity and reactive oxygen species (ROS) in murine hippocampal HT22 cell line. Macelignan significantly attenuated the ROS production and neurotoxicity induced by glutamate in HT22 cell. Also, the properties of macelignan as an anti-inflammatory agent were investigated in microglials activation by lipopolysaccharide (LPS). It potently suppressed the expression of cyclooxygenase-2 and inducible nitric oxide synthase, that consequently resulted in the reduction of nitric oxide in LPS-treated microglial cells. It also significantly suppressed the production of pro-inflammatory cytokine tumor necrosis factor-alpha and interleukin-6. These results suggest that macelignan possesses therapeutic potentials against neurodegenerative diseases with oxidative stress and neuroinflammation.  相似文献   

19.
Astrocyte activation has been implicated in the pathogenesis of many neurological diseases. These reactive astrocytes are capable of producing a variety of proinflammatory mediators and potentially neurotoxic compounds, such as nitric oxide (NO), tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6) and interleukin-1beta (IL-1beta). In this study, we examined the suppressive effects of Tetrandrine (TET) on astrocyte activation induced by lipopolysaccharide (LPS) in vitro. We found that TET decreased the release of NO, TNF-alpha, IL-6 and IL-1beta in LPS-activated astrocytes. Also mRNA expression levels of inducible nitric oxide synthase (iNOS), macrophage inflammatory protein-1alpha (MIP-1alpha) and vascular cell adhesion molecule-1 (VCAM-1) were inhibited in TET pretreated astrocytes. Such suppressive effects might be resulted from the inhibition of nuclear factor kappa B (NF-kappaB) activation through downregulating IkappaB kinases (IKKs) phosphoration, which decreased inhibitor of nuclear factor-kappaB-alpha (IkappaBalpha) phosphoration and degradation. Our results suggest that TET acted to regulate astrocyte activation through inhibiting IKKs-IkappaBalpha-NF-kappaB signaling pathway.  相似文献   

20.
In most neurodegenerative disorders, including multiple sclerosis, Parkinson disease, and Alzheimer disease, a massive neuronal cell death occurs as a consequence of an uncontrolled inflammatory response, where activated astrocytes and microglia and their cytotoxic agents play a crucial pathological role. Current treatments for these diseases are not effective. In the present study we investigate the effect of thiadiazolidinone derivatives, which have been recently suggested to play a role in neurodegenerative disorders. We have found that thiadiazolidinones are potent neuroprotector compounds. Thiadiazolidinones inhibited inflammatory activation of cultured brain astrocytes and microglia by diminishing lipopolysaccharide-induced interleukin 6, tumor necrosis factor alpha, inducible nitric-oxide synthase, and inducible cyclooxygenase type 2 expression. In addition, thiadiazolidinones inhibited tumor necrosis factor-alpha and nitric oxide production and, concomitantly, protected cortical neurons from cell death induced by the cell-free supernatant from activated microglia. The neuroprotective effects of thiadiazolidinones are completely inhibited by the peroxisome proliferator-activated receptor gamma antagonist GW9662. In contrast the glycogen synthase kinase 3beta inhibitor LiCl did not show any effect. These findings suggest that thiadiazolidinones potently attenuate lipopolysaccharide-induced neuroinflammation and reduces neuronal death by a mechanism dependent of peroxisome proliferator-activated receptor gamma activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号