首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
发酵法生产长链二元酸研究进展   总被引:2,自引:0,他引:2  
发酵法生产长链二元酸相对于化工法而言有着无可比拟的优势。本文综述了发酵法生产长链二元酸的微生物源、产酸机理、产酸条件和产物分离技术等方面的研究进展,并简要介绍了其工业应用前景。  相似文献   

2.
长链二元酸作为合成多种高附加值化学品的原料,已广泛应用于化工、农业和医药等领域,目前全球对于长链二元酸的需求呈逐年增长态势。化学法合成长链二元酸对反应条件要求严苛且工艺复杂,而微生物发酵合成在经济性和难易度等方面具有无可比拟的优势。本文综述了长链二元酸的合成方法,包括化学合成法和微生物发酵法,分子工程选育高产菌株的进展以及生物发酵法生产长链二元酸的产业化现状,并就其存在的问题进行了探讨,最后对合成生物学创制长链二元酸高产菌株进行了总结和展望。  相似文献   

3.
目的:提高烃酸转化率,降低发酵法生产十五碳二元酸成本。方法:考察几种碳源和β氧化抑制剂丙烯酸对菌体生长、烃酸转化率及产酸的影响,并对乙酸钠的作用机制进行讨论。结果:发酵培养基加入的几种碳源中,乙酸钠对十五碳二元酸发酵影响最大。加入0.4(W/V)乙酸钠,转化率比对照组提高21%,产酸量比对照组提高22.5%;转入产酸期后加入0.1(WV)丙烯酸,产酸进一步提高16%。结论:乙酸钠和丙烯酸能够部分控制β氧化,可以有效降低发酵法生产十五碳二元酸成本。  相似文献   

4.
产长链二元酸热带假丝酵母酸分泌过程研究   总被引:2,自引:0,他引:2  
张志禹  朱涛 《微生物学杂志》1998,18(4):17-20,24
热带假丝酵母(C.tropicalis)是长链二元酸发酵生产中常用菌种。其二元酸分泌过程是烧烃代谢过程中的重要步骤,pH在7.4~8.2范围内,足够高的pH对分泌和产酸是必需的。二元酸钠盐明显不利于分泌过程。二元酸的分泌相对于胞内ω一氧化过程是快速过程。建立了一种用于研究分泌过程的方法,利用静息细胞在缓冲溶液中分泌所引起的溶液pH变化来获得酸分泌量的在线数据。  相似文献   

5.
陈远童   《微生物学通报》2002,29(1):104-104
科学家们在微生物发酵生产二元酸的研究领域,虽然经过几十年的基础理论研究和应用开发研究,取得重大进展,达到工业生产水平,但是还有工作要做,尤其是二元酸的二步开发研究,还仅仅是开始阶段。 理论研究和应用研究 某些长链二元酸,其发酵产酸水平已突破200g/L大关,但多数二元酸只有150~180g/L水平,如何通过基因工程方法,构建β-氧化阻断型和ω-氧化扩大型工程菌,再通过发酵过程的计算机优化控制,进一步提高二元酸产量、降低  相似文献   

6.
中国科学院微生物研究所陈远童教授在石油微生物领域 ,微生物正烷烃代谢产物和代谢途径的基础理论研究以及微生物发酵正烷烃生产长链二元酸系列产品的应用开发研究中 ,取得优异成绩 ,尤其通过国家“八五”和“九五”科技攻关 ,先后培育出高产十五碳二元酸 (DC15)、十二碳二元酸 (DC12 )和十三碳二元酸 (DC13) 3株高产突变株 ,通过代谢调控和过程优化 ,在 2 5吨罐中试和 2 0吨罐规模工业生产试验研究中 ,把DC15、DC12 和DC13的发酵产酸水平稳定在 1 80~ 2 0 0g/L的国际领先水平。并率先在国内建成国际上首家千吨级规模的二元酸生产工…  相似文献   

7.
从能利用正十二烷产生1,12-十二碳二元酸的热带假丝酵母突变株D28出发,经两次紫外线照射诱变,选育到一株从正十三烷产生1,13-十三碳二元酸较高的突变株2—23号菌。该突变株较出发菌株提高产酸率20%,达40.4g/L。突变株2—23也能将一定链长的长链烷烃以较高的产率转变成相应的单一二元酸。此外,在产酸摇瓶条件试验中观察到烷烃的诱导作用,使突变株产酸能力得以提高。用烷烃预培养的种子发酵正十三烷,其产生1,13一十三碳二元酸的量较糖质碳源培养的种子发酵时要提高30%。  相似文献   

8.
从能利用正十二烷产生1,12-十二碳二元酸的热带假丝酵母突变株D28出发,经两次紫外线照射诱变,选育到一株从正十三烷产生1,13-十三碳二元酸较高的突变株2—23号菌。该突变株较出发菌株提高产酸率20%,达40.4g/L。突变株2—23也能将一定链长的长链烷烃以较高的产率转变成相应的单一二元酸。此外,在产酸摇瓶条件试验中观察到烷烃的诱导作用,使突变株产酸能力得以提高。用烷烃预培养的种子发酵正十三烷,其产生1,13一十三碳二元酸的量较糖质碳源培养的种子发酵时要提高30%。  相似文献   

9.
继1999年和2002年,淄博广通公司和上海凯赛公司先后转让中国科学院微生物研究所的长链二元酸生物合成技术,在山东淄博龙泉地区和济宁地区建成两座千吨级规模生物合成工厂之后,2006年3月,第3座千吨级规模的长链二元酸生物合成新工厂耸立在我国江苏省淮安市开发区大地上,中国科学院微生物研究所技术发明人陈远童教授等带着新研制的第三代生物合成新技术下厂指导试生产。新技术在50吨规模的发酵罐中一次试车成功,十二碳和十三碳二元酸的发酵产酸水  相似文献   

10.
十二碳二元酸发酵研究   总被引:1,自引:0,他引:1  
长链二元酸(long-chain dicarboxylic acid,DCA)是指C10以上的脂肪族二元羧酸。它们是一类重要的精细化工原料,广泛用于大环麝香、工程塑料、耐寒增塑剂、尼龙纤维、热熔胶以及液晶的合成,也是医药和农药合成的原料。其中十二碳二元酸(DCA12)市场需求量较大,主要用于合成高级工程塑料尼龙1212、服装用尼龙热熔胶和高级涂料等,目前由化学法和发酵法生产。由于发酵法其原料来源容易、生产条件温和、产品纯度高等待点,深受重视。国内外对发酵法制取DCA12的研究较为深入^[1-6],1998年我国已实现了工业化生产^[7]。热带假丝酵母(Candida tropicalis)突变株SP—UV—56是一株高产十三碳二元酸(DCA13)生产菌^[8],已用于工业发酵生产DCA13。现报道该突变株在10L罐发酵生产DCA12的结果。  相似文献   

11.
Abstract Methanogenic enrichment cultures fermented the long-chain dicarboxylates adipate, pimelate, suberate, azelate, and sebacate (C6-C10) stoichiometrically to acetate and methane. After several transfers, the cultures contained cells of only a few morphologically distinguishable types. During anaerobic degradation of dicarboxylic acids with even-numbered carbon atoms, propionate accumulated intermediately, and butyrate was the intermediate product of degradation of those with an odd number of carbon atoms. Degradation of the long-chain dicarboxylates depended strictly on the presence of hydrogenotrophic methanogens. The primary attack in these processes was β-oxidation rather than decarboxylation. A general scheme of anaerobic degradation of long-chain dicarboxylic acids has been deduced from these results.  相似文献   

12.
Candida tropicalis can grow with alkanes or plant oils as the sole carbon source, and its industrial application thus has great potential. However, the choice of a suitable genetic operating system can effectively increase the speed of metabolic engineering. MazF functions as an mRNA interferase that preferentially cleaves single-stranded mRNAs at ACA sequences to inhibit protein synthesis, leading to cell growth arrest. Here, we constructed a suicide plasmid named pPICPJ-mazF that uses the mazF gene of Escherichia coli as a counterselectable marker for the markerless editing of C. tropicalis genes to increase the rate of conversion of oils into long-chain dicarboxylic acids. To reduce the β-oxidation of fatty acids, the carnitine acetyltransferase gene (CART) was deleted using the gene editing system, and the yield of long-chain acids from the strain was increased to 8.27 g/L. By two homologous single exchanges, the promoters of both the cytochrome P450 gene and the NADPH–cytochrome P450 reductase gene were subsequently replaced by the constitutively expressed promoter pGAP, and the production of long-chain dicarboxylic acids by the generated strain (C. tropicalis PJPP1702) reached 11.39 g/L. The results of fed-batch fermentation showed that the yield of long-chain acids from the strain was further increased to 32.84 g/L, which was 11.4 times higher than that from the original strain. The results also showed that the pPICPJ-mazF-based markerless editing system may be more suited for completing the genetic editing of C. tropicalis.  相似文献   

13.
Dicarboxylic acids are excreted in urine when fatty acid oxidation is increased (ketosis) or inhibited (defects in beta-oxidation) and in Reye's syndrome. omega-Hydroxylation and omega-oxidation of C6-C12 fatty acids were measured by mass spectrometry in rat liver microsomes and homogenates, and beta-oxidation of the dicarboxylic acids in liver homogenates and isolated mitochondria and peroxisomes. Medium-chain fatty acids formed large amounts of medium-chain dicarboxylic acids, which were easily beta-oxidized both in vitro and in vivo, in contrast to the long-chain C16-dicarboxylic acid, which was toxic to starved rats. Increment of fatty acid oxidation in rats by starvation or diabetes increased C6:C10 dicarboxylic acid ratio in rats fed medium-chain triacylglycerols, and increased short-chain dicarboxylic acid excretion in urine in rats fed medium-chain dicarboxylic acids. Valproate, which inhibits fatty acid oxidation and may induce Reye like syndromes, caused the pattern of C6-C10-dicarboxylic aciduria seen in beta-oxidation defects, but only in starved rats. It is suggested, that the origin of urinary short-chain dicarboxylic acids is omega-oxidized medium-chain fatty acids, which after peroxisomal beta-oxidation accumulate as C6-C8-dicarboxylic acids. C10-C12-dicarboxylic acids were also metabolized in the mitochondria, but did not accumulate as C6-C8-dicarboxylic acids, indicating that beta-oxidation was completed beyond the level of adipyl CoA.  相似文献   

14.
We examined the effect of dicarboxylic acids having 0 to 6 hydrocarbons and their corresponding monocarboxylic or tricarboxylic acids in changing the osmotic fragility (OF) in rat red blood cells (RBCs). Malonic, succinic, glutaric and adipic acids, which are dicarboxylic acids with 1, 2, 3 and 4 straight hydrocarbons located between two carboxylic groups, decreased the OF in a concentration-dependent manner. Other long-chain dicarboxylic acids did not change the OF in rat RBCs. The benzoic acid derivatives, isophthalic and terephthalic acids, but not phthalic acid, decreased the OF in a concentration-dependent manner. Benzene-1,2,3-tricarboxylic acid, but not benzene-1,3,5-tricarboxylic acid, also decreased the OF in rat RBCs. On the other hand, monocarboxylic acids possessing 2 to 7 straight hydrocarbons and benzoic acid increased the OF in rat RBCs. In short-chain dicarboxylic acids, a limited number of hydrocarbons between the two carboxylic groups are thought to form a V- or U-shaped structure and interact with phospholipids in the RBC membrane. In benzene dicarboxylic and tricarboxylic acids, a part of benzene nucleus between the two carboxylic groups is thought to enter the plasma membrane and act on acyl-chain in phospholipids in the RBC membrane. For dicarboxylic and tricarboxylic acids, limited numbers of hydrocarbons in molecules are speculated to enter the RBC membrane with the hydrophilic carboxylic groups remaining outside, stabilizing the structure of the cell membrane and resulting in an increase in osmotic resistance in rat RBCs.  相似文献   

15.
Long-chain α,ω-dicarboxylic acids (DCAs) are versatile chemical intermediates of industrial importance used as building blocks for the production of polymers, lubricants, or adhesives. The majority of industrial long-chain DCAs is produced from petro-chemical resources. An alternative is their biotechnological production from renewable materials like plant oil fatty acids by microbial fermentation using oleogenious yeasts. Oleogenious yeasts are natural long-chain DCA producers, which have to be genetically engineered for high-yield DCA production. Although, some commercialized fermentation processes using engineered yeasts are reported, bio-based long-chain DCAs are still far from being a mass product. Further progress in bioprocess engineering and rational strain design is necessary to advance their further commercialization. The present article reviews the basic strategies, as well as novel approaches in the strain design of oleogenious yeasts, such as the combination of traditional metabolic engineering with system biology strategies for high-yield long-chain DCA production. Therefore a detailed overview of the involved metabolic processes for the biochemical long-chain DCA synthesis is given.  相似文献   

16.
The composition of total fatty acid ethyl ester (FAEE) in yeast cells and the liquid phase separated from grape must during alcoholic fermentation at different temperatures was investigated by using the solid-phase extraction method. Thirteen FAEE from butyric to linolenic acids were detected during fermentation. Significant amounts of long-chain unsaturated FAEE, including linoleic and linolenic acids derived from grape material, had already accumulated in the yeast cells by day 3 during fermentation.  相似文献   

17.
Effects of iron compounds on methanogenic fermentation in water polluted with fatty acids were studied. A natural readily available source of iron applicable to biological treatment of liquid wastes was searched for. A positive effect of iron on the methanogenic fermentation of fats and their degradation products—long-chain fatty acids—in aqueous media was demonstrated. It is recommended to add iron-containing clay, as an inexpensive and easily available iron source, in amounts providing the binding of the long-chain fatty acids present in wastewaters.  相似文献   

18.
Utilisation of protein by human gut bacteria   总被引:4,自引:0,他引:4  
Abstract Mixed populations of human gut bacteria degraded cas casein by producing a variety of cell-bound and extracellular proteolytic enzymes. Casein was initially hydrolysed to TCA soluble peptides which were subsequently broken down to volatile fatty acids, ammonia, dicarboxylic acids and a range of phenolic compounds. Amino acids did not accumulate to any extent during casein breakdown, suggesting that the rate of peptide hydrolysis was the limiting step in protein utilisation by these bacteria. Similar fermentation products were produced from bovine serum albumin, however, the insoluble protein collagen was considerably more resistant to degradation by the colonic microflora, as evidenced by the reduced quantities of fermentation end-products formed.  相似文献   

19.
Pumpkin ( Cucurbita sp.) long-chain acyl-CoA oxidase (ACOX) (EC 1.3.3.6) was purified to homogeneity by hydrophobic interaction, hydroxyapatite, affinity, and anion exchange chromatographies. The purified isoenzyme is a dimeric protein, consisting of two apparently identical 72-kDa subunits. The protein is exclusively localized in glyoxysomes. The enzyme catalyzes selectively the oxidation of CoA esters of fatty acids with 12–18 C atoms and exhibits highest activity with C-14 fatty acids, but no activity with isobutyryl-CoA and isovaleryl-CoA (branched chain) or glutaryl-CoA (dicarboxylic). The enzyme is strongly inhibited by high concentrations of palmitoyl-CoA and weakly inhibited by high concentration of myristoyl-CoA. It is also inhibited by Triton X-100 at concentrations above 0.018% (w/v) the critical micellar concentration. The consequences of the substrate inhibition for the evaluation of long-chain ACOX activity in plant tissues are discussed.  相似文献   

20.
The fermentation of fumarate and L-malate by Clostridium formicoaceticum was investigated. Growing and nongrowing cells degraded fumarate by dismutation to succinate, acetate, and CO2; on the other hand, only small amounts of succinate were detected when the organism was grown on L-malate. This dicarboxylic acid was mainly converted to acetate and CO2. The fermentation balances were modified if bicarbonate or formate were present in the medium. When C. formicoaceticum was grown in the presence of both dicarboxylic acids, fumarate was consumed before L-malate. The latter was mainly converted to acetate, whereas fumarate was fermented to acetate and succinate. Molar growth yields were determined to be 6 g of dry weight per mol of fumarate and 8 g of dry weight per mol of L-malate fermented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号