首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Summary The complete nucleotide sequence of the genes encoding the Rieske FeS, the cytochrome b and the cytochrome c 1 subunits of the ubiquinol-cytochrome c 2 oxidoreductase from the photosynthetic purple bacterium Rhodopseudomonas viridis, and the derived amino acid sequences are presented. These three genes, fbcF, fbcB and fbcC, are located at contiguous sites of the genome. The DNA-deduced amino acid sequences are compared with known primary structures of corresponding proteins from other purple photosynthetic bacteria, as well as mitochondria, cyanobacteria and chloroplasts.Abbreviations BSA bovine serum albumin - Rb Rhodobacter - Rps Rhodopseudomonas  相似文献   

3.
The structural genes for the Rieske Fe-S protein (petA), cytochrome b (petB) and cytochrome c1 (petC) subunits of the ubiquinol:cytochrome c2 oxidoreductase (bc1 complex) of Rhodopseudomonas capsulata have been cloned by complementation, using a mutant defective in this complex. The location of these genes on the obtained plasmid, pR14A, was determined using synthetic mixed oligonucleotide probes corresponding to highly conserved amino acid sequences of these proteins from various organisms. Their correct identity was established by partial sequencing. The petA, petB and petC genes were found to lie close to each other in this order, spanning two adjacent EcoRI fragments of 2.7 X 10(3) and 1.3 X 10(3) base-pairs, respectively. An insertion-deletion mutation, covering most of petB and all of petC and an insertion mutation, located in petB were constructed in vitro and were introduced into the chromosome of an otherwise wild-type strain by gene transfer agent-mediated genetic crosses. The bc-1 mutants obtained were defective in photosynthesis but, as expected, they could grow by respiration because of a branched respiratory pathway. Therefore, in R. capsulata a functional bc1 complex is essential in vivo for photosynthesis but not for respiration. Further, in the respiratory pathway the branch point must be before the bc1 complex, most likely at the quinone pool. These mutants were also proficient in anaerobic growth in the presence of dimethylsulfoxide, indicating that a functional bc1 complex is not required for this pathway. Several other insertions and deletions, located outside of the pet gene cluster, were also constructed. The ability of these latter mutants to grow photosynthetically suggested that no other gene essential for photosynthesis is located in the proximity of the pet cluster. The plasmid pR14A was shown to complement in trans the bc-1 insertion or insertion-deletion mutants, indicating that the pet genes were expressed in R. capsulata. Cross-hybridization experiments showed that the pet cluster was quite distinct from other known genes involved in photosynthesis.  相似文献   

4.
Detailed comparison of the 'Rhodopseudomonas sphaeroides GA' strain used by Gabellini et al. (1985) with genuine R. sphaeroides and R. capsulata strains indicated that the previously reported fbc operon of R. sphaeroides (Gabellini and Sebald, 1986) encoding the structural genes for the Rieske Fe-S protein, cytochrome b and cytochrome c1 subunits of the ubiquinol:cytochrome c2 oxidoreductase, is not from R. sphaeroides, but is rather from a strain of R. capsulata. Consequently, the genuine bc1 genes from R. sphaeroides were cloned using corresponding R. capsulata genes as probes, and a partial nucleotide sequence for the Rieske Fe-S protein of R. sphaeroides was determined and compared with that of R. capsulata.  相似文献   

5.
The complete nucleotide sequence of the gene encoding the cytochrome subunit of the photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis, and the derived amino acid sequence are presented. The nucleotide sequence of the gene reveals the existence of a typical bacterial signal peptide of 20 amino acid residues which is not found in the mature cytochrome subunit. The gene encoding the cytochrome subunit is preceded by the gene encoding the M subunit. Both genes overlap by 1 bp. The mature cytochrome subunit consists of 336 amino acid residues; 73% of its amino acid sequence was confirmed by protein sequencing work. The mol. wt of the cytochrome subunit including the covalently bound fatty acids and the bound heme groups is 40 500. The internal sequence homology is low, despite the symmetric structure of the cytochrome subunit previously shown by X-ray crystallographic analysis of the intact photosynthetic reaction centre. Sequence homologies to other cytochromes were not found.  相似文献   

6.
Interposon mutagenesis of a region upstream of the petABC(fbcFBC) operon, encoding the ubiquinol: cytochrome c2 oxidoreductase (bc1 complex) of the photosynthetic bacterium Rhodobacter capsulatus revealed the presence of two genes, petP and petR. DNA nucleotide sequence determination of this region indicated that petP and petR are transcribed in the same direction as the petABC(fbcFBC) operon, and are translationally coupled. A silent insertion located in the interoperonal region separating petPR and the petABC(fbcFBC) genes indicated that these clusters have separate promoters. The deduced amino acid sequence of the putative petR gene product is homologous to various bacterial response regulators, especially to those of the OmpR subgroup. Moreover, it was found that PetR mutants are unable to grow on rich or minimal media by either photosynthesis or respiration, demonstrating that these gene products are essential for growth of R. capsulatus.  相似文献   

7.
By using synthetic oligonucleotides, the gene encoding soluble cytochrome c550 was isolated from a genomic bank of Paracoccus denitrificans. The nucleotide sequence of the gene was determined, and the deduced amino acid sequence of the mature protein was found to be similar to the primary structure of purified cytochrome c550 except for the presence of seven additional amino acid residues at the C terminus. At the N terminus of the primary structure was found an additional stretch of 19 amino acid residues that had the typical features of the signal sequence of the cytochrome. Comparison of the nucleotide sequences of the upstream regions of the P. denitrificans cytochrome c550 gene and bc1 operon revealed three regions with a distinct organization that showed strong similarity. Downstream of the c550 gene was found part of another gene, the deduced amino acid sequence of which showed strong homology with subunit 1 of the cytochrome aa3 oxidase. For gene replacement experiments, the suicide vector pGRPd1 was constructed. The cytochrome c550 gene was inactivated by insertion of a kanamycin resistance gene, and the mutated gene was cloned into this vector. Recombination with the wild-type gene resulted in a mutant strain with an inactivated cytochrome gene. Isolated mutant strains were unable to synthesize the soluble cytochrome, as judged by spectrum analysis and analysis of periplasmic proteins by gel electrophoresis and heme staining. The mutation resulted in a 14% decrease in the growth yield during aerobic heterotrophic growth and in a 40% decrease in the maximum specific growth rate during growth on methylamine. Furthermore, a longer lag phase was observed under both growth conditions. The mutation had no effect on growth yield, maximum specific growth rate, and duration of the lag phase during anaerobic growth in the presence of nitrate. In addition, there was no accumulation of nitrite and nitrous oxide.  相似文献   

8.
The structural gene coding for cytochrome b-562 isolated from the cytochrome b-c1 complex of Rhodobacter (Rhodopseudomonas) sphaeroides has been cloned. Its nucleotide sequence has been determined and the amino acid sequence was deduced therefrom. It consists of 157 amino acids (Mr 17,237) and contains four hydrophobic segments. The first 30 residues in the predicted amino acid sequence are the same as those determined for the NH2-terminal portion of purified cytochrome b-562. The amino acid composition is in accord with that determined for the pure protein. From the hydropathy profile and molar ratio of protoheme to cytochrome b-562, it is suggested that the structural and functional unit of the cytochrome is a two-heme cross-linked homodimer.  相似文献   

9.
Isolation and structure of a rat cytochrome c gene   总被引:18,自引:0,他引:18  
We screened a Charon 4A-rat genomic library using the cloned iso-1 cytochrome c gene from Saccharomyces cerevisiae as a specific hybridization probe. Eight different recombinant phages homologous to a coding region subfragment of the yeast gene were isolated. Nucleotide sequence analysis of a 0.96-kilobase portion of one of these established the existence of a gene coding for a cytochrome c identical in amino acid sequence with that of mouse. The rat polypeptide chain sequence had not previously been determined. In contrast to the yeast iso-1 and iso-2 cytochrome c genes, neither of which have introns, the rat gene contains a single 105-base pair intervening sequence interrupting glycine codon 56. The overall nucleotide sequence homology between cytochrome c genes of yeast and rat is about 62%, with areas of greater homology coinciding with four regions of functionally constrained amino acid sequences. Two of these regions displayed 85-90% DNA sequence homology, including the longest consecutive homologous stretch of 14 nucleotides, corresponding to amino acids 47-52 of the rat protein. Somewhat less homology was observed in the DNA-specifying amino acids 70-80, which are invariant residues in most known cytochrome c molecules. Thermal dissociation of the yeast probe from the homologous rat DNA was at about 58 degrees C in 0.39 M Na+. These results establish that cytochrome c genes may be isolated by interspecies hybridization between widely divergent organisms.  相似文献   

10.
The nucleotide sequence of the downstream region of the bph operon from Pseudomonas sp. strain KKS102 was determined. Two open reading frames (ORF1 and ORF2) were found in this region, and the deduced amino acid sequence of ORF2 showed homology with the sequences of four ferredoxin reductases of dioxygenase systems. When this region was inserted just upstream of the bph operon, which does not contain a gene encoding ferredoxin reductase, biphenyl dioxygenase activity was detected. The 24- and 44-kDa polypeptides predicted from the two open reading frames were identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Crude extract which contained the products of ORF2 and bphA1A2A3 showed cytochrome c reduction activity. These data clearly suggest that ORF2 encodes ferredoxin reductase. The deduced amino acid sequence of ORF1 does not show significant homology with the sequences of any other proteins in the SWISS-PROT data bank, and the function of ORF1 is unknown.  相似文献   

11.
A detailed study of the soluble cytochrome composition of Rhodopseudomonas sphaeroides (ATCC 17023) indicates that there are five c-type cytochromes and one b-type cytochrome present. The molecular weights, heme contents, amino acid compositions, isoelectric points, and oxidation-reduction potentials were determined and the proteins were compared with those from other bacterial sources. Cytochromes c2 and c' have previously been well characterized. Cytochrome c-551.5 is a diheme protein which has a very low redox potential, similar to certain purple bacterial and algal cytochromes. Cytochrome c-554 is an oligomer, which is spectrally similar to the low-spin isozyme of cytochrome c' found in other purple bacteria (e.g., Rhodopseudomonas palustris cytochrome c-556). An unusual high-spin c-type heme protein has also been isolated. It is spectrally distinguishable from cytochrome c' and binds a variety of heme ligands including oxygen. A large molecular-weight cytochrome b-558 is also present which appears related to a similar protein from Rhodospirillum rubrum, and the bacterioferritin from Escherichia coli. None of the soluble proteins appear to be related to the abundant membrane-bound c-type cytochrome in Rps. sphaeroides which has a larger subunit molecular weight similar to mitochondrial cytochrome c1 and chloroplast cytochrome f.  相似文献   

12.
13.
Cytochrome b-561 of the ubiquinol-cytochrome c2 oxidoreductase complex of Rhodopseudomonas sphaeroides is reduced after flash illumination in the presence of myxothiazol in an antimycin-sensitive reaction. Flash-induced reduction was observed over the redox range in which cytochrome b-561 and the Q-pool are both oxidized before the flash. The extent of reduction increased with increasing pH, and was maximal at pH greater than 10.0 where the extent approached that observed in the presence of antimycin following a group of flashes. Reduction of cytochrome b-561 in the presence of myxothiazol showed a lag of approximately 1 ms after the flash, followed by reduction with t 1/2 approximately 6 ms; by analogy with the similar kinetics of the quinol oxidase site, we suggest that the rate is determined by collision with the QH2 produced in the pool on flash excitation.  相似文献   

14.
Resolution and reconstitution has been used to examine the involvement of the iron-sulfur protein of the cytochrome b-c1 segment in electron transfer reactions in this region of the mitochondrial respiratory chain. The iron-sulfur protein is required for electron transfer from succinate and from ubiquinol to cytochrome c1. It is not required for reduction of cytochrome b under these conditions, but it is required for oxidation of cytochrome b by cytochrome c plus cytochrome c oxidase. Removal of the iron-sulfur protein from the b-c1 complex prevents reduction of both cytochromes b and c1 by succinate or ubiquinol if antimycin is added to the depleted complex. As increasing amounts of iron-sulfur protein are reconstituted to the depleted complex, the amounts of cytochromes b and c1 reduced by succinate in the presence of antimycin increase and closely parallel the amounts of ubiquinol-cytochrome c reductase activity restored to the reconstituted complex, measured before addition of antimycin. The function of the iron-sulfur protein in these oxidation-reduction reactions is consistent with a cyclic pathway of electron transfer through the cytochrome b-c1 complex, in which the iron-sulfur protein functions as a ubiquinol-cytochrome c1/ubisemiquinone-cytochrome b oxidoreductase.  相似文献   

15.
16.
The gene coding for Pseudomonas aeruginosa cytochrome c551 has been cloned and its nucleotide sequence determined. Cytochrome c551 is expressed as a 104 amino acid pre-protein from which a signal peptide of 22 amino acids is cleaved off during the translocation across the cytoplasmic membrane. The gene is located just downstream of the gene coding for nitrite reductase on the Pseudomonas aeruginosa chromosome, suggesting that these genes form an operon.  相似文献   

17.
18.
An enzyme complex with ubiquinol-cytochrome c oxidoreductase, cytochrome c oxidase, and ubiquinol oxidase activities was purified from a detergent extract of the plasma membrane of aerobically grown Paracoccus denitrificans. This ubiquinol oxidase consists of seven polypeptides and contains two b cytochromes, cytochrome c1, cytochrome aa3, and a previously unreported c-type cytochrome. This c-type cytochrome has an apparent Mr of 22,000 and an alpha absorption maximum at 552 nm. Retention of this c cytochrome through purification presumably accounts for the independence of ubiquinol oxidase activity on added cytochrome c. Ubiquinol oxidase can be separated into a 3-subunit bc1 complex, a 3-subunit c-aa3 complex, and a 57-kDa polypeptide. This, together with detection of covalently bound heme and published molecular weights of cytochrome c1 and the subunits of cytochrome c oxidase, allows tentative identification of most of the subunits of ubiquinol oxidase with the prosthetic groups present. Ubiquinol oxidase contains cytochromes corresponding to those of the mitochondrial bc1 complex, cytochrome c oxidase complex, and a bound cytochrome c. Ubiquinol-cytochrome c oxidoreductase activity of the complex is inhibited by inhibitors of the mitochondrial bc1 complex. Thus it seems likely that the pathway of electron transfer through the bc1 complex of ubiquinol oxidase is similar to that through the mitochondrial bc1 complex. The number of polypeptides present is less than half the number in the corresponding mitochondrial complexes. This structural simplicity may make ubiquinol oxidase from P. denitrificans a useful system with which to study the mechanisms of electron transfer and energy transduction in the bc1 and cytochrome c oxidase sections of the respiratory chain.  相似文献   

19.
20.
A highly active, large-scale preparation of ubiquinol:cytochrome c2 oxidoreductase (EC 1.10.2.2; cytochrome bc1 complex) has been obtained from Rhodobacter sphaeroides. The enzyme was solubilized from chromatophores by using dodecyl maltoside in the presence of glycerol and was purified by anion-exchange and gel filtration chromatography. The procedure yields 35 mg of pure bc1 complex from 4.5 g of membrane protein, and its consistently results in an enzyme preparation that catalyzes the reduction of horse heart cytochrome c with a turnover of 250-350 (mumol of cyt c reduced).(mumol of cyt c1)-1.s-1. The turnover number is at least double that of the best preparation reported in the literature [Ljungdahl, P. O., Pennoyer, J. D., Robertson, D. C., & Trumpower, B. L. (1987) Biochim. Biophys. Acta 891, 227-241]. The scale is increased 25-fold, and the yield is markedly improved by using this protocol. Four polypeptide subunits were observed by SDS-PAGE, with Mr values of 40K, 34K, 24K, and 14K. N-Terminal amino acid sequences were obtained for cytochrome c1, the iron-sulfur protein subunit, and for cytochrome b and were identical with the expected protein sequences deduced from the DNA sequence of the fbc operon, with the exceptions that a 22-residue fragment is processed off of the N-terminus of cytochrome c1 and the N-terminal methionine residue is cleaved off both the b cytochrome and iron-sulfur protein subunits. Western blotting experiments indicate that subunit IV is not a contaminating light-harvesting complex polypeptide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号