首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gene encoding 18S small subunit ribosomal RNA (ssu rRNA) was sequenced in the sessiline peritrichs Opisthonecta minima and Opisthonecta matiensis, whose free-swimming, paedomorphic trophonts resemble telotrochs. Using these new sequences, phylogenetic trees were constructed with four different methods to test a previously published association between Opisthonecta henneguyi and members of the families Vorticellidae and Astylozoidae. All trees had similar topologies, with O. minima, O. henneguyi, Vorticella microstoma, and Astylozoon enriquesi forming a well-supported, certainly monophyletic clade. On the basis of genetic evidence, genera of the families Opisthonectidae and Astylozoidae are assigned to the family Vorticellidae, which already includes some species with free-swimming morphotypes. The ssu rRNA sequence of O. matiensis places it in the family Epistylididae; its taxonomic revision will be left to another group of authors. A close association of Ophrydium versatile with members of the family Vorticellidae was confirmed, casting doubt on the validity of the family Ophrydiidae. Epistylis galea, Campanella umbellaria, and Opercularia microdiscum are confirmed as comprising an extremely distinct, monophyletic, but morphologically heterogeneous clade that is basal to other clades of sessiline peritrichs.  相似文献   

2.
The peritrichs have been recognized as a higher taxon of ciliates since 1968. However, the phylogenetic relationships among them are still unsettled, and their placement within the class Oligohymenophorea has only been supported by the analysis of the small subunit rRNA gene sequence of Opisthonecta henneguyi. DNA was isolated directly from field-sampled species for PCR, and was used to resolve relationships within the genus Epistylis and to confirm the stability of the placement of peritrichs. Small subunit rRNA gene sequences of Epistylis plicatilis, Epistylis urceolata, Epistylis chrysemydis, Epistylis hentscheli, Epistylis wenrichi, and Vorticella campanula were sequenced and analyzed using both distance-matrix and maximum-parsimony methods. In phylogenetic trees, the monophyly of both the genus Episrylis and the subclass Peritrichia was strongly supported, while V. campanula clustered with Vorticella microstoma. The topology in which E. plicatilis and E. hentscheli formed a strongly supported sister clade to E. urceolata, E. chrysemydis, and E. wenrichi was consistent with variations in the thickness of the peristomial lip. We concluded that the peristomial area, especially the peristomial lip, might be the important phylogenetic character within the genus Epistylis.  相似文献   

3.
4.
应用ISSR分子标记揭示了5种缘毛类纤毛虫(Carchesium polypinum,Epistylis chrysemydis,E.plicatilis,E.urceolata和Vorticella campanula)的遗传关系.从34个引物中筛选到13个多态性高的引物进行研究.得到的遗传距离(0.666 7~1.000 0)显示ISSR技术具有较高的分辨率.依据构建的UPGMA聚类树,V.campanula首先和其他种类分开;C.polypinum和E.chrysemydis聚在了一起;在3种Epistylis纤毛虫中,E.plicatilis和E.urceolata聚在了一起.对比由核糖体小亚基RNA基因序列构建的系统发育树,发现:1)ISSR引物在缘毛类纤毛虫基因组中可以得到多态扩增;2)C.polypinum与Epistylis的关系近于V.campanula,在缘毛类纤毛虫分类中,单生或群居是重要的系统发育特征;3)E.plicatilis和E.urceolata的关系近于E.chrysemydis.在Epistylis属纤毛虫中,柄的中空与否是一个有用的系统发育和分类特征.本研究表明ISSR方法在纤毛虫相近和相似种遗传关系研究中是一种新的有用方法.  相似文献   

5.
Sun P  Clamp J  Xu D  Kusuoka Y  Miao W 《Protist》2012,163(1):129-142
Recent phylogenetic analyses of the peritrich genus Vorticella have suggested that it might be paraphyletic, with one Vorticella species - Vorticella microstoma grouping with the swimming peritrichs Astylozoon and Opisthonecta in a distant clade. These results were based on very limited taxon sampling and thus could not be accepted as conclusive evidence for revising the generic classification. We tested paraphyly of the genus Vorticella by making a new analysis with a broad range of samples from three continents that yielded 52 new sequences of the gene coding for small subunit rRNA. Our results, together with the available sequences in Genbank, form a comprehensive set of data for the genus Vorticella. Analyses of these data showed that Vorticella microstoma morphotypes, Astylozoon, and Opisthonecta form a well-supported, monophyletic clade, that is distinct from and basal to the family Vorticellidae containing other species of Vorticella. Paraphyly of the genus Vorticella and family Vorticellidae was strongly confirmed by these results. Furthermore, the two clades of Vorticella identified by the SSU rRNA gene are so genetically diverse whereas the genetic distances within the one containing Vorticella microstoma morphotypes, Astylozoon, and Opisthonecta were so slight, which marked it as a separate family that must be defined by molecular characters in the absence of unifying morphological and morphogenetic characters. An emended characterization and status of the genus Vorticella, the families Vorticellidae and Astylozoidae are presented and discussed.  相似文献   

6.
Artificial substrates, consisting of strips of nylon cloth, were used to sample sessile, filter-feeding ciliates at eleven stream sites. These ciliates were common (61 % of samples) and frequently abundant (mean = 95 cm?2). Populations varied widely, even within stream sites, and mean abundance was not related to subjective assessments of the sites. Permanent rural streams and streams below reservoirs, which have relatively stable flow regimes, had a peritrich fauna dominated byVorticella campanula along withCarchesium polypinum andV. striata. Urban and intermittent streams, with less stable flow regimes, showed an increasing number of peritrichs with non-contractile stalks, particularlyEpistylis plicatilis. The commonness and diversity of peritrichs was positively related to aufwuchs stability.  相似文献   

7.
Phylogenetic relationships among six species of Epistylis (i. e. E. plicatilis, E. urceolata, E. chrysemydis, E. hentscheli, E. wenrichi, and E. galea) were investigated using sequences of the first internal transcribed spacer region (ITS-1) of ribosomal DNA (rDNA). Amplified rDNA fragment sequences consisted of 215 or 217 bases of the flanking 18S and 5.8S regions, and the entire ITS-1 region (from 145 to 155 bases). There were more than 33 variable bases between E. galea and the other five species in both the 18S region and the ITS-1 region. The affiliation of them was assessed using Neighbor-joining (NJ), maximum parsimony (MP) and maximum likelihood (ML) analyses. In all the NJ, MP and ML analyses E. galea, whose macronucleic position and shape are distinctly different from those of the other five species, was probably diverged from the ancestor of Epistylis earlier than the other five species. The topology in which E. plicatilis and E. hentscheli formed a strongly supported sister clade to E. urceol  相似文献   

8.
ABSTRACT. We have generated 18S rRNA sequences for peritrichs collected in Brazil, including four Opercularia species, two different populations of Epistylis plicatilis (one epibiont and another free‐living), and one additional Epistylis species. Our Opercularia species clustered with the previously available Opercularia microdiscum, corroborating the monophyly of this genus. The Epistylis sampled here clustered with previously sequenced species of this genus. The two populations of E. plicatilis collected in Brazil clustered closely together despite their different ecological contexts, whereas both were very divergent from the sample assigned to the same species previously sampled in China. If affirmed by additional morphological corroboration of species assignment, this observation would indicate that samples from different continents morphologically allocated in the same species may in fact belong to distant evolutionary lineages. More broadly, our results support the recognition of two major clades within Peritrichia. Given the robustness of their support, we suggest that these two clades should be formally recognized as orders, and propose the names Vorticellida and Operculariida to designate them. Furthermore, Epistylis species occurred in both orders, tending to occupy basal positions. This suggests that characters used to define this genus may be plesiomorphic for Peritrichia, so that Epistylis may in fact represent an assemblage of basal species retaining ancestral features.  相似文献   

9.
克隆得到2种缘毛类纤毛虫——钟形钟虫(Vorticella campanula)和螅状独缩虫(Carchesium polypinum)的胞质Hsp70基因部分序列,长度均为438bp,编码146个氨基酸。以细菌为外类群,利用最大似然法和邻接法构建包括其他5种纤毛虫在内的共26个物种的Hsp70基因氨基酸序列系统发育树,其拓扑结构显示:V.campanula和C.polypinum聚在一起,并与另2种寡膜纲的嗜热四膜虫(Tetrahymena thermophila)及草履虫(Paramecium tetraurelia)聚为姊妹枝,提示了缘毛类纤毛虫为单系,且隶属于寡膜纲的系统发育地位。  相似文献   

10.
利用三种分子标记研究缘毛类纤毛虫的系统发育地位   总被引:4,自引:1,他引:3  
为了探讨缘毛类纤毛虫的系统发育地位 ,利用RAPD方法得到了 9种缘毛类纤毛虫、 1种四膜虫和1种喇叭虫的 3个随机引物的电泳带谱 ;测定了 7种缘毛类纤毛虫rRNA基因中的间隔区 1(ITS1)和小亚基核糖体核糖核酸 (SSrRNA)基因序列 ,并构建了相应的系统树。在比较和分析RAPD、ITS1和SSrRNA基因序列在缘毛类纤毛虫系统发育研究中的适用范围的基础上 ,以SSrRNA基因序列为分子标记研究了缘毛类纤毛虫系统发育地位 ,结果表明 :①缘毛亚纲是单系的 ,作为寡膜纲中一个亚纲的分类地位是合理的 ;②缘毛类纤毛虫可能是寡膜纲中较高等的一个类群。  相似文献   

11.
The infraciliature and myoneme system of Campanella umbellaria were revealed using the protargol impregnation technique. The main characteristics of the infraciliature are the peristomial ciliary rows (haplokinety and polykineties), which make four and a half turns around the peristomial disc before plunging into the infundibulum, and the aboral infraciliature, which is made up of the aboral ciliary wreath (trochal band) and the scopula. The myoneme system is composed of: 1) longitudinal fibers, which include 60-84 (mean 72.3) short longitudinal fibers, 40-56 (mean 45.8) medium-length longitudinal fibers, and numerous long longitudinal fibers; and 2) circular fibers, which include 8-12 (mean 9.3) peristomial ring fibers, linking fibers, support fibers, and peristomial disc fibers. The various fibers in C. umbellaria are interconnected to form a single myoneme system that may act as a cell skeleton as well as providing the mechanism by which the zooid contracts and relaxes.  相似文献   

12.
The gene coding for 18S small subunit ribosomal RNA (ssu rRNA) was sequenced in seven free-living, marine species of the sessiline peritrich genus Zoothamnium. These were Zoothamnium niveum, Zoothamnium alternans, Zoothamnium pelagicum, and four unidentified species. The ssu rRNA gene also was sequenced in Vorticella convallaria, Vorticella microstoma, and in an unidentified, freshwater species of Vorticella. Phylogenetic trees were constructed using these new sequences to test a previously published phylogenetic association between Zoothamnium arbuscula, currently in the family Zoothamniidae, and peritrichs in the family Vorticellidae. Trees constructed by means of neighbor-joining, maximum parsimony, maximum likelihood, and Bayesian inference methods all had similar topologies. The seven new sequences of Zoothamnium species grouped into three well-supported clades, each of which contained a diversity of morphological types. The three clades formed a poorly supported, larger clade that was deeply divergent from Z. arbuscula, which remained more closely associated with vorticellid peritrichs. It is apparent that Zoothamnium is a richly diverse genus and that a much more intensive investigation, involving both morphological and molecular data and a wider selection of species, will be necessary to resolve its phylogeny. A greater amount of molecular diversity than is predicted by morphological data exists within all major clades of sessiline peritrichs that have been included in molecular phylogenies, indicating that characteristics of stalk and peristomial structure traditionally used to differentiate taxa at the generic level and above may not be uniformly reliable.  相似文献   

13.
Deviant genetic codes reported in ciliates share the same feature: one (UGA) or two (UAR) of the three canonical stop codons are translated into one particular amino acid. In many genera, such as Oxytricha, Paramecium, and Tetrahymena, UAR codons are translated into glutamine. UGA is translated into cysteine in Euplotes or into tryptophan in Colpoda inflata and Blepharisma americanum. Here, we show that three peritrich species (Vorticella microstoma, Opisthonecta henneguyi, and Opisthonecta matiensis) translate UAA into glutamate and that at least UAA in O. matiensis is decoded through a mutant suppressor-like tRNA. This kind of genetic code has never been reported for any living organism. Phylogenetic analysis with alpha-tubulin sequences corroborates that peritrichs, peniculines (Paramecium), and hymenostomates (Tetrahymena) form a monophyletic group (class Oligohymenophorea). The differential translation (glu/gln) of UAR codons, the monophyly of the Oligohymenophorea, and the common evolutionary origin of glutamate and glutamine suggest that deviant genetic codes of present-day oligohymenophoreans could have the same origin.  相似文献   

14.
Summary Phylogenetic relationships within the class Oligohymenophorea, phylum Ciliophora, were investigated by determining the complete small subunit rRNA (SSrRNA) gene sequences for the hymenostomesColpidium campylum, Glaucoma chattoni, and the peritrichOpisthonecta henneguyi. The affiliations of the oligohymenophoreans were assessed using both distance matrix (DM) and maximum parsimony (MP) analyses. Variations do exist in the phylogenies created by the two methods. However, the basic tree topologies are consistent. In both the DM and MP analyses the hymenostomes (C. campylum, G. chattoni, and the tetrahymenas) all form a very tight group associated with the peritrichO. henneguyi. TheTetrahymena lineage was monophyletic whereasColpidium andGlaucoma were more closely related to each other than either was to the tetrahymenas. The monophyly of the genusTetrahymena in the present analysis supports the phylogenies determined from morphological data and molecular sequence data from the histone H3II/H4II region of the genome. The perplexing and controversial phylogenetic position of the peritrichs is once again depicted in the present analysis. The distinctiveness of the peritrichOpisthonecta from both hymenostome and nassophorean ciliates based on evolutionary distances suggests that the elevation of the peritrichs to a higher taxonomic rank should be reconsidered.  相似文献   

15.
16.
SYNOPSIS. The peritrich Pyxidiella curvicaula (Penard) was observed in the activated sludge of an English sewage works and was successfully cultured in the laboratory.
A number of observations were made upon clonal cultures of P. curvicaula which indicated that this species is colonial at one stage in the asexual life cycle. The branching of the colonial adult is more complex than originally described, and a maximum of 17 individuals has been observed upon one stalk.
Since P. curvicaula is in reality a colonial peritrich, it should therefore be transferred to the genus Opercularia Stein, with the name of the species changed to Opercularia curvicaula.  相似文献   

17.
Peritrich ciliates are commonly found colonizing living substrates. Although this a well known phenomenon, biological aspects of this relationship need to be studied in more detail. Assessment of growth rates in peritrichs has been the subject of very few studies. Only species in the genera Carchesium Ehrenberg, 1830 and Vorticella Linnaeus, 1767 had their growth rates evaluated in the field and in the laboratory. In the present study, growth, colonization (colonies/host), and proliferation (zooids/colony) rates of the peritrich epibiont Zoothamnium intermedium Precht, 1935 attached to the calanoid copepod Acartia tonsa Dana 1848 were evaluated in the laboratory in two food regimes: bacteria only, and algal based diet. Results showed that growth, colonization, and proliferation rates were similar for both diets. Maximum growth rates obtained for Z. intermedium was 0.85 and 0.83 per day, for bacteria and algae respectively. Maximum colonization rates were 0.5 per day for both diets, and the maximum proliferation rates were 0.44 and 0.42 per day for bacteria and algae respectively. These results demonstrate that Z. intermedium is able to grow at the same rate of other peritrichs on bacterial and algal based diets.  相似文献   

18.
Two epibiotic peritrichs infested the blue crab, Callinectes sapidus, from the Gulf of Mexico, Mississippi, USA. Epistylis callinectes n. sp. was isolated from the epipods of maxillipeds, bases of gill-cleaning setae, and gills, and Epistylis clampi n. sp. was isolated from the exterior surfaces of the exoskeleton. Epistylis callinectes has short, symmetrically and dichotomously branched stalks; its zooid is elongate ovoid and conspicuously longer than the individual stalk branches, measuring 40-57 (49) x 18-33 (26) microm in vivo and containing a thick, undivided peristomial lip (PL). It has a single contractile vacuole and a transverse horseshoe-shaped macronucleus. Its haplokinety (H) and polykinety (Po) complete one and one-half circuits on the peristome before entering the infundibulum. There is a distal kinetal fragment present at the distal end of both the H and Po. Epistylis callinectes has 48-70 transverse silverlines from the oral area to the trochal band (TB) and 19-26 from the TB to the scopula. Epistylis clampi has long, asymmetrically, and dichotomously branched stalks. Its zooid is elongate vase-shaped, measuring 35-64 (48) x 21-30 (27) microm in vivo and with a thick, transversely folded PL. The stalks supporting zooids are unequal in length. Its zooid has a single contractile vacuole and a transverse horseshoe-shaped macronucleus occurs in the upper half of the body. Its H and Po complete approximately one circuit around the peristome before entering the infundibulum. There is a distal kinetal fragment present at the distal end of both the H and Po. This species has 71-112 transverse silverlines from the peristome to the scopula.  相似文献   

19.
Based on morphological characters, peritrich ciliates (Class Olygohymenophorea, Subclass Peritrichia) have been subdivided into the Orders Sessilida and Mobilida. Molecular phylogenetic studies on peritrichs have been restricted to members of the Order Sessilida. In order to shed more light into the evolutionary relationships within peritrichs, the complete small subunit rRNA (SSU rRNA) sequences of four mobilid species, Trichodina nobilis, Trichodina heterodentata, Trichodina reticulata, and Trichodinella myakkae were used to construct phylogenetic trees using maximum parsimony, neighbor joining, and Bayesian analyses. Whatever phylogenetic method used, the peritrichs did not constitute a monophyletic group: mobilid and sessilid species did not cluster together. Similarity in morphology but difference in molecular data led us to suggest that the oral structures of peritrichs are the result of evolutionary convergence. In addition, Trichodina reticulata, a Trichodina species with granules in the center of the adhesive disc, branched separately from its congeners, Trichodina nobilis and Trichodina heterodentata, trichodinids without such granules. This indicates that granules in the adhesive disc might be a phylogenetic character of high importance within the Family Trichodinidae.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号