首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ca2+-calmodulin-dependent polymerization of actin by myelin basic protein   总被引:1,自引:0,他引:1  
The interaction between myelin basic protein (MBP) and G-actin was studied under nonpolymerizing conditions, i.e.,2mM HEPES, pH 7.5, 0.1 mM CaCl2 and 0.2 mM ATP. Fluorescence studies using pyrenyl-actin and the measurements of ATP hydrolysis rate show that MBP induces changes in the structure of the actin monomer similar to those occurring during polymerization by salt. Electron microscope observations of the MBP-G-actin complex reveal the presence of filamentous structures which appear as separate filaments or as bundles of filaments in lateral association. These filaments are polar as visualized by attachment of heavy meromyosin. The biochemical data together with electron microscope observations suggest that the binding of MBP to G-actin under non-polymerizing conditions induces an interaction between actin monomers leading to the formation of filamentous structures which may be similar to F-actin filaments. The effects of MBP on G-actin can be reversed by calmodulin in the presence of Ca2+.  相似文献   

2.
IQGAP1 colocalizes with actin filaments in the cell cortex and binds in vitro to F-actin and several signaling proteins, including calmodulin, Cdc42, Rac1, and beta-catenin. It is thought that the F-actin binding activity of IQGAP1 is regulated by its reversible association with these signaling molecules, but the mechanisms have remained obscure. Here we describe the regulatory mechanism for calmodulin. Purified adrenal IQGAP1 was found to consist of two distinct protein pools, one of which bound F-actin and lacked calmodulin, and the other of which did not bind F-actin but was tightly associated with calmodulin. Based on this finding we hypothesized that calmodulin negatively regulates binding of IQGAP1 to F-actin. This hypothesis was tested in vitro using recombinant wild type and mutated IQGAP1s and in live cells that transiently expressed IQGAP1-YFP. In vitro, the affinity of wild type IQGAP1 for F-actin decreased with increasing concentrations of calmodulin, and this effect was dramatically enhanced by Ca(2+) and required the IQ domains of IQGAP1. In addition, we found that calmodulin bound wild type IQGAP1 much more efficiently in the presence of Ca(2+) than EGTA, and all 8 IQ motifs in each IQGAP1 dimer could bind calmodulin simultaneously. In live cells, IQGAP1-YFP localized to the cell cortex, but elevation of intracellular Ca(2+) reversibly induced the fluorescent fusion protein to become diffusely distributed. Taken together, these results support a model in which a rise in free intracellular Ca(2+) promotes binding of calmodulin to IQGAP1, which in turn inhibits IQGAP1 from binding to cortical actin filaments.  相似文献   

3.
Caldesmon, calmodulin-, and actin-binding protein of chicken gizzard did not affect the process of polymerization of actin induced by 0.1 M KCl. Caldesmon binds to F-actin, thus inhibiting the gelation action of actin binding protein (ABP; filamin). Low shear viscosity and flow birefringence measurements revealed that in a system of calmodulin, caldesmon, ABP, and F-actin, gelation occurs in the presence of micromolar Ca2+ concentrations, but not in the absence of Ca2+. Electron microscopic observations showed the Ca2+-dependent formation of actin bundles in this system. These results were interpreted by the flip-flop mechanism: in the presence of Ca2+, a calmodulin-caldesmon complex is released from actin filaments on which ABP exerts its gelating action. On the other hand, in the absence of Ca2+, caldesmon remains bound to actin filaments, thus preventing the action of ABP.  相似文献   

4.
MAP2 (microtubule-associated protein 2) and tau factor are calmodulin-binding and actin filament-interacting proteins, respectively. We have examined the effect of Ca2+ and calmodulin on MAP-induced actin gelation by the low-shear falling-ball method, the high-speed centrifugation method, and electron microscopy using negative staining. Each MAP crosslinks actin filaments to increase the apparent viscosities and finally to form gels. Calmodulin inhibited MAP2- and tau factor-induced actin gelation (MAP2- and tau factor-actin interaction) only in the presence of Ca2+, but not in its absence. There were no differences in actin filament crosslinking activity of respective MAPs with or without Ca2+. MAP2 was not coprecipitated with F-actin only in the presence of Ca2+ and calmodulin determined by the high-speed centrifugation method. But MAP2 was found to bind to F-actin under any other conditions examined. In contrast, the tau factor-actin filament interaction could only be detected by the low-shear viscosity, but not by the high-speed centrifugation method. MAP2 and tau factor aggregated to form actin bundles as shown by electron microscopy. MAP2- or tau factor-induced bundle formation of actin filaments was inhibited only in the presence of Ca2+ and calmodulin, but not in the presence or absence of Ca2+. In conclusion, the interaction of MAP2- and tau factor-actin filaments is regulated by Ca2+ and calmodulin in a flip-flop switch.  相似文献   

5.
The bundle of filaments within microvilli of intestinal epithelial cells contains five major proteins including actin, calmodulin, and subunits of 105-, 95-, and 70-kdaltons. It has been previously shown (Howe, C. L., M. S. Mooseker, and T. A. Graves. 1980. Brush-border calmodulin: a major component of the isolated microvillus core. J. Cell Biol. 85: 916-923) that the addition of Ca++ (> 10(-6) M) to microvillus cores causes a rapid, drastic, but at least partially reversible disruption of this actin filament bundle. High-speed centrifugation of microvillus cores treated with Ca++ indicates that several core proteins are solubilized, including 30-50% of the actin and calmodulin, along with much of the 95- and 70-kdalton subunits. Gel filtration of such Ca++ extracts in the presence and absence of Ca++ indicates that microvillar actin "solated" by Ca++ is in an oligomeric state probably complexed with the 95-kdalton subunit. Removal of Ca++ results in the reassembly of F-actin, probably still complexed with 95- kdalton subunit, as determined by gel filtration, cosedimentation, viscometry, and electron microscopy. The 95-kdalton subunit (95K) was purified from Ca++ extracts by DEAE-Sephadex chromatography and its interaction with actin characterized by viscometry, cosedimentation, and EM in the presence and absence of Ca++. In the presence, but not absence, of Ca++, 95K inhibits actin assembly (50% inhibition at 1:50- 60 95K to actin) and also reduces the viscosity of F-actin solutions. Similarly, sedimentation of actin is inhibited by 95K, but a small, presumably oligomeric actin- 95K complex formed in the presence of Ca++ is pelletable after long-term centrifugation. In the absence of Ca++, 95K cosediments with F-actin. EM of 95K-actin mixtures reveals that 95K "breaks" actin into small, filamentous fragments in the presence of Ca++. Reassembly of filaments occurs once Ca++ is removed. In the absence of Ca++, 95K has no effect on filament structure and, at relatively high ratios (1:2-6) of 95K to actin, this core protein will aggregate actin filaments into bundles.  相似文献   

6.
Eukaryotic translation elongation factor 1A (eEF1A) is known to be a multifunctional protein. In Tetrahymena, eEF1A is localized to the division furrow and has the character to bundle filamentous actin (F-actin). eEF1A binds F-actin and the ratio of eEF1A and actin is approximately 1:1 (Kurasawa et al., 1996). In this study, we revealed that eEF1A itself exists as monomer and dimer, using gel filtration column chromatography. Next, eEF1A monomer and eEF1A dimer were separated using gel filtration column, and their interaction with F-actin was examined with cosedimentation assay and electron microscopy. In the absence of Ca2+/calmodulin (CaM), eEF1A dimer bundled F-actin and coprecipitated with F-actin at low-speed centrifugation, but eEF1A monomer did not. In the presence of Ca2+/CaM, eEF1A monomer increased, while dimer decreased. To examine that Ca2+/CaM alters eEF1A dimer into monomer and inhibits bundle formation of F-actin, Ca2+/CaM was added to F-actin bundles formed by eEF1A dimer. Ca2+/CaM separated eEF1A dimer to monomer, loosened F-actin bundles and then dispersed actin filaments. Simultaneously, Ca2+/CaM/ eEF1A monomer complexes were dissociated from actin filaments. Therefore, Ca2+/CaM reversibly regulates the F-actin bundling activity of eEF1A.  相似文献   

7.
Schroeter M  Chalovich JM 《Biochemistry》2004,43(43):13875-13882
Fesselin is a proline-rich actin-binding protein that was isolated from avian smooth muscle. Fesselin bundles actin and accelerates actin polymerization by facilitating nucleation. We now show that this polymerization of actin can be regulated by Ca(2+)-calmodulin. Fesselin was shown to bind to immobilized calmodulin in the presence of Ca(2+). The fesselin-calmodulin interaction was confirmed by a Ca(2+)-dependent increase in 2-(4-maleimidoanilino)naphthalene-6-sulfonic acid (MIANS) fluorescence upon addition of fesselin to MIANS-labeled wheat germ calmodulin. The affinity was estimated to be approximately 10(9) M(-1). The affinity of Ca(2+)-calmodulin to the fesselin F-actin complex was approximately 10(8) M(-1). Calmodulin binding to fesselin appeared to be functionally significant. In the presence of fesselin and calmodulin, the polymerization of actin was Ca(2+)-dependent. Ca(2+)-free calmodulin either had no effect or enhanced the ability of fesselin to accelerate actin polymerization. Ca(2+)-calmodulin not only reversed the stimulatory effect of fesselin but reduced the rate of polymerization below that observed in the absence of fesselin. While Ca(2+)-calmodulin had a large effect on the interaction of fesselin with G-actin, the effect on F-actin was small. Neither the binding of fesselin to F-actin nor the subsequent bundling of F-actin was greatly affected by Ca(2+)-calmodulin. Fesselin may function as an actin-polymerizing factor that is regulated by Ca(2+) levels.  相似文献   

8.
Purification and characterization of annexin proteins from bovine lung   总被引:3,自引:0,他引:3  
Calcium-dependent association with a detergent-extracted particulate fraction was used as the first step in the purification of a group of phospholipid binding proteins. Elution of the detergent-insoluble fraction with excess ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) resulted in the release of several soluble proteins, termed calcium-activated proteins or CAPs. In the present paper, we describe the simultaneous purification of these CAPs and characterize their interaction with phospholipid, actin, and calmodulin. Partial sequence analysis has identified the majority of the CAPs as members of the annexin family of calcium and phospholipid binding proteins. Two additional CAPs may be novel proteins, one of which appears to be an annexin protein. All CAPs demonstrated Ca2(+)-dependent binding to phosphatidylserine vesicles but did not bind to phosphatidylcholine vesicles. The majority of CAPs exhibited Ca2(+)-dependent binding to F-actin; however, only CAP-III affected the rate of conversion of G-actin to F-actin. The interaction of CAP-III and lipocortin-85 with F-actin resulted in a Ca2(+)-dependent increase in both light scattering and sedimentation of F-actin under comparatively low centrifugal force. In contrast, only lipocortin-85 caused the formation of F-actin bundles. Although all of the CAPs bound to a calmodulin affinity column in a Ca2(+)-dependent manner, attempts to demonstrate binding of CAPs to native calmodulin were unsuccessful. These studies therefore document the similar behavior of the CAPs toward phospholipid and calmodulin but clearly show that F-actin binding or bundling is not a general property of these proteins. The reported purification procedure should allow further comparative studies of these proteins.  相似文献   

9.
Boggs JM  Rangaraj G 《Biochemistry》2000,39(26):7799-7806
Myelin basic protein (MBP) binds to negatively charged lipids on the cytosolic surface of oligodendrocytes (OLs) and is believed to be responsible for adhesion of these surfaces in the multilayered myelin sheath. MBP in solution has been shown by others to bind to both G- and F-actin, to bundle F-actin filaments, and to induce polymerization of G-actin. Here we show that MBP bound to acidic lipids can also bind to both G- and F-actin and cause their sedimentation together with MBP-lipid vesicles. Thus it can simultaneously utilize some of its basic residues to bind to the lipid bilayer and some to bind to actin. The amount of actin bound to the MBP-lipid vesicles decreased with increasing net negative surface charge of the lipid vesicles. It was also less for vesicles containing the lipid composition predicted for the cytosolic surface of myelin than for PC vesicles containing a similar amount of an acidic lipid. Calmodulin caused dissociation of actin from MBP and of the MBP-actin complex from the vesicles. However, it did not cause dissociation of bundles of actin filaments once these had formed as long as some MBP was still present. These results suggest that MBP could be a membrane actin-binding protein in OLs/myelin and its actin binding can be regulated by calmodulin and by the lipid composition of the membrane. Actin binding to MBP decreased the labeling of MBP by the hydrophobic photolabel 3-(trifluoromethyl)-3-(m-[(125)I]iodophenyl)diazirine (TID), indicating that it decreased the hydrophobic interactions of MBP with the bilayer. This change in interaction of MBP with the bilayer could then create a cytosol to membrane signal caused by changes in interaction of the cytoskeleton with the membrane.  相似文献   

10.
The effects of monoclonal anti-caldesmon antibodies, C2, C9, C18, C21, and C23, on the binding of caldesmon to F-actin/F-actin-tropomyosin filaments and to Ca++/calmodulin were examined in an in vitro reconstitution system. In addition, the antibody epitopes were mapped by Western blot analysis of NTCB (2-nitro-5-thiocyanobenzoic acid) and CNBr (cyanogen bromide) fragments of caldesmon. Both C9 and C18 recognize an amino terminal fragment composed of amino acid residues 19 to 153. The C23 epitope lies within a fragment ranging from residues 230 to 386. Included in this region is a 13-residue repeat sequence. Interestingly this repetitive sequence shares sequence similarity with a sequence found in nuclear lamin A, a protein which is also recognized by C23 antibody. Therefore, it is likely that the C23 epitope corresponds to this 13-residue repeat sequence. A carboxyl-terminal 10K fragment contains the epitopes for antibodies C2 and C21. Among these antibodies, only C21 drastically inhibits the binding of caldesmon to F-actin/F-actin-tropomyosin filaments and to Ca++/calmodulin. When the molar ratio of monoclonal antibody C21 to caldesmon reached 1.0, a maximal inhibition (90%) on the binding of caldesmon to F-actin filaments was observed. However, it required double amounts of C21 antibody to exhibit a maximal inhibition of 70% on the binding of caldesmon to F-actin-tropomyosin filaments. These results suggest that the presence of tropomyosin in F-actin enhances caldesmon's binding. Furthermore, C21 antibody also effectively inhibits the caldesmon binding to Ca++/calmodulin. The kinetics of C21 inhibition on caldesmon's binding to Ca++/calmodulin is very similar to the inhibition obtained by preincubation of caldesmon with free Ca++/calmodulin. This result suggests that there is only one Ca++/calmodulin binding domain on caldesmon and this domain appears to be very close to the C21 epitope. Apparently, the Ca++/calmodulin-binding domain and the actin-binding domain are very close to each other and may interfere with each other. In an accompanying paper, we have further demonstrated that microinjection of C21 antibody into living chicken embryo fibroblasts inhibit intracellular granule movement, suggesting an in vivo interference with the functional domains [Hegmann et al., 1991: Cell Motil. Cytoskeleton 20:109-120].  相似文献   

11.
The interactions of vascular smooth muscle caldesmon with actin, tropomyosin, and calmodulin were determined under conditions in which the four proteins can form reconstituted Ca2+-sensitive smooth muscle thin filaments. Caldesmon bound to actin in a complex fashion with high affinity sites (K = 10(7) M-1) saturating at a stoichiometry of 1 per 28 actins, and lower affinity sites at 1 per 7 actins. The affinity of binding was increased in the presence of tropomyosin, and this could be attributed to a direct interaction between caldesmon and tropomyosin which was demonstrated using caldesmon cross-linked to Sepharose. In the presence of tropomyosin, occupancy of the high affinity sites was associated with inhibition of actin-activated myosin MgATPase activity. Caldesmon was found to bind to calmodulin in the presence of Ca2+, with an affinity of 10(6) M-1. The binding of Ca2+ X calmodulin to caldesmon was associated with the neutralization of inhibition of actin-tropomyosin. Ca2+ X calmodulin binding reduced but did not abolish the binding of caldesmon to actin-tropomyosin. From this data we have proposed a model for smooth muscle thin filaments in which Ca2+ regulates activity by converting the inhibited actin-tropomyosin-caldesmon complex to the active complexes, actin-tropomyosin-caldesmon-calmodulin X Ca2+ and actin-tropomyosin.  相似文献   

12.
Yokota E  Muto S  Shimmen T 《Plant physiology》2000,123(2):645-654
We have isolated a 135-kD actin-bundling protein (P-135-ABP) from lily (Lilium longiflorum) pollen tubes and have shown that this protein is responsible for bundling actin filaments in lily pollen tubes (E. Yokota, K. Takahara, T. Shimmen [1998] Plant Physiol 116: 1421-1429). However, only a few thin actin-filament bundles are present in random orientation in the tip region of pollen tubes, where high concentrations of Ca(2+) have also been found. To elucidate the molecular mechanism for the temporal and spatial regulation of actin-filament organization in the tip region of pollen tubes, we explored the possible presence of factors modulating the filamentous actin (F-actin)-binding activity of P-135-ABP. The F-actin-binding activity of P-135-ABP in vitro was appreciably reduced by Ca(2+) and calmodulin (CaM), although neither Ca(2+) alone nor CaM in the presence of low concentrations of Ca(2+) affects the activity of P-135-ABP. A micromolar order of Ca(2+) and CaM were needed to induce the inhibition of the binding activity of P-135-ABP to F-actin. An antagonist for CaM, W-7, cancelled this inhibition. W-5 also alleviated the inhibition effect of Ca(2+)-CaM, however, more weakly than W-7. These results suggest the specific interaction of P-135-ABP with Ca(2+)-CaM. In the presence of both Ca(2+) and CaM, P-135-ABP organized F-actin into thin bundles, instead of the thick bundles observed in the absence of CaM. These results suggest that the inhibition of the P-135-ABP activity by Ca(2+)-CaM is an important regulatory mechanism for organizing actin filaments in the tip region of lily pollen tubes.  相似文献   

13.
Roles of three domains of Tetrahymena eEF1A in bundling F-actin   总被引:1,自引:0,他引:1  
The conventional role of eukaryotic elongation factor 1A (eEF1A) is to transport aminoacyl tRNA to the A site of ribosomes during the peptide elongation phase of protein synthesis. eEF1A also is involved in regulating the dynamics of microtubules and actin filaments in cytoplasm. In Tetrahymena, eEF1A forms homodimers and bundles F-actin. Ca(2+)/calmodulin (CaM) causes reversion of the eEF1A dimer to the monomer, which loosens F-actin bundling, and then Ca(2+)/CaM/eEF1A monomer complexes dissociate from F-actin. eEF1A consists of three domains in all eukaryotic species, but the individual roles of the Tetrahymena eEF1A domains in bundling F-actin are unknown. In this study, we investigated the interaction of each domain with F-actin, recombinant Tetrahymena CaM, and eEF1A itself in vitro, using three glutathione-S-transferase-domain fusion proteins (GST-dm1, -2, and -3). We found that only GST-dm3 bound to F-actin and influences dimer formation, but that all three domains bound to Tetrahymena CaM in a Ca(2+)-dependent manner. The critical Ca(2+) concentration for binding among three domains of eEF1A and CaM were < or =100 nM for domain 1, 100 nM to 1 microM for domain 3, and >1 microM for domain 2, whereas stimulation of and subsequent Ca(2+) influx through Ca(2+) channels raise the cellular Ca(2+) concentration from the basal level of approximately 100 nM to approximately 10 microM, suggesting that domain 3 has a pivotal role in Ca(2+)/CaM regulation of eEF1A.  相似文献   

14.
Etsuo Yokota  Teruo Shimmen 《Planta》1999,209(2):264-266
 A plant 135-kDa actin-bundling protein (P-135-ABP) isolated from pollen tubes of Lilium longiflorum (Thunb.) binds stoichiometrically to F-actin filaments and bundles them in vitro (E. Yokota et al., 1998, Plant Physiol. 116: 1421–1429). To further understand the mechanism of actin-filament bundle formation by P-135-ABP, the polarity of each F-actin filament in bundles was examined using myosin subfragment 1 (S-1). Dissociation of F-actin filaments from bundles organized by P-135-ABP was induced by S-1. However, F-actin filaments that remained in a bundle and decorated by S-1 showed uniform polarity. These results indicate that P-135-ABP arranges F-actin filaments into bundles with uniform polarity and consequently plays a key role in the orientation of cytoplasmic streaming in pollen tubes. Received: 23 February 1999 / Accepted: 22 April 1999  相似文献   

15.
Myelin basic protein (MBP) binds to negatively charged lipids on the cytosolic surface of oligodendrocyte membranes and is most likely responsible for adhesion of these surfaces in the multilayered myelin sheath. It can also polymerize actin, bundle F-actin filaments, and bind actin filaments to lipid bilayers through electrostatic interactions. MBP consists of a number of posttranslationally modified isoforms of varying charge, including C8, in which six arginines are deiminated to the uncharged residue citrulline. The deiminated form decreases with development, but is increased in patients with the demyelinating disease multiple sclerosis. Here we investigate the effect of decreased net positive charge of MBP on its interaction with actin in vitro by comparing a recombinant murine form, rmC1, of the most highly charged unmodified isoform, C1, and a recombinant analogue of C8 in which six basic residues are converted to glutamine, rmC8. The dissociation constant of the less charged isoform rmC8 for actin was a little greater than that of rmC1, and rmC8 had somewhat reduced ability to polymerize actin and bundle F-actin filaments than rmC1. Moreover, rmC8 was more readily dissociated from actin by Ca(2+)-calmodulin than rmC1, and the ability of the deiminated isoform to bind actin to lipid bilayers was reduced. These results indicate that electrostatic forces are the primary determinant of the interaction of MBP with actin. The spin labeled side chains of a series of rmC1 and rmC8 variants containing single Cys substitutions at seven sites throughout the sequence all became motionally restricted to a similar degree on binding F-actin, indicating that the entire sequence is involved in interacting with actin filaments or is otherwise structurally constrained in actin bundles. Thus, this posttranslational modification of MBP, which occurs early in life and is increased in multiple sclerosis, attenuates the ability of MBP to polymerize and bundle actin, and to bind it to a negatively charged membrane.  相似文献   

16.
Interaction of smooth muscle caldesmon with S-100 protein   总被引:1,自引:0,他引:1  
The interaction of caldesmon with certain Ca-binding proteins was investigated by means of electrophoresis under non-denaturating conditions. In the presence of Ca2+ calmodulin, troponin C and S-100 protein form a complex with caldesmon. No complex formation takes place in the absence of Ca2+. Lactalbumin and pike parvalbumin (pI4.2) do not interact with caldesmon independently of Ca-concentration. Both S-100 protein and calmodulin effectively inhibit phosphorylation of caldesmon by Ca-phospholipid-dependent protein kinase. At low ionic strength S-100 protein reverses the inhibitory action of caldesmon on the skeletal muscle acto-heavy meromyosin ATPase more effectively than calmodulin. It is supposed that in certain tissues and cell compartments the proteins belonging to the S-100 family are able to substitute for calmodulin in the caldesmon-dependent regulation of actin and myosin interaction.  相似文献   

17.
The effect of caldesmon on the conformational changes of F-actin caused by myosin subfragment 1 (S-1) binding was studied, using the polarized microfluorimetry method. It was demonstrated that the polarized fluorescence of rhodaminil-phalloin specifically bound to F-actin of pure actin filaments as well as of tropomyosin-containing actin filaments changes as a result of binding to S-1. The nature of these changes depends on the presence of caldesmon in the filaments. Caldesmon was supposed to modify the conformational changes in F-actin induced by S-1.  相似文献   

18.
The interactions of actin filaments with actin-binding protein (filamin) and caldesmon under the influence of tropomyosin were studied in detail using falling-ball viscometry, binding assay and electron microscopy. Caldesmon decreased the binding constant of filamin with F-actin. In contrast, the maximum binding ability of filamin to F-actin was decreased by tropomyosin. The filamin-induced gelation of actin filaments was inhibited by caldesmon. Tropomyosin also inhibited this gelation. The effect of caldesmon became stronger under the influence of tropomyosin. Furthermore, both caldesmon and tropomyosin additionally decreased the filamin binding to F-actin. From these results, caldesmon and tropomyosin appeared to influence filamin binding to F-actin with different modes of actin. In addition, there was no sign of direct interactions between filamin, caldesmon and tropomyosin as judged from gel filtration. Under the influence of caldesmon and tropomyosin, calmodulin conferred Ca2+ sensitivity on the filamin-induced gelation of actin filaments.  相似文献   

19.
Calcium-sensitive modulation of the actomyosin ATPase by fodrin   总被引:3,自引:0,他引:3  
Fodrin, a spectrin-like protein isolated from brain, is a long flexible molecule which binds calmodulin and cross-links F-actin. The effects of fodrin on the actin-activated ATPase of myosin have been examined. When added after ATP, fodrin inhibited the actomyosin ATPase. Two to three times as much fodrin was required for inhibition in the presence of Ca2+ as in its absence. Complete inhibition in the absence of Ca2+ occurred at about one fodrin to 200 actins. Inhibition does not appear to result from fodrin cross-linking F-actin, and, thereby, preventing the myosin filaments from reaching the actin filaments; but cross-linking may promote inhibition by trapping the myosin filaments within the cross-linked F-actin. When added before ATP, fodrin stimulated the actomyosin ATPase almost 3-fold in the presence of Ca2+ and by less than 50% in the absence of Ca2+. Stimulation is thought to result from fodrin cross-linking F-actin. After several minutes the stimulations in Ca2+ were greatly reduced, and in the absence of Ca2+ the actomyosin ATPases were substantially inhibited. Whether added before or after ATP, fodrin inhibited the actin-activated ATPase of myosin subfragment 1. This inhibition was also slightly Ca2+ sensitive.  相似文献   

20.
Comparison of two types of Ca2+-regulated thin filament, reconstructed in ghost fibers by incorporating either caldesmon-gizzard tropomyosin-calmodulin or skeletal muscle troponin-tropomyosin complex, was performed by polarized microphotometry. The changes in actin structure under the influence of these regulatory complexes, as well as those upon the binding of the myosin heads, were followed by measurements of F-actin intrinsic tryptophan fluorescence and the fluorescence of phalloidin-rhodamine complex attached to F-actin. The results show that in the presence of smooth muscle tropomyosin and calmodulin, caldesmon causes Ca2+-dependent alterations of actin conformation and flexibility similar to those induced by skeletal muscle troponin-tropomyosin complex. In both cases, transferring of the fiber from '-Ca2+' to '+Ca2+' solution increases the number of turned-on actin monomers. However, whereas troponin in the absence of Ca2+ potentiates the effect of skeletal muscle tropomyosin, caldesmon-calmodulin complex inhibits the effect of smooth muscle tropomyosin. This difference seems to be due to the qualitatively different alterations in the structure and flexibility of F-actin in ghost fibers evoked by smooth and skeletal muscle tropomyosins. Troponin can bind to F-actin-smooth muscle tropomyosin-caldesmon complex and, in the presence of Ca2+, release the restraint by caldesmon for S-1-induced alterations of conformation, and reduce that for flexibility of actin in ghost fibers. This effect seems to be related to the abolishment by troponin of the potentiating effect of tropomyosin on caldesmon-induced inhibition of actomyosin ATPase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号