首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA double-strand breaks drive genomic instability. However, it remains unknown how these processes may affect the biomechanical properties of the nucleus and what role nuclear mechanics play in DNA damage and repair efficiency. Here, we have used Atomic Force Microscopy to investigate nuclear mechanical changes, arising from externally induced DNA damage. We found that nuclear stiffness is significantly reduced after cisplatin treatment, as a consequence of DNA damage signalling. This softening was linked to global chromatin decondensation, which improves molecular diffusion within the organelle. We propose that this can increase recruitment for repair factors. Interestingly, we also found that reduction of nuclear tension, through cytoskeletal relaxation, has a protective role to the cell and reduces accumulation of DNA damage. Overall, these changes protect against further genomic instability and promote DNA repair. We propose that these processes may underpin the development of drug resistance.  相似文献   

2.
3.
XRCC1 and DNA strand break repair   总被引:16,自引:0,他引:16  
Caldecott KW 《DNA Repair》2003,2(9):955-969
DNA single-strand breaks can arise indirectly, as normal intermediates of DNA base excision repair, or directly from damage to deoxyribose. Because single-strand breaks are induced by endogenous reactive molecules such as reactive oxygen species, these lesions pose a continuous threat to genetic integrity. XRCC1 protein plays a major role in facilitating the repair of single-strand breaks in mammalian cells, via an ability to interact with multiple enzymatic components of repair reactions. Here, the protein-protein interactions facilitated by XRCC1, and the repair processes in which these interactions operate, are reviewed. Models for the repair of single-strand breaks during base excision repair and at direct breaks are presented.  相似文献   

4.
In eukaryotic cells, inheritance of both exact DNA sequence and its arrangement into the chromatin is critical for maintaining stability of the genome. Various DNA lesions induced by endogenous and exogenous factors make this maintanance problematic. To understand completely how cells resolve this problem the knowledge on the nature of these lesions, their detection, and repair within the chromatin environment should be integrated. Understanding of these processes is complicated by multiple types of DNA lesions and repair pathways, as well as the intricate organization of the chromatin. Recent advances in all these directions help to get insight on the repair regulation of DNA within the chromatin at the molecular and cellular level.  相似文献   

5.
All living cells utilize intricate DNA repair mechanisms to address numerous types of DNA lesions and to preserve genomic integrity, and pluripotent stem cells have specific needs due to their remarkable ability of self-renewal and differentiation into different functional cell types. Not surprisingly, human stem cells possess a highly efficient DNA repair network that becomes less efficient upon differentiation. Moreover, these cells also have an anaerobic metabolism, which reduces the mitochondria number and the likelihood of oxidative stress, which is highly related to genomic instability. If DNA lesions are not repaired, human stem cells easily undergo senescence, cell death or differentiation, as part of their DNA damage response, avoiding the propagation of stem cells carrying mutations and genomic alterations. Interestingly, cancer stem cells and typical stem cells share not only the differentiation potential but also their capacity to respond to DNA damage, with important implications for cancer therapy using genotoxic agents. On the other hand, the preservation of the adult stem cell pool, and the ability of cells to deal with DNA damage, is essential for normal development, reducing processes of neurodegeneration and premature aging, as one can observe on clinical phenotypes of many human genetic diseases with defects in DNA repair processes. Finally, several recent findings suggest that DNA repair also plays a fundamental role in maintaining the pluripotency and differentiation potential of embryonic stem cells, as well as that of induced pluripotent stem (iPS) cells. DNA repair processes also seem to be necessary for the reprogramming of human cells when iPS cells are produced. Thus, the understanding of how cultured pluripotent stem cells ensure the genetic stability are highly relevant for their safe therapeutic application, at the same time that cellular therapy is a hope for DNA repair deficient patients.  相似文献   

6.
Tsvetkov L 《IUBMB life》2004,56(8):449-456
The cell cycle controls processes of DNA replication and segregation of replicated DNA into two daughter cells. These processes are coordinated by multiple signaling pathways, which employ many protein kinases. The members of the family of Polo-like protein kinases are among these key cell cycle regulators. In response to DNA damage and inhibited DNA replication, DNA structure checkpoints delay cell cycle progression to provide cells with time for repair of damaged DNA and protect it from more severe damage. These effects are achieved by affecting key players of the basic cell cycle regulation of the cells with damaged DNA. This review is focused on the interplay between Chk2, a bona fide checkpoint protein kinase, and Polo-like kinases.  相似文献   

7.
8.
《Biophysical journal》2022,121(12):2398-2410
Quorum sensing is a bacterial cell-cell communication process that regulates gene expression. The search and binding of the autoinducer molecule (AHL)-bound LuxR-type proteins to specific sites on DNA in quorum-sensing cells in Gram-negative bacteria is a complex process and has been theoretically investigated based on a discrete-state stochastic approach. It is shown that several factors such as the rate of formation of the AHL-bound LuxR protein within the cells and its dissociation to freely diffusing AHL, the diffusion of the latter in and out of the cells, positive feedback loops, and the cell population density play important roles in the protein target search and can control the gene regulation processes. Physical-chemical arguments to explain these observations are presented. Our calculations of the dynamic properties are also supplemented by Monte Carlo computer simulations. Our theoretical model provides physical insights into the complex mechanisms of protein target search in quorum-sensing cells.  相似文献   

9.
10.
Hedglin M  O'Brien PJ 《Biochemistry》2008,47(44):11434-11445
DNA repair proteins conduct a genome-wide search to detect and repair sites of DNA damage wherever they occur. Human alkyladenine DNA glycosylase (AAG) is responsible for recognizing a variety of base lesions, including alkylated and deaminated purines, and initiating their repair via the base excision repair pathway. We have investigated the mechanism by which AAG locates sites of damage using an oligonucleotide substrate containing two sites of DNA damage. This substrate was designed so that AAG randomly binds to either of the two lesions. AAG-catalyzed base excision creates a repair intermediate, and the subsequent partitioning between dissociation and diffusion to the second site can be quantified from the rates of formation of the different products. Our results demonstrate that AAG has the ability to slide for short distances along DNA at physiological salt concentrations. The processivity of AAG decreases with increasing ionic strength to become fully distributive at high ionic strengths, suggesting that electrostatic interactions between the negatively charged DNA and the positively charged DNA binding surface are important for nonspecific DNA binding. Although the amino terminus of the protein is dispensable for glycosylase activity at a single site, we find that deletion of the 80 amino-terminal amino acids significantly decreases the processivity of AAG. These observations support the idea that diffusion on undamaged DNA contributes to the search for sites of DNA damage.  相似文献   

11.
Manganese (Mn) is crucially important for vital activity of cells and has many biological functions. Nevertheless, high doses of Mn taken up by an organism over a long period may cause neurodegenerative diseases such as manganism and Parkinsonism. The molecular mechanisms of this Mn toxicity are still poorly studied. It is now believed that Mn-induced pathophysiological neural processes are multifaceted and affect several metabolic pathways. In particular, Mn ions might affect the processes of DNA replication and repair. To test this possibility, we obtained an SKOV-3 cell line resistant to the toxic action of Mn ions. We found that these cells are characterized by the activation of poly(ADP-ribose)polymerase, which leads to increased ability to repair DNA. Thus, the model used here supports the suggestion that at least one cause of Mn cytotoxicity might be disorders of the processes involved in DNA replication and repair.  相似文献   

12.
Common chromosome fragile sites occur at specific sequences within mammalian genomes that exhibit apparent single-stranded regions in mitotic chromosomes on exposure of cells to replication stress. Recent progress in the characterization of sequences, and more precise mapping of common fragile sites in mammalian and yeast genomes, has led to the exact placement of large common fragile regions straddling the borders of chromosomal G and R bands, with early and late replicating genomic regions, respectively, and could lead to breakthroughs in understanding the function of these evolutionarily conserved but highly recombinogenic chromosome elements. Deficiency of genes involved in DNA damage checkpoint responses, such as ATR, CHK1, HUS1 leads to increased frequency of fragile site instability. Some of these fragile sites, particularly FRA3B, encode genes that are themselves involved in the protection of cells from DNA damage through various mechanisms. Protection of mammalian genomes from accumulation of DNA damage in somatic cells is critical during development, puberty and during the reproductive lifespan, and occurs through mechanisms involving surveillance of the genome for damage, signals to the cell cycle machinery to stop cell cycle progression, signals to repair machinery to repair damage, signals to resume cycling or initiate apoptotic programs, depending on the extent of damage and repair. When genes involved in these processes are altered or deleted, cancer can occur. The tumor suppressor gene, FHIT at the FRA3B locus, and possibly other fragile genes, is a common target of damage and paradoxically encodes a protein with roles in protection from DNA damage.  相似文献   

13.
Facilitated diffusion along nontarget DNA is employed by numerous DNA-interactive proteins to locate specific targets. Until now, the biological significance of DNA scanning has remained elusive. T4 endonuclease V is a DNA repair enzyme which scans nontarget DNA and processively incises DNA at the site of pyrimidine dimers which are produced by exposure to ultraviolet (UV) light. In this study we tested the hypothesis that there exists a direct correlation between the degree of processivity of wild type and mutant endonuclease V molecules and the degree of enhanced UV resistance which is conferred to repair-deficient Eshcerichia coli. This was accomplished by first creating a series of endonuclease V mutants whose in vitro catalytic activities were shown to be very similar to that of the wild type enzyme. However, when the mechanisms by which these enzymes search nontarget DNA for its substrate were analyzed in vitro and in vivo, the mutants displayed varying degrees of nontarget DNA scanning ranging from being nearly as processive as wild type to randomly incising dimers within the DNA population. The ability of these altered endonuclease V molecules to enhance UV survival in DNA repair-deficient E. coli then was assessed. The degree of enhanced UV survival was directly correlated with the level of facilitated diffusion. This is the first conclusive evidence directly relating a reduction of in vivo facilitated diffusion with a change in an observed phenotype. These results support the assertion that the mechanisms which DNA-interactive proteins employ in locating their target sites are of biological significance.  相似文献   

14.
With the continued extension of lifespan, aging and age-related diseases have become a major medical challenge to our society. Aging is accompanied by changes in multiple systems. Among these, the aging process in the central nervous system is critically important but very poorly understood. Neurons, as post-mitotic cells, are devoid of replicative associated aging processes, such as senescence and telomere shortening. However, because of the inability to self-replenish, neurons have to withstand challenge from numerous stressors over their lifetime. Many of these stressors can lead to damage of the neurons' DNA. When the accumulation of DNA damage exceeds a neuron's capacity for repair, or when there are deficiencies in DNA repair machinery, genome instability can manifest. The increased mutation load associated with genome instability can lead to neuronal dysfunction and ultimately to neuron degeneration. In this review, we first briefly introduce the sources and types of DNA damage and the relevant repair pathways in the nervous system (summarized in Fig. 1). We then discuss the chromatin regulation of these processes and summarize our understanding of the contribution of genomic instability to neurodegenerative diseases.  相似文献   

15.
DNA interstrand crosslinks (ICLs) present formidable blocks to DNA metabolic processes and must be repaired for cell survival. ICLs are induced in DNA by intercalating compounds such as the widely used therapeutic agent psoralen. In bacteria, both nucleotide excision repair (NER) and homologous recombination are required for the repair of ICLs. The processing of ICLs in mammalian cells is not clearly understood. However, it is known that processing can occur by NER, which for psoralen ICLs can be an error-generating process conducive to mutagenesis. We show here that another repair pathway, mismatch repair (MMR), is also involved in eliminating psoralen ICLs in human cells. MMR deficiency renders cells hypersensitive to psoralen ICLs without diminishing their mutagenic potential, suggesting that MMR does not contribute to error-generating repair, and that MMR may represent a relatively error-free mechanism for processing these lesions in human cells. Thus, enhancement of MMR relative to NER may reduce the mutagenesis caused by DNA ICLs in humans.  相似文献   

16.
Cellular genomes are vulnerable to an array of DNA-damaging agents, of both endogenous and environmental origin. Such damage occurs at a frequency too high to be compatible with life. As a result cell death and tissue degeneration, aging and cancer are caused. To avoid this and in order for the genome to be reproduced, these damages must be corrected efficiently by DNA repair mechanisms. Eukaryotic cells have multiple mechanisms for the repair of damaged DNA. These repair systems in humans protect the genome by repairing modified bases, DNA adducts, crosslinks and double-strand breaks. The lesions in DNA are eliminated by mechanisms such as direct reversal, base excision and nucleotide excision. The base excision repair eliminates single damaged-base residues by the action of specialized DNA glycosylases and AP endonucleases. Nucleotide excision repair excises damage within oligomers that are 25 to 32 nucleotides long. This repair utilizes many proteins to remove the major UV-induced photoproducts from DNA, as well as other types of modified nucleotides. Different DNA polymerases and ligases are utilized to complete the separate pathways. The double-strand breaks in DNA are repaired by mechanisms that involve DNA protein kinase and recombination proteins. The defect in one of the repair protein results in three rare recessive syndromes: xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. This review describes the biochemistry of various repair processes and summarizes the clinical features and molecular mechanisms underlying these disorders.  相似文献   

17.
Cellular genomes are vulnerable to an array of DNA-damaging agents, of both endogenous and environmental origin. Such damage occurs at a frequency too high to be compatible with life. As a result cell death and tissue degeneration, aging and cancer are caused. To avoid this and in order for the genome to be reproduced, these damages must be corrected efficiently by DNA repair mechanisms. Eukaryotic cells have multiple mechanisms for the repair of damaged DNA. These repair systems in humans protect the genome by repairing modified bases, DNA adducts, crosslinks and double-strand breaks. The lesions in DNA are eliminated by mechanisms such as direct reversal, base excision and nucleotide excision. The base excision repair eliminates single damaged-base residues by the action of specialized DNA glycosylases and AP endonucleases. Nucleotide excision repair excises damage within oligomers that are 25 to 32 nucleotides long. This repair utilizes many proteins to remove the major UV-induced photoproducts from DNA, as well as other types of modified nucleotides. Different DNA polymerases and ligases are utilized to complete the separate pathways. The double-strand breaks in DNA are repaired by mechanisms that involve DNA protein kinase and recombination proteins. The defect in one of the repair protein results in three rare recessive syndromes: xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. This review describes the biochemistry of various repair processes and summarizes the clinical features and molecular mechanisms underlying these disorders.  相似文献   

18.
Fibroblasts from patients with Xeroderma pigmentosum (X.P.) were used together with normal fibroblasts, in order to test (1) whether complementation takes place in heterokaryons formed by these cells; (2) whether the ‘factor’ defective in X.P. limits the rate of DNA repair synthesis in normal fibroblasts. Proximity to normal fibroblasts as well as treatment with their extract does not significantly affect the DNA repair synthesis of the abnormal cells, as measured by autoradiography. By contrast, in heterodikaryons a corrective substance rapidly diffuses into the abnormal nuclei which then perform a normal amount of DNA repair synthesis. Such complementation does not require de novo protein synthesis, since it occurs in the presence of daunomycin or cycloheximide. Furthermore, the dilution of normal ‘factor’, which follows diffusion, does not prevent each nucleus in these hybrids from showing a normal amount of DNA repair synthesis even after UV doses capable of saturating the DNA repair system of the normal parental cells. Thus it seems that in normal fibroblasts the factor defective in X.P. is not rate limiting.Nevertheless, a comparison of heteropolykaryons with a high (3:1) and a low (1:1.25) average ratio of X.P. to normal nuclei shows that, in the former, DNA repair synthesis is reduced. This effect, which seems rather long lasting, indicates that the carrier state for X.P. could be detected using the dosimetric help of heteropolykaryons.  相似文献   

19.
Homologous recombination (HR) is an essential genome stability mechanism used for high-fidelity repair of DNA double-strand breaks and for the recovery of stalled or collapsed DNA replication forks. The crucial homology search and DNA strand exchange steps of HR are catalyzed by presynaptic filaments-helical filaments of a recombinase enzyme bound to single-stranded DNA (ssDNA). Presynaptic filaments are fundamentally dynamic structures, the assembly, catalytic turnover, and disassembly of which must be closely coordinated with other elements of the DNA recombination, repair, and replication machinery in order for genome maintenance functions to be effective. Here, we reviewed the major dynamic elements controlling the assembly, activity, and disassembly of presynaptic filaments; some intrinsic such as recombinase ATP-binding and hydrolytic activities, others extrinsic such as ssDNA-binding proteins, mediator proteins, and DNA motor proteins. We examined dynamic behavior on multiple levels, including atomic- and filament-level structural changes associated with ATP binding and hydrolysis as evidenced in crystal structures, as well as subunit binding and dissociation events driven by intrinsic and extrinsic factors. We examined the biochemical properties of recombination proteins from four model systems (T4 phage, Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens), demonstrating how their properties are tailored for the context-specific requirements in these diverse species. We proposed that the presynaptic filament has evolved to rely on multiple external factors for increased multilevel regulation of HR processes in genomes with greater structural and sequence complexity.  相似文献   

20.
Replication protein A phosphorylation and the cellular response to DNA damage   总被引:12,自引:0,他引:12  
Binz SK  Sheehan AM  Wold MS 《DNA Repair》2004,3(8-9):1015-1024
Defects in cellular DNA metabolism have a direct role in many human disease processes. Impaired responses to DNA damage and basal DNA repair have been implicated as causal factors in diseases with DNA instability like cancer, Fragile X and Huntington's. Replication protein A (RPA) is essential for multiple processes in DNA metabolism including DNA replication, recombination and DNA repair pathways (including nucleotide excision, base excision and double-strand break repair). RPA is a single-stranded DNA-binding protein composed of subunits of 70-, 32- and 14-kDa. RPA binds ssDNA with high affinity and interacts specifically with multiple proteins. Cellular DNA damage causes the N-terminus of the 32-kDa subunit of human RPA to become hyper-phosphorylated. Current data indicates that hyper-phosphorylation causes a change in RPA conformation that down-regulates activity in DNA replication but does not affect DNA repair processes. This suggests that the role of RPA phosphorylation in the cellular response to DNA damage is to help regulate DNA metabolism and promote DNA repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号