首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth of the pathogenic yeast Candida albicans in sub-MIC (minimum inhibitory concentration) levels of Cu(ClO4)2 6H2O and [Cu(phendio)3](ClO4)2 4H2O (phendio = 1,10-phenanthroline-5,6-dione) increased the concentration of miconazole and amphotericin B required to achieve the MIC90 whereas pre-growth in AgClO4 and [Ag(phendio)2]ClO4 resulted in a small decrease in the relevant MIC90 values. The copper complexes reduce the oxygen consumption of C. albicans while the silver complexes increase oxygen consumption. In addition, pre-growth of cells in the copper complexes resulted in a lower ergosterol content while the silver complexes induced an elevation in ergosterol synthesis. The ability of copper and silver complexes to alter the susceptibility of C. albicans to miconazole and amphotericin B may be influenced by their action on respiration, since reduced respiration rates correlate with reduced cellular ergosterol which is the target for amphotericin B. Lower levels of ergosterol have previously been associated with elevated tolerance to this drug. In the case of reduced sensitivity to miconazole, tolerance may be mediated by lower ergosterol synthesis giving rise to fewer toxic side products once biosynthesis is inhibited by miconazole.  相似文献   

2.
The effect of a sub-inhibitory concentration of chlorhexidine on lipid and sterol composition of Candida albicans was investigated. The total lipid content of this yeast grown in the presence of chlorhexidine was reduced whilst the total sterol content was increased compared with control-grown cells. Lipids and sterol analyses of this yeast grown in the presence and absence of chlorhexidine are presented. Chlorhexidine-grown yeast had a higher level of phosphatidylethanolamine, phosphatidylcholine and monogalactosyldiacylglycerol. Lower proportions of phosphatidylinositol plus phosphatidylserine, phosphatidic acid and cardiolipin were found in C. albicans grown in the presence of the drug when compared with control-grown yeast. The major fatty acids in control-grown cells were C16 and C18. Drug grown-cells had higher proportions of palmitic acid (16 : 0) and stearic acid (18 : 0), but lower proportions of palmitoleic acid (16 : 1) and oleic acid (18 : 1). Chlorhexidine also decreased the unsaturated-to-saturated fatty acid ratio, while the C16/C18 ratios increased compared to control-grown cells. Differences in the fatty acid composition of major phospholipids and neutral lipids between drug and control-grown yeast were also detected. Sterol analysis of control-grown cells showed that the major sterol present was ergosterol (55.4% wt). A significant increase in ergosterol and obtusifoliol was observed in chlorhexidine-treated cells and a significant decrease in squalene and lanosterol. Our results suggested that chlorhexidine affected the lipid and sterol composition of C. albicans. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
4.
In this study, we describe the membrane lipid composition of eight clinical isolates (azole resistant and sensitive strains) of Candida albicans isolated from AIDS/ HIV patients. Interestingly, fluorescence polarization measurements of the clinical isolates displayed enhanced membrane fluidity in fluconazole resistant strains as compared to the sensitive ones. The increase in fluidity was reflected in the change of membrane order, which was considerably decreased (decrease in fluorescence polarization "p" value denotes higher membrane fluidity) in the resistant strains. The ergosterol content in azole susceptible isolates was greater, almost twice as compared to the resistant isolates. However, no significant alteration was observed in phospholipid and fatty acid composition of these isolates. Labeling experiments with fluorescamine dye revealed that the percentage of phosphatidylethanolamine exposed to the membrane's outer leaflet was higher in the resistant strains as compared to the sensitive strains, indicating increased floppase activity of the two major ABC drug efflux pumps, CDR1 and CDR2 possibly due to their overexpression in resistant strains. The results of the present study suggest that changes in the status of membrane lipid phase especially the ergosterol content and increased activity of drug efflux pumps by overexpression ofABC transporters, CDR1 and CDR2 might contribute to fluconazole resistance in C. albicans isolated from AIDS/HIV patients.  相似文献   

5.
Candida albicans cells have low levels of ergosterol when grown in ascorbic acid-supplemented media. When cells are grown in hydroquinone-supplemented media, the ergosterol levels became higher as compared to normal cells. The uptake of lysine, glycine, glutamic acid, proline, methionine and serine is reduced in hydroquinone-supplemented cells. In contrast to hydroquinone-supplemented cells, the rate and level of accumulation of these amino acids are higher in ascorbic acid-supplemented cells. Nystatin-resistant isolates of C. albicans with low ergosterol contents also exhibit an increased rate and level of accumulation of these amino acids. The uptake of phenylalanine and leucine remained unaffected by such a change in ergosterol levels brought about by different supplementation of the media. The results demonstrate a correlation between ergosterol levels and amino acids uptake. Contrary to various reports, the rate of K+ efflux does not seem to correlate with the amino acid uptake in C. albicans cells.  相似文献   

6.
Wang L  Jia Y  Tang RJ  Xu Z  Cao YB  Jia XM  Jiang YY 《PloS one》2012,7(5):e37768
In Candida albicans, lipid rafts (also called detergent-resistant membranes, DRMs) are involved in many cellular processes and contain many important proteins. In our previous study, we demonstrated that Rta2p was required for calcineurin-mediated azole resistance and sphingoid long-chain base release in C. albicans. Here, we found that Rta2p was co-localized with raft-constituted ergosterol on the plasma membrane of C. albicans. Furthermore, this membrane expression pattern was totally disturbed by inhibitors of either ergosterol or sphingolipid synthesis. Biochemical fractionation of DRMs together with immunoblot uncovered that Rta2p, along with well-known DRM-associated proteins (Pma1p and Gas1p homologue), was associated with DRMs and their associations were blocked by inhibitors of either ergosterol or sphingolipid synthesis. Finally, we used the proteomic analysis together with immunoblot and identified that Rta2p was required for the association of 10 proteins with DRMs. These 5 proteins (Pma1p, Gas1p homologue, Erg11p, Pmt2p and Ali1p) have been reported to be DRM-associated and also that Erg11p is a well-known target of azoles in C. albicans. In conclusion, our results showed that Rta2p was predominantly localized in lipid rafts and was required for the association of certain membrane proteins with lipid rafts in C. albicans.  相似文献   

7.
A respiratory-deficient mutant of Candida albicans MEN was generated by culturing cells in medium supplemented with ethidium bromide at 37 degrees C for 5 days. The respiratory-deficient mutant (C. albicans MMU11) was incapable of growth on glycerol, had a reduced oxygen uptake rate and demonstrated an altered mitochondrial cytochrome profile. Respiratory-competent cybrids were formed by mitochondrial transfer following fusion of protoplasts with those of C. albicans ATCC 44990. Mutant MMU11 possessed lower levels of ergosterol than the parental isolates and the cybrids, and demonstrated a small but statistically significant increase in tolerance to amphotericin B. The results demonstrated that disruption of mitochondrial function in C. albicans increases the tolerance to amphotericin B, possibly mediated by a reduction in cellular ergosterol content.  相似文献   

8.
Cerulenin, a specific inhibitor of fatty acid and sterol biosyntheses, inhibited growth and lipid synthesis in C. albicans, which on supplementing the growth medium with optimum concentrations of fatty acids was reversed. Significant changes in the levels of phospholipids and sterols were observed in fatty acid-supplemented cells. Altered phospholipids and their fatty acid profile rendered cells more resistant to miconazole and thereby more permeable to [3H]proline. Thus it appears that fatty acid composition plays an important role in determining the permeability susceptibility of C. albicans to drugs.  相似文献   

9.
A novel compound (named CF66I) produced by Burkholeria cepacia CF-66 strain was investigated for its antifungal activity against Candida albicans. This compound exhibited excellent antifungal activity in a dose- and time-dependent manner. Uptake analysis revealed that the compound preferentially acted against the fungal cell wall, and was also able to enter the cells. Transmission electron microscopy indicated that this compound caused loosening of the cell wall and a significant increase in the cell wall thickness was noted; however, no alterations were observed in the contents of the cell wall components. CF66I probably affected the normal assembly and integration of fungal cell wall components by interrupting the weak interactions between them, such as hydrogen and hydrophobic bonds. Propidium iodide (PI) staining indicated that on exposure to CF66I C. albicans cells became permeable to PI. Marked alterations in lipid and sterol contents were observed, and the major changes were a depletion of total lipids and ergosterol, concomitant with an increase in lanosterol content. These observations suggested that the novel compound CF66I may have considerable potential for development of a new class of antifungal agents.  相似文献   

10.
Yeast and mycelial forms of Candida albicans ATCC 10231, growing together in 12 h and in 96 h cultures, were separated and their lipids were extracted and characterized. The total lipid content of the yeast forms was always lower than that of the mycelial forms. In 12 h cultures the lipids from the two morphological forms consisted mainly of polar compounds, viz, phospholipids and glycolipids. In 96 h cultures both the yeast and mycelial forms accumulated substantial amounts of apolar compounds, mainly steryl esters and triacylglycerols. The mycelial forms were more active than the yeast forms in this respect. Major differences in the lipid composition between the two morphological forms involved the contents of sterols and complex lipids that contain sterols. As a rule, the yeast lipids contained much larger proportions of free sterols than the mycelial lipids. However, the mycelial lipids contained several times more sterols than the yeast forms but bound as steryl glycosides, esterified steryl glycosides and steryl esters. Steryl glycosides and esterified steryl glycosides occurred in yeast lipids only in traces, if at all. The major steryl glycoside in the mycelial forms was unequivocally identified as cholesteryl mannoside. At both phases of growth the apolar and polar lipid fractions from the mycelial forms contained higher levels of polyunsaturated fatty acids (18:2 and 18:3) but lower levels of oleic acid (18:1) than the corresponding fractions from the yeast forms. The lipid content and composition of 12 h and 96 h yeast and mycelial forms of C. albicans KCCC 14172, a clinical isolate, were almost identical with those of C. albicans ATCC 10231.  相似文献   

11.
A liquid chromatography/tandem mass spectrometry (LC/MS) with atmospheric pressure chemical ionization (APCI) for the quantification of ergosterol, lanosterol, and squalene was developed to evaluate the combination effects of phenolic compounds with fluconazole on ergosterol biosynthesis in Candida albicans. The three analytes were separated by a column of C18 and were quantified without interference with each other using positive mode tandem mass spectrometry (MS/MS). Molecular ions of ergosterol and lanosterol were detected as the [M+H-H2O]+ ion species at m/z 380 and 410, whereas squalene appeared as the [M+H]+ ion species at m/z 412. On fragmentation of ergosterol, lanosterol, and squalene, the product ions at m/z 69, 149, and 109, respectively, were present as major fragments. These product ions were used for the quantification of them in multiple reaction monitoring acquisition mode. The relationship between signal intensity and the analytes' concentration was linear over the concentration range of 0.05-10 microg/ml. Following the treatment of C. albicans with fluconazole in combination with albicanyl caffeate, resveratrol, and 3,4'-difluorostilbene, respectively, the content of ergosterol in both the sensitive and resistant C. albicans showed depletion, whereas the squalene showed accumulation especially in the sensitive isolates determined with the method developed.  相似文献   

12.
After exhaustion of the N-sources the yeast S.l. excretes citric and isocitric acid with high rates without interferring in the postlogarithmic phase the intracellular production of reserve materials like polysaccharides and especially lipids. The synthesis of citric acids and of reserve materials are therefore autonomically proceeding processes inside of the cells With increasing lipid content the ergosterol content increases The utilization of the ergosterol rich yeasts as valuable byproduct of the citric acid production is discussed.  相似文献   

13.
The effects of the antifungal agent miconazole nitrate on the ergosterol biosynthesis in Candida albicans were investigated after in vitro contact with the drug for 1, 4, 16 and 24 h. A time- and dose-(2.10?10–10?4 M) dependent inhibition of [14C]acetate incorporation into ergosterol was observed. Fifty percent inhibition of the acetate incorporation into ergosterol was found after 1 h incubation in the presence of 10?9 M miconazole. Simultaneously 24-methylenedihydrolanosterol, lanosterol, obtusifoliol, 4,14-dimethylzymosterol and 14-methylfecosterol accumulated.The accumulation of 14 α-methyl sterols suggests that this antifungal agent is a potent inhibitor of one of the metabolic steps involved in the demethylation at C-14. The absence of 24-methyl sterols and of sterols with a C-22 [23] double bond in miconazole treated C. albicans indicates that miconazole also inteferes with the reduction of the 24(28)-double bond and with the introduction of the 22(23)-double bond.Miconazole also intervenes to a small extent in triglyceride synthesis. However, in all circumstances studied, ergosterol biosynthesis was affected at lower doses than those interfering with the acetate incorporation into triglycerides. 16 and 24 h of incubation in the presence of miconazole (≥ 10?6 M) also resulted in an increased fatty acid synthesis.It is suggested that the miconazole-induced inhibition of the C-14 demethylation may be at the origin of the previously observed permeability changes in miconazole treated C. albicans.  相似文献   

14.
The functions and biosynthesis of sterols have been effective targets for fungal control in different areas, including pharmaceutical and agricultural applications. Fungi are among the organisms that synthesize sterols, principally ergosterol. In this paper, the effect of dibutyryl-cAMP (db-cAMP) on ergosterol level and the interaction of drugs that would change the concentration of cAMP with antifungal drugs have been investigated. Sterols were extracted from Candida albicans, and ergosterol was measured using the gas chromatography method. The interaction of different agents was measured by the broth dilution method. It was found that phosphodiesterase inhibitors reverse the inhibitory activity of azole antifungal drugs. Evaluating the ergosterol level of C. albicans incubated with db-cAMP revealed that it increased ergosterol level. Further experiments provided evidence attributing the observed interaction between azoles and phosphodiesterase inhibitors to the relationship between ergosterol and cAMP. The possible significance of this interaction includes potentiation of antifungal activity of drugs by manipulating the cAMP level.  相似文献   

15.
Biosynthesis of cell membrane lipids is a crucial metabolic pathway for the growth and viability of eucaryotic microorganisms. In Saccharomyces cerevisiae, unsaturated fatty acids and ergosterol synthesis needs molecular oxygen. Stuck and sluggish fermentations are related to this aspect of metabolism and constitute a major problem in the wine industry. Anaerobiosis, when lipids are not available in the growth medium, highly stresses cells. They release lipid biosynthesis metabolites and soon cease to multiply. This paper describes an investigation of the nutritional role of exogenous lipids from inactivated yeast cells (IYCs). Fermentations were carried out in a nitrogen-rich synthetic medium similar to grape juice with glucose and fructose as carbon sources, without lipid sources, and in anaerobiosis. The effect of the addition of IYC was assessed. Cell growth, cell lipid composition, glucose and fructose consumption, and acetic acid production were measured during fermentation. Addition of IYC boosted cell growth and sugar consumption, whereas acetic acid production decreased. Biomass yield was influenced by ergosterol availability and increased when IYCs were added. Fatty acid composition of yeast cells was changed by IYC addition.  相似文献   

16.
The lipid composition of a Saccharomyces cerevisiae mutant (GL 1–38) lacking δ-aminolevulinic acid synthase (EC 2.3.1.37) was investigated. This mutant is unable to synthesize heme compounds and, as a consequence, cannot make unsaturated fatty acids or ergosterol. The mutant cells were grown (i) in medium supplemented with δ-aminolevulinic acid or (ii) in medium supplemented with Tween 80 (as a source of oleate) and ergosterol. After growth in the presence of δ-aminolevulinic acid, the fatty acid composition of total lipids and mitochondrial lipids was the same as that of the corresponding wild-type strain. After growth in the presence of Tween 80 and ergosterol, the mutant cells contained increased levels of oleate and greatly decreased levels of palmitoleate. The ratio of unsaturated to saturated fatty acids in these cells was still close to that of the wild type but much lower than that of the medium. The sphingolipids accounted for 5.2% of the lipid phosphate in the wild type and, after growth in Tween 80 and ergosterol, for 12.7% in the mutant. Changes in other phospholipids were too small to be considered significant.  相似文献   

17.
The total lipid content of Candida albicans (serotype A: NCPF 3153) exponential-phase mycelial cultures grown in tissue-culture medium 199 (containing 10%, v/v, foetal calf serum) was 29.8 +/- 8 mg (g dry weight)-1 (mean +/- SD). The weight ratios of phospholipid to neutral lipid and phospholipid to non-esterified sterol were 2.6 +/- 0.4 and 24.9 +/- 0.5, respectively. The major phospholipid was phosphatidylcholine with smaller amounts of phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, phosphatidylglycerol and diphosphatidylglycerol; the most abundant fatty acids were palmitic, palmitoleic, oleic and linoleic acids. The major neutral lipids comprised esterified sterol, triacylglycerol and non-esterified fatty acid with a smaller amount of non-esterified sterol. The fatty acid compositions of the three fatty-acid-containing neutral lipids were distinct from each other and the phospholipids. Comparison with previous data on yeast cultures of C. albicans A grown in glucose broth shows that mycelial cultures have a larger lipid content, lower phospholipid to neutral lipid ratio and higher phospholipid to non-esterified sterol ratio. We now show that mycelial cultures were more permeable to a [14C]triazole antifungal antibiotic compared with exponentially growing yeast cultures of several azole-sensitive strains. Taken together these data are consistent with there being a relationship between the phospholipid/non-esterified sterol ratio of a culture and its ability to accumulate a triazole.  相似文献   

18.
The application of a recently published technique to localize reduced nicotinamide adenine dinucleotide oxidase activity is described in glutaraldehyde-fixed Candida albicans. The reaction product appears as a finely granular precipitate on the mitochondrial cristae and on the central vacuolar membrane, and, if present, on the vacuolar contents. Fixation should be kept to a minimum and prolonged incubation times up to 2 hr are necessary to show these reactive sites. The reaction appears to be strongly substrate-dependent and not affected by cyanide. Exposure of C. albicans cells to the antimycotic miconazole resulted in a strong increase in reduced nicotinamide, adenine dinucleotide and oxidase activity. The hypothesis is put forward that this enzyme, together with peroxidative and catalatic enzymes, may be implicated in the mechanism by which miconazole exerts its lethal effect on C. albicans.  相似文献   

19.
It is clear that C. albicans lipids have gained tremendous importance in recent years. In addition to being a barrier for entrance of various metabolites, it also provides the site of action for the synthesis of enzyme(s) involved in cell wall morphogenesis and antifungal action. While alterations in lipid composition during a yeast to mycelia transition have been observed, in most of the studies, lipid fluctuations reported could have been due to various environmental factors involved in the induction of morphogenesis [4,5]. A clear understanding of lipid biosynthesis and metabolic blocks due to antifungal action is likely to shed further light on selective interactions of antifungals. Despite the multifacet role of lipids in various functions of this pathogenic yeast, their exact involvement is poorly understood. The situation is little better with regard to ergosterol and its metabolism. Ergosterol is, indeed, important for anti-candidal activity and appears to be involved in the morphogenesis of C. albicans. The fluctuation in phospholipid composition have led to altered properties of plasma membrane namely, membrane fluidity, transport activities and drug sensitivity, which suggest that-a critical level of individual phospholipid is important for proper functioning of the plasma membrane. What the exact role is of individual phospholipid is far from clear. Many unanswered questions relating to the role of PI and sphingomyelin in signal transduction, involvement of phospholipases in the maintenance of phospholipid composition, and role of lipid transfer proteins in assembly and asymmetry of lipids are some aspects which merit further work.  相似文献   

20.
The significance of the fatty acid composition and ergosterol content in cells for resistance to cellobiose lipids has been investigated in the cells of mutant Saccharomyces cerevisiae strains that are unable to produce ergosterol or sphingomyelin and in the cells of microorganisms that produce cellobiose lipids. S. cerevisiae mutants were shown to be less sensitive to cellobiose lipids from Cryptococcus humicola than the wild-type strain, and the strains that produced cellobiose lipids were virtually insensitive to this compound as well. The sensitivity of Pseudozyma fusiformata yeast to its own cellobiose lipids was reduced under conditions that favored the production of these compounds. No correlation between the content of ergosterol and sensitivity to cellobiose lipids was observed in S. cerevisiae or in the strains that produced cellobiose lipids. The ratio between the levels of saturated and unsaturated fatty acids in the cells of the mutant strains was correlated to the sensitivity of the cells to cellobiose lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号