首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xenopus embryonic epidermis changes its cellular composition during development: the appearance of ciliated epidermal cells before hatching is a remarkable characteristic. In this study, the functional change of ciliated cells to mucus-secreting cells was examined with immunocytochemistry using anti-tubulin and anti-chondroitin 6-sulfate (C6S). Before hatching, most epidermal cells were labeled with anti-C6S in a granular fashion. Immunoelectron microscopy revealed that the anti-C6S-positive structure was the mucus granule. Ciliated epidermal cells lacked anti-C6S staining, but were strongly labeled with anti-tubulin. After hatching, most ciliated cells in the surface of the embryo disappeared. During their disappearance, some ciliated cells exhibited anti-C6S-positive granular labeling. This strongly suggests that the disappearance of ciliated cells is a functional conversion to mucus-secreting cells instead of shedding through cell death.  相似文献   

2.
In common with the embryos of other anamniotes, young of the Australian lungfish, Neoceratodus forsteri, have ciliated cells in the epidermis. These first appear at stage 28, ˜ 10 days before hatching, and develop progressively to a peak in numbers and in activity at stage 44, just after hatching. After this point, ciliary action in the epidermal cells slowly declines, and cilia disappear completely from the outer surface of the hatchling by stage 52. Cilia are lost earlier from the oral epithelium, between stages 45 and 46, and from the epithelium covering the gills and lining the operculum at stage 51, although they are retained in the nares and in the cavity of the olfactory organ. To assess possible functions for the ciliated epidermis in lungfish hatchlings, the presence of cilia in the epidermis of young N. forsteri is compared with landmarks of development. The ciliated epidermal cells are not associated with movements of the embryo within the egg capsule, nor are they a part of a feeding mechanism. They are not related to oxygen uptake. The ciliated epidermis appears to function as a mechanism for clearing the animal of particles and settling organisms before hatching, when the egg membranes have developed holes, and after hatching, when the young fish is living among the submerged rootlets of trees growing on the river bank or in dense stands of aquatic plants. The function of a ciliated epidermis in N. forsteri hatchlings in relation to microhabitat is discussed. © 1996 Wiley-Liss, Inc.  相似文献   

3.
Summary The morphologic and functional properties of explant out-growth cells and epithelial cells isolated from swine trachea epithelium by proteolysis were examined. A mixed population of ciliated, serous, and basal cells, obtained from out-growths, from proteolysis of trachea epithelium, and from unattached explants in organ culture, all yielded cell cultures that were composed almost entirely of mucus-secreting cells. When the cells were grown in primary or secondary culture on a modified collagen matrix in supplemented HAM:DMEM (1:1) medium they expressed a mucus-secreting phenotype with numerous mucus granules at various stages of maturation and incorporated [3H]GlcN and35SO4 into secreted mucin glycoproteins. Results obtained in these studies suggest that extensive transdifferentiation of ciliated and serous cells to mucus-secreting cells occurs after the release and during subsequent attachment and culture. Ciliated cells containing mucus granules were seen in various stages of cilia resorption. Basal cells containing mucus granules were also frequently observed. The number of mucus-secreting cells and the synthesis of mucin glycoproteins increased dramatically with time of attachment and culture, whereas cell proliferation, population doubling time of 72 h, and incorporation of [3H]thymidine into DNA increased much more slowly. The number of mucus-secreting cells correlated closely with the level of secretion of mucin glycoproteins. Taken collectively, these studies help to elucidate the transdifferentiation process, which dramatically increases the number of mucus-secreting cells after disruption and release of epithelial cells from swine tracheobronchial epithelium. A similar mechanism involving disruption of the extracellular matrix may be involved in the stimulation of hypersecretion of mucus and mucin glycoproteins by chemical and infections irritants.  相似文献   

4.
Summary A range of enzymatic activities in cervical mucus-secreting, ciliated and subcolumnar basal cells were assessed using light and electron microscopic cytochemical techniques. Enzymes detected in all three cell types were those of the tricarboxylic acid cycle, pentose-phosphate and glycolytic pathways, other mitochondrial associated enzymes (NADH and NADPH dehydrogenase), acid phosphatase and non-specific esterase. Mucus-secreting and ciliated cells exhibited thiamine pyrophosphatase and 5 nucleotidase activities while leucine aminopeptidase was most convincingly demonstrated in mucus-secreting cells. Alkaline phosphatase, on the other hand, was detected only in mucus-secreting and subcolumnar basal cells. The profile of enzymatic activities in subcolumnar basal cells closely resembles that of mature lining cells and further supports the hypothesis that these cells differentiate into functioning columnar cells.  相似文献   

5.
Harold Fox 《Acta zoologica》1985,66(2):97-110
The paired balancers of larval Pleurodeles waltl, a urodelan species of the Amphibia, were investigated throughout their life span until final degeneration, using electron microscopy. The evidence from cellular ultrastructure illustrates the mucus-secreting function of these organs, and the outer epithelial cells actively synthesize muco-proteinaceous substance. An extensive granular endoplasmic reticulum and well developed Golgi complexes participate in the mucus manufacture. The balancer epidermis is also extensively innervated throughout by non-myelinated neurites, most of them without Schwann cells, a feature which argues strongly in favour of the organ also having a sensory function, whose nature has yet to be determined.  相似文献   

6.
The epithelium of the hepatic region of the intestine in Saccoglossus mereschkowskii, a representative of enteropneusts (Enteropneusta, Hemichordata), a group located at the base of Chordata, has been studied by using electron microscopy. The ultrastructure of ciliated and granular epithelial cells, elements of the intraepithelial nerve layer, and intercellular junctions are characterized. The data on the details of the structure of the ciliary apparatus and the system of ciliary rootlets are presented. Justification is provided for the presence of a complicated construction in the ciliated cells, a supportive carcass of cilia that performs a mechanical stabilizing function, and possibly the synchronization of the ciliary movement. The existence of cilia with two centrioles is considered as adaptation to the high functional load on the ciliary apparatus. Well-developed bundles of myofilaments have been revealed in the cytoplasm of the basal parts of ciliated cells, which characterizes these cells as epitheliomuscular. Peculiarities indicating the role of ciliated cells in absorption are described, as well as the capability of these cells for balloon-like secretion. Data are presented on the accumulation of reserved nutritional substances in the cell cytoplasm in the form of lipids and glycogen. With respect to their function, ciliated cells are determined as the ciliated secretory-absorptive epitheliomuscular cells. The location of secretory granules in both apical and basal parts of granular cells indicates the exocrine-endocrine function of these cells. There are no typical endocrine cells in the intestinal epithelium of S. mereschkowskii. Several types of granules are described in the cytoplasm of nerve fibers. Junctions between nerve fibers and basal parts of ciliated and granular epithelial cells have been revealed; the neural regulation of the contractile and secretory functions of epithelial cells is assumed. The intestinal epithelium of enteropneusts is presumed to contain a regulatory neuroendocrine system composed of receptor cells of the open type, secretory endocrine-like cells, and of nerve elements of the nervous layer.  相似文献   

7.
Summary Acidophilic cells occur in the epidermis of several species of salmonid fish, although their abundance fluctuates considerably between individuals within the same population and at different times during the life cycle. The histology, histochemistry and ultrastructure of an acidophilic, granular celltype in the epidermis of the brown trout, Salmo trutta L., is described. At the light microscope level this cell type is easily distinguished from the large, mucus-secreting, epidermal goblet cells by its acidophilic, proteinaceous secretion. At the ultrastructural level this secretion consists of membrane-bound granules formed by the very active Golgi region. It is argued that the acidophilic, granular cell is not a transformed blood cell but constitutes a normal epidermal component of the brown trout. Possible roles of this cell in the function(s) of the epidermis are discussed.  相似文献   

8.
Summary

The mantle epithelium of embryos and early juveniles of the squids Loligo vulgaris and Loligo forbesi and the cuttlefish Sepia officinalis was studied using scanning electron microscopy. In embryos of L. vulgaris and L. forbesi, previously undescribed epidermal structures were found. They are missing in S. officinalis embryos. These so-called “extruding structures” are located near Hoyle's organ and first appear at stage XIII of Naef. At the same embryonic stage, Hoyle's organ starts to differentiate and “uniform-type” ciliated cells become visible in the epidermis of both L. vulgaris and L. forbesi. Directly after hatching the epidermis of the species examined starts to slough off and finally the extruding structures, Hoyle's organ and both types of ciliated cells of the mantle epithelium disappear. The function of the extruding structures remains obscure.  相似文献   

9.
Abstract. We examined the nuchal organs of adults of the nereidid polychaete Platynereis dumerilii by means of scanning and transmission electron microscopy. The most prominent features of the nuchal organs are paired ciliary bands located dorsolaterally at the posterior margin of the prostomium. They are composed of primary sensory cells and multiciliated supporting cells, both covered by a thin cuticle. The supporting cells have motile cilia that penetrate the cuticle and are responsible for the movement of water. Subapically, they have a narrowed neck region; the spaces between the neck regions of these supporting cells comprise the olfactory chamber. The dendrites of the sensory cells give rise to a single modified cilium that crosses the olfactory chamber; numerous thin microvillus-like processes, presumably extending from the sensory cells, also traverse the olfactory chamber. At the periphery of the ciliated epithelium runs a large nervous process between the ciliated supporting cells. It consists of smaller bundles of sensory dendrites that unite to form the nuchal nerve, which leaves the ciliated epithelium basally and runs toward the posterior part of the brain, where the perikarya of the sensory cells are located in clusters. The ciliated epithelium of the nuchal organs is surrounded by non-ciliated, peripheral epidermal cells. Those immediately adjacent to the ciliated supporting cells have a granular cuticle; those further away have a smooth cuticle. The nuchal organs of epitokous individuals of P. dumerilii are similar to those described previously in other species of polychaetes and are a useful model for understanding the development of nuchal organs in polychaetes.  相似文献   

10.
The morphology and distribution of the minute tubercles on the skin surface of larvae in Korean bitterling, Rhodeus pseudosericeus, were observed during larval development. Just after hatching, the epidermis of the larvae consists of a thin single cell layer having smaller basophilic flat or round‐flattened basal cells. As the larvae grow, the epidermis contains more small flat cells and large epidermal cells that are round or hemisphere‐shaped. These large unicellular epidermal cells, called minute tubercles, consist of more or less homogeneous cytoplasm that is PAS (Periodic acid‐Schiff method) positive. They are more densely distributed in the wing‐like yolk sac projection. Vestigial minute tubercles occur in the body region and the caudal fin‐fold region. These minute tubercles grow in number and height from 6 to 8 days after hatching onward. However, they become reduced in height and number as the larvae develop. At day 31 after hatching (i.e. free‐swimming stage), minute tubercles no longer exist on the larval skin. The sequence of occurrence and gradual disappearance of these cell structures are described and histologically documented for comparative purposes of beta, taxnomomic and environmental studies.  相似文献   

11.
A cut was made on the ear conch of mouse and an extract containing epidermal chalone was injected subcutaneously 2 days later. The time changes after the chalone administration in the number of cells labeled with 3H-thymidine, in the number of grains on labeled cells and in the number of mitoses within the regenerating epidermis surrounding the wound were investigated by means of autoradiography (ARG). Grain counts decreased temporarily in early phase (0–2 h) after chalone injection. This decrease in grain count resulted in a decrease in the number of labeled cells on the ARG of a short exposure but not in that on the ARG of a long exposure. A decrease in the number of labeled cells on the ARG of a long exposure was evident at 6 h when the grain counts reverted to a level similar to the control without chalone. The number of mitoses reached a minimum at 2 h and then recovered quickly, indicating a rapid disappearance of the inhibition of cells in G 2 from entering M phase. Mitoses decreased again thereafter, presumably as a result caused by inhibition of cells in the preceding S phase from completing DNA synthesis. The extract made similarly from liver or kidney affected neither the mitotic nor the DNA synthetic activities.These results indicate that the epidermal chalone or chalones inhibit the epidermal cell proliferation in, at least, 3 different processes of the cell cycle; the DNA synthesis in S phase, the transition from G 1 to S phase and the transition from G 2 to M phase.  相似文献   

12.
Mucociliary epithelia are essential for homeostasis of many organs and consist of mucus-secreting goblet cells and ciliated cells. Here, we present the ciliated epidermis of Xenopus embryos as a facile model system for in vivo molecular studies of mucociliary epithelial development. Using an in situ hybridization-based approach, we identified numerous genes expressed differentially in mucus-secreting cells or in ciliated cells. Focusing on genes expressed in ciliated cells, we have identified new candidate ciliogenesis factors, including several not present in the current ciliome. We find that TTC25-GFP is localized to the base of cilia and to ciliary axonemes, and disruption of TTC25 function disrupts ciliogenesis. Mig12-GFP localizes very strongly to the base of cilia and confocal imaging of this construct allows for simple visualization of the planar polarity of basal bodies that underlies polarized ciliary beating. Knockdown of Mig12 disrupts ciliogenesis. Finally, we show that ciliogenesis factors identified in the Xenopus epidermis are required in the midline to facilitate neural tube closure. These results provide further evidence of a requirement for cilia in neural tube morphogenesis and suggest that genes identified in the Xenopus epidermis play broad roles in ciliogenesis. The suites of genes identified here will provide a foundation for future studies, and may also contribute to our understanding of pathological changes in mucociliary epithelia that accompany diseases such as asthma.  相似文献   

13.
Summary The osphradium of Planorbarius consists of a blindly-ending ciliated canal, formed by an infolding of the mantle epithelium, and a basal ganglion of nerve cells which is comparable in complexity with ganglia of the central nervous system. The distribution of cell types in the osphradial epithelium is specialised so that three regions can be recognised; the ciliated, the secretory and the sensory regions. The basal sensory region of the canal epithelium consists of ciliated cells and is innervated by sensory neurones of the osphradial ganglion. The middle secretory region contains mainly of mucus-secreting cells and the epithelium adjacent to the osphradial aperture of ciliated cells and secretory cells of a second type. The sensory neurones of the osphradial ganglion are bipolar or of a modified monopolar type. Other monopolar neurones, similar to those common in the central nervous system are of non-sensory function. The osphradium of Paludina, although of typical prosobranch form, possesses ciliated pits similar to the single canal of Planorbarius, which may indicate a shared modality of receptor function. A definite function cannot be ascribed to the pulmonate osphradium based on morphological evidence alone.  相似文献   

14.
A mouse monoclonal antibody (AC88) that was raised against the 88-kDa heat-shock protein of the water mold, Achlya ambisexualis, and that cross-reacts with the 90-kDa mammalian heat-shock protein (hsp90), and an antibody against tubulin were used to localize hsp90 and microtubules, respectively, in the same cultured rat endothelial and PtK1 epithelial cells by indirect immunofluorescence. AC88 and tubulin antibodies labeled the same structures in cells at all stages of the cell cycle, regardless of whether cells were permeabilized before or after fixation. Labeling of cell structures by both AC88 and anti-tubulin antibodies was identically affected by treating cells with colcemid. Double labeling with AC88 and anti-tubulin antibodies in interphase and mitotic cells is consistent with the conclusion that all microtubules are labeled and that no subclass of microtubules is preferentially labeled. Fluorescent labeling by AC88 was prevented by preabsorption of the antibody with purified rat hsp90 but was unaffected by preabsorption with purified 6S tubulin dimer. In contrast to AC88, fluorescent labeling by an anti-tubulin antibody was prevented by preabsorption with tubulin dimer but was unaffected by preabsorption with rat hsp90. Western-blot analysis demonstrated no cross-reactivity of AC88 for tubulin and no cross-reactivity of the anti-tubulin antibody for hsp90. A polyclonal antiserum fraction from a rabbit immunized with the 89-kDa heat-shock protein from chicken also labeled the mitotic apparatus in dividing cells and, somewhat less distinctly, fibrous structures in interphase cells. Labeling by hsp89 anti-serum was prevented by absorption with hsp90. AC88 also labeled microtubules in cultured mouse (L929 and 3T3), rat (endothelium and TRST), hamster (CHO) and primate (BSC, COS-1 and HeLa) cell lines. The demonstration of colocalization of hsp90 with microtubules should provide a valuable clue to eventual understanding of the cellular function of this ubiquitous, conserved and abundant stress-response protein.  相似文献   

15.
Abstract. The ribbon‐shaped salivary glands in Bulla striata were studied with light microscopy and transmission electron microscopy (TEM). Secretion is produced in tubules formed by two types of secretory cells, namely granular mucocytes and vacuolated cells, intercalated with ciliated cells. A central longitudinal duct lined by the same cell types collects the secretion and conducts it to the buccal cavity. In granular mucocytes, the nucleus is usually central and the secretory vesicles contain oval‐shaped granular masses attached to the vesicle membrane. Glycogen granules can be very abundant, filling the space around the secretory vesicles. These cells are strongly stained by PAS reaction for polysaccharides. Their secretory vesicles are also stained by Alcian blue, revealing acidic mucopolysaccharides, and the tetrazonium reaction detects proteins in minute spots at the edge of the vesicles, corresponding to the granular masses observed in TEM. Colloidal iron staining for acidic mucopolysaccharides in TEM reveals iron particles in the electron‐lucent region of the vesicles, while the granular masses are free of particles. In vacuolated cells, which are thinner and less abundant than the granular mucocytes, the nucleus is basal and the cytoplasm contains large electron‐lucent vesicles. These vesicles are very weakly colored by light microscopy techniques, but colloidal iron particles could be observed within them. The golf tee‐shaped ciliated cells contain some electron‐dense lysosomes in the apical region. In these cells, the elongated nucleus is subapically located, and bundles of microfibrils are common in the slender cytoplasmic stalk that reaches the basal lamina. The morphological, histochemical, and cytochemical data showed some similarities between salivary glands in B. striata and Aplysia depilans. These similarities could reflect the phylogenetic relationship between cephalaspidean and anaspidean opisthobranchs or result from a convergent adaptation to an identical herbivorous diet.  相似文献   

16.

Background

In vitro systems of primary cystic fibrosis (CF) airway epithelial cells are an important tool to study molecular and functional features of the native respiratory epithelium. However, undifferentiated CF airway cell cultures grown under submerged conditions do not appropriately represent the physiological situation. A more advanced CF cell culture system based on airway epithelial cells grown at the air-liquid interface (ALI) recapitulates most of the in vivo-like properties but requires the use of invasive sampling methods. In this study, we describe a detailed characterization of fully differentiated primary CF airway epithelial cells obtained by non-invasive nasal brushing of pediatric patients.

Methods

Differentiated cell cultures were evaluated with immunolabelling of markers for ciliated, mucus-secreting and basal cells, and tight junction and CFTR proteins. Epithelial morphology and ultrastructure was examined by histology and transmission electron microscopy. Ciliary beat frequency was investigated by a video-microscopy approach and trans-epithelial electrical resistance was assessed with an epithelial Volt-Ohm meter system. Finally, epithelial permeability was analysed by using a cell layer integrity test and baseline cytokine levels where measured by an enzyme-linked immunosorbent assay.

Results

Pediatric CF nasal cultures grown at the ALI showed a differentiation into a pseudostratified epithelium with a mucociliary phenotype. Also, immunofluorescence analysis revealed the presence of ciliated, mucus-secreting and basal cells and tight junctions. CFTR protein expression was observed in CF (F508del/F508del) and healthy cultures and baseline interleukin (IL)-8 and IL-6 release were similar in control and CF ALI cultures. The ciliary beat frequency was 9.67 Hz and the differentiated pediatric CF epithelium was found to be functionally tight.

Conclusion

In summary, primary pediatric CF nasal epithelial cell cultures grown at the ALI showed full differentiation into ciliated, mucus-producing and basal cells, which adequately reflect the in vivo properties of the human respiratory epithelium.
  相似文献   

17.
Ciliated tracheal epithelia cell cultures were investigated immunocytochemically with anti-tubulin and colloidal gold. When rabbit tracheal cultures were fixed in paraformaldehyde, treated with acetone, anti-tubulin and a second antibody coupled to FITC, fluorescence was associated with cytoskeletal and axonemal microtubules. Cilia covering the apical surface of the ciliated tracheal cells fluoresced very brightly thus facilitating identification of this cell type. Electron microscopy of tracheal cultures fixed as above, treated with Triton-X 100 and incubated in anti-tubulin and protein A coupled to colloidal gold resulted in the highly specific localization of tubulin in ciliary axonemes and basal bodies. Omission of primary or secondary antibody resulted in extremely low levels of fluorescence while no colloidal gold particles could be detected in cultures at the electron microscopy level when rabbit anti-tubulin was omitted.  相似文献   

18.
In vivo dedifferentiation of human epidermal cells   总被引:1,自引:0,他引:1  
Li H  Fu X  Zhang L  Sun T  Wang J 《Cell biology international》2007,31(11):1436-1441
Consistent with our previous study, we herein offer further evidence to demonstrate the dedifferentiation of differentiating epidermal cells into stem cells or stem cells -like in vivo. The epidermal sheets eliminated of basal cells were labeled with 6-diamidino-2-phenylindole (DAPI), and then were transplanted onto the full-thickness skin wounds nude mice. Immunohistochemical examination of the survival sheets showed that some cells were positive for both DAPI and either cytokeratins (CK19, CK14) or beta1 integrin in spinous and granular layers at day 7 after transplantation. Furthermore, there was a significant increase in the percentages of both alpha6briCDdim and alpha6briCD71bri populations in survival epidermal sheet grafts 7 d after transplantation compared with those before xenotransplantation (P<0.05), as determined by flow cytometry. The results collectively indicated that some of the differentiated cells in engrafted epidermal sheets dedifferentiated into stem cells or stem cells-like in vivo, which offer us new evidence and insights into the dedifferentiation.  相似文献   

19.
Scanning electron microscopy reveals the presence of ciliated epidermal cells that form halos around canal pores and pit lines of the mechanoreceptive lateral line system in two actinopterygian fish, Polypterus and Acipenser. Transmission electron microscopy shows that the cilia exhibit a typical 9 + 2 microtubule configuration and are not directionally polarized. The function, developmental origin and systematic significance of ciliated epidermal cells in actinopterygian fish are considered.  相似文献   

20.
Embryos and larvae of an isocrinid sea lily, Metacrinus rotundus, are described by scanning electron microscopy. Around hatching (35 h after fertilization), the outer surface of the gastrula becomes ubiquitously covered with short cilia. At 40 h, the hatched swimming embryo develops a cilia‐free zone of ectoderm on the ventral side. By 3 days, the very early dipleurula larva develops a cilia‐free zone ventrally, densely ciliated regions laterally, and a sparsely ciliated region dorsally. At this stage, the posterior and anterior ciliary bands first appear: the former runs along a low ridge separating the densely from the sparsely ciliated epidermal regions, while the latter is visible, at first discontinuously, along the boundary between the densely ciliated lateral regions and the cilia‐free ventral zone. In the late dipleurula larva (5 days after fertilization), the anterior and posterior loops of ciliary bands are well defined. The transition from the dipleurula to the semidoliolaria larva occurs at 6 days as the posterior loop becomes rearranged to form incompletely circumferential ciliary bands. The larva becomes competent to settle at this stage. The arrangement of the ciliary bands on the semidoliolaria is maintained during the second week of development, while the larva retains its competence to settle. The larval ciliary patterns described here are compared with those of stalkless crinoids and eleutherozoan echinoderms. The closest morphological similarities are between M. rotundus and the basal eleutherozoan class Asteroidea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号