首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the post-genome era, the prediction of protein function is one of the most demanding tasks in the study of bioinformatics. Machine learning methods, such as the support vector machines (SVMs), greatly help to improve the classification of protein function. In this work, we integrated SVMs, protein sequence amino acid composition, and associated physicochemical properties into the study of nucleic-acid-binding proteins prediction. We developed the binary classifications for rRNA-, RNA-, DNA-binding proteins that play an important role in the control of many cell processes. Each SVM predicts whether a protein belongs to rRNA-, RNA-, or DNA-binding protein class. Self-consistency and jackknife tests were performed on the protein data sets in which the sequences identity was < 25%. Test results show that the accuracies of rRNA-, RNA-, DNA-binding SVMs predictions are approximately 84%, approximately 78%, approximately 72%, respectively. The predictions were also performed on the ambiguous and negative data set. The results demonstrate that the predicted scores of proteins in the ambiguous data set by RNA- and DNA-binding SVM models were distributed around zero, while most proteins in the negative data set were predicted as negative scores by all three SVMs. The score distributions agree well with the prior knowledge of those proteins and show the effectiveness of sequence associated physicochemical properties in the protein function prediction. The software is available from the author upon request.  相似文献   

2.
When the standard approach to predict protein function by sequence homology fails, other alternative methods can be used that require only the amino acid sequence for predicting function. One such approach uses machine learning to predict protein function directly from amino acid sequence features. However, there are two issues to consider before successful functional prediction can take place: identifying discriminatory features, and overcoming the challenge of a large imbalance in the training data. We show that by applying feature subset selection followed by undersampling of the majority class, significantly better support vector machine (SVM) classifiers are generated compared with standard machine learning approaches. As well as revealing that the features selected could have the potential to advance our understanding of the relationship between sequence and function, we also show that undersampling to produce fully balanced data significantly improves performance. The best discriminating ability is achieved using SVMs together with feature selection and full undersampling; this approach strongly outperforms other competitive learning algorithms. We conclude that this combined approach can generate powerful machine learning classifiers for predicting protein function directly from sequence.  相似文献   

3.
DNA-binding proteins (DNA-BPs) play a pivotal role in various intra- and extra-cellular activities ranging from DNA replication to gene expression control. Attempts have been made to identify DNA-BPs based on their sequence and structural information with moderate accuracy. Here we develop a machine learning protocol for the prediction of DNA-BPs where the classifier is Support Vector Machines (SVMs). Information used for classification is derived from characteristics that include surface and overall composition, overall charge and positive potential patches on the protein surface. In total 121 DNA-BPs and 238 non-binding proteins are used to build and evaluate the protocol. In self-consistency, accuracy value of 100% has been achieved. For cross-validation (CV) optimization over entire dataset, we report an accuracy of 90%. Using leave 1-pair holdout evaluation, the accuracy of 86.3% has been achieved. When we restrict the dataset to less than 20% sequence identity amongst the proteins, the holdout accuracy is achieved at 85.8%. Furthermore, seven DNA-BPs with unbounded structures are all correctly predicted. The current performances are better than results published previously. The higher accuracy value achieved here originates from two factors: the ability of the SVM to handle features that demonstrate a wide range of discriminatory power and, a different definition of the positive patch. Since our protocol does not lean on sequence or structural homology, it can be used to identify or predict proteins with DNA-binding function(s) regardless of their homology to the known ones.  相似文献   

4.
Han LY  Cai CZ  Ji ZL  Cao ZW  Cui J  Chen YZ 《Nucleic acids research》2004,32(21):6437-6444
The function of a protein that has no sequence homolog of known function is difficult to assign on the basis of sequence similarity. The same problem may arise for homologous proteins of different functions if one is newly discovered and the other is the only known protein of similar sequence. It is desirable to explore methods that are not based on sequence similarity. One approach is to assign functional family of a protein to provide useful hint about its function. Several groups have employed a statistical learning method, support vector machines (SVMs), for predicting protein functional family directly from sequence irrespective of sequence similarity. These studies showed that SVM prediction accuracy is at a level useful for functional family assignment. But its capability for assignment of distantly related proteins and homologous proteins of different functions has not been critically and adequately assessed. Here SVM is tested for functional family assignment of two groups of enzymes. One consists of 50 enzymes that have no homolog of known function from PSI-BLAST search of protein databases. The other contains eight pairs of homologous enzymes of different families. SVM correctly assigns 72% of the enzymes in the first group and 62% of the enzyme pairs in the second group, suggesting that it is potentially useful for facilitating functional study of novel proteins. A web version of our software, SVMProt, is accessible at http://jing.cz3.nus.edu.sg/cgi-bin/svmprot.cgi.  相似文献   

5.
6.
Given a raw protein sequence, knowing its subcellular location is an important step toward understanding its function and designing further experiments. A novel method is proposed for the prediction of protein subcellular locations from sequences. For four categories of eukaryotic proteins the overall predictive accuracy is 82.0%, 2.6% higher than that by using SVM approach. For three subcellular locations of prokaryotic proteins, an overall accuracy of 89.9% is obtained. In accordance with the architecture of cells, a hierarchical prediction approach is designed. Based on amino acid composition extracellular proteins and intracellular proteins can be identified with accuracy of 97%.  相似文献   

7.
MOTIVATION: Protein fold recognition is an important approach to structure discovery without relying on sequence similarity. We study this approach with new multi-class classification methods and examined many issues important for a practical recognition system. RESULTS: Most current discriminative methods for protein fold prediction use the one-against-others method, which has the well-known 'False Positives' problem. We investigated two new methods: the unique one-against-others and the all-against-all methods. Both improve prediction accuracy by 14-110% on a dataset containing 27 SCOP folds. We used the Support Vector Machine (SVM) and the Neural Network (NN) learning methods as base classifiers. SVMs converges fast and leads to high accuracy. When scores of multiple parameter datasets are combined, majority voting reduces noise and increases recognition accuracy. We examined many issues involved with large number of classes, including dependencies of prediction accuracy on the number of folds and on the number of representatives in a fold. Overall, recognition systems achieve 56% fold prediction accuracy on a protein test dataset, where most of the proteins have below 25% sequence identity with the proteins used in training.  相似文献   

8.
9.
In this study, the predictors are developed for protein submitochondria locations based on various features of sequences. Information about the submitochondria location for a mitochondria protein can provide much better understanding about its function. We use ten representative models of protein samples such as pseudo amino acid composition, dipeptide composition, functional domain composition, the combining discrete model based on prediction of solvent accessibility and secondary structure elements, the discrete model of pairwise sequence similarity, etc. We construct a predictor based on support vector machines (SVMs) for each representative model. The overall prediction accuracy by the leave-one-out cross validation test obtained by the predictor which is based on the discrete model of pairwise sequence similarity is 1% better than the best computational system that exists for this problem. Moreover, we develop a method based on ordered weighted averaging (OWA) which is one of the fusion data operators. Therefore, OWA is applied on the 11 best SVM-based classifiers that are constructed based on various features of sequence. This method is called Mito-Loc. The overall leave-one-out cross validation accuracy obtained by Mito-Loc is about 95%. This indicates that our proposed approach (Mito-Loc) is superior to the result of the best existing approach which has already been reported.  相似文献   

10.
Secondary structure prediction with support vector machines   总被引:8,自引:0,他引:8  
MOTIVATION: A new method that uses support vector machines (SVMs) to predict protein secondary structure is described and evaluated. The study is designed to develop a reliable prediction method using an alternative technique and to investigate the applicability of SVMs to this type of bioinformatics problem. METHODS: Binary SVMs are trained to discriminate between two structural classes. The binary classifiers are combined in several ways to predict multi-class secondary structure. RESULTS: The average three-state prediction accuracy per protein (Q(3)) is estimated by cross-validation to be 77.07 +/- 0.26% with a segment overlap (Sov) score of 73.32 +/- 0.39%. The SVM performs similarly to the 'state-of-the-art' PSIPRED prediction method on a non-homologous test set of 121 proteins despite being trained on substantially fewer examples. A simple consensus of the SVM, PSIPRED and PROFsec achieves significantly higher prediction accuracy than the individual methods.  相似文献   

11.
Ho SY  Yu FC  Chang CY  Huang HL 《Bio Systems》2007,90(1):234-241
In this paper, we investigate the design of accurate predictors for DNA-binding sites in proteins from amino acid sequences. As a result, we propose a hybrid method using support vector machine (SVM) in conjunction with evolutionary information of amino acid sequences in terms of their position-specific scoring matrices (PSSMs) for prediction of DNA-binding sites. Considering the numbers of binding and non-binding residues in proteins are significantly unequal, two additional weights as well as SVM parameters are analyzed and adopted to maximize net prediction (NP, an average of sensitivity and specificity) accuracy. To evaluate the generalization ability of the proposed method SVM-PSSM, a DNA-binding dataset PDC-59 consisting of 59 protein chains with low sequence identity on each other is additionally established. The SVM-based method using the same six-fold cross-validation procedure and PSSM features has NP=80.15% for the training dataset PDNA-62 and NP=69.54% for the test dataset PDC-59, which are much better than the existing neural network-based method by increasing the NP values for training and test accuracies up to 13.45% and 16.53%, respectively. Simulation results reveal that SVM-PSSM performs well in predicting DNA-binding sites of novel proteins from amino acid sequences.  相似文献   

12.
Lipid binding proteins play important roles in signaling, regulation, membrane trafficking, immune response, lipid metabolism, and transport. Because of their functional and sequence diversity, it is desirable to explore additional methods for predicting lipid binding proteins irrespective of sequence similarity. This work explores the use of support vector machines (SVMs) as such a method. SVM prediction systems are developed using 14,776 lipid binding and 133,441 nonlipid binding proteins and are evaluated by an independent set of 6,768 lipid binding and 64,761 nonlipid binding proteins. The computed prediction accuracy is 78.9, 79.5, 82.2, 79.5, 84.4, 76.6, 90.6, 79.0, and 89.9% for lipid degradation, lipid metabolism, lipid synthesis, lipid transport, lipid binding, lipopolysaccharide biosynthesis, lipoprotein, lipoyl, and all lipid binding proteins, respectively. The accuracy for the nonmember proteins of each class is 99.9, 99.2, 99.6, 99.8, 99.9, 99.8, 98.5, 99.9, and 97.0%, respectively. Comparable accuracies are obtained when homologous proteins are considered as one, or by using a different SVM kernel function. Our method predicts 86.8% of the 76 lipid binding proteins nonhomologous to any protein in the Swiss-Prot database and 89.0% of the 73 known lipid binding domains as lipid binding. These findings suggest the usefulness of SVMs for facilitating the prediction of lipid binding proteins. Our software can be accessed at the SVMProt server (http://jing.cz3.nus.edu.sg/cgi-bin/svmprot.cgi).  相似文献   

13.
Genomics projects have resulted in a flood of sequence data. Functional annotation currently relies almost exclusively on inter-species sequence comparison and is restricted in cases of limited data from related species and widely divergent sequences with no known homologs. Here, we demonstrate that codon composition, a fusion of codon usage bias and amino acid composition signals, can accurately discriminate, in the absence of sequence homology information, cytoplasmic ribosomal protein genes from all other genes of known function in Saccharomyces cerevisiae, Escherichia coli and Mycobacterium tuberculosis using an implementation of support vector machines, SVM(light). Analysis of these codon composition signals is instructive in determining features that confer individuality to ribosomal protein genes. Each of the sets of positively charged, negatively charged and small hydrophobic residues, as well as codon bias, contribute to their distinctive codon composition profile. The representation of all these signals is sensitively detected, combined and augmented by the SVMs to perform an accurate classification. Of special mention is an obvious outlier, yeast gene RPL22B, highly homologous to RPL22A but employing very different codon usage, perhaps indicating a non-ribosomal function. Finally, we propose that codon composition be used in combination with other attributes in gene/protein classification by supervised machine learning algorithms.  相似文献   

14.
15.
This paper explores the use of support vector machine (SVM) for protein function prediction. Studies are conducted on several groups of proteins with different functions including DNA-binding proteins, RNA-binding proteins, G-protein coupled receptors, drug absorption proteins, drug metabolizing enzymes, drug distribution and excretion proteins. The computed accuracy for the prediction of these proteins is found to be in the range of 82.32% to 99.7%, which illustrates the potential of SVM in facilitating protein function prediction.  相似文献   

16.
In this paper, support vector machines (SVMs) are applied to predict the nucleic-acid-binding proteins. We constructed two classifiers to differentiate DNA/RNA-binding proteins from non-nucleic-acid-binding proteins by using a conjoint triad feature which extract information directly from amino acids sequence of protein. Both self-consistency and jackknife tests show promising results on the protein datasets in which the sequences identity is less than 25%. In the self-consistency test, the predictive accuracy is 90.37% for DNA-binding proteins and 89.70% for RNA-binding proteins. In the jackknife test, the predictive accuracies are 78.93% and 76.75%, respectively. Comparison results show that our method is very competitive by outperforming other previously published sequence-based prediction methods.  相似文献   

17.
The successful prediction of protein subcellular localization directly from protein primary sequence is useful to protein function prediction and drug discovery. In this paper, by using the concept of pseudo amino acid composition (PseAAC), the mycobacterial proteins are studied and predicted by support vector machine (SVM) and increment of diversity combined with modified Mahalanobis Discriminant (IDQD). The results of jackknife cross-validation for 450 non-redundant proteins show that the overall predicted successful rates of SVM and IDQD are 82.2% and 79.1%, respectively. Compared with other existing methods, SVM combined with PseAAC display higher accuracies.  相似文献   

18.

Background

Traditionally, it is believed that the native structure of a protein corresponds to a global minimum of its free energy. However, with the growing number of known tertiary (3D) protein structures, researchers have discovered that some proteins can alter their structures in response to a change in their surroundings or with the help of other proteins or ligands. Such structural shifts play a crucial role with respect to the protein function. To this end, we propose a machine learning method for the prediction of the flexible/rigid regions of proteins (referred to as FlexRP); the method is based on a novel sequence representation and feature selection. Knowledge of the flexible/rigid regions may provide insights into the protein folding process and the 3D structure prediction.

Results

The flexible/rigid regions were defined based on a dataset, which includes protein sequences that have multiple experimental structures, and which was previously used to study the structural conservation of proteins. Sequences drawn from this dataset were represented based on feature sets that were proposed in prior research, such as PSI-BLAST profiles, composition vector and binary sequence encoding, and a newly proposed representation based on frequencies of k-spaced amino acid pairs. These representations were processed by feature selection to reduce the dimensionality. Several machine learning methods for the prediction of flexible/rigid regions and two recently proposed methods for the prediction of conformational changes and unstructured regions were compared with the proposed method. The FlexRP method, which applies Logistic Regression and collocation-based representation with 95 features, obtained 79.5% accuracy. The two runner-up methods, which apply the same sequence representation and Support Vector Machines (SVM) and Naïve Bayes classifiers, obtained 79.2% and 78.4% accuracy, respectively. The remaining considered methods are characterized by accuracies below 70%. Finally, the Naïve Bayes method is shown to provide the highest sensitivity for the prediction of flexible regions, while FlexRP and SVM give the highest sensitivity for rigid regions.

Conclusion

A new sequence representation that uses k-spaced amino acid pairs is shown to be the most efficient in the prediction of the flexible/rigid regions of protein sequences. The proposed FlexRP method provides the highest prediction accuracy of about 80%. The experimental tests show that the FlexRP and SVM methods achieved high overall accuracy and the highest sensitivity for rigid regions, while the best quality of the predictions for flexible regions is achieved by the Naïve Bayes method.  相似文献   

19.
Cell penetrating peptides (CPPs) are those peptides that can transverse cell membranes to enter cells. Once inside the cell, different CPPs can localize to different cellular components and perform different roles. Some generate pore-forming complexes resulting in the destruction of cells while others localize to various organelles. Use of machine learning methods to predict potential new CPPs will enable more rapid screening for applications such as drug delivery. We have investigated the influence of the composition of training datasets on the ability to classify peptides as cell penetrating using support vector machines (SVMs). We identified 111 known CPPs and 34 known non-penetrating peptides from the literature and commercial vendors and used several approaches to build training data sets for the classifiers. Features were calculated from the datasets using a set of basic biochemical properties combined with features from the literature determined to be relevant in the prediction of CPPs. Our results using different training datasets confirm the importance of a balanced training set with approximately equal number of positive and negative examples. The SVM based classifiers have greater classification accuracy than previously reported methods for the prediction of CPPs, and because they use primary biochemical properties of the peptides as features, these classifiers provide insight into the properties needed for cell-penetration. To confirm our SVM classifications, a subset of peptides classified as either penetrating or non-penetrating was selected for synthesis and experimental validation. Of the synthesized peptides predicted to be CPPs, 100% of these peptides were shown to be penetrating.  相似文献   

20.
Nanni L  Lumini A 《Amino acids》2008,34(4):635-641
Given a novel protein it is very important to know if it is a DNA-binding protein, because DNA-binding proteins participate in the fundamental role to regulate gene expression. In this work, we propose a parallel fusion between a classifier trained using the features extracted from the gene ontology database and a classifier trained using the dipeptide composition of the protein. As classifiers the support vector machine (SVM) and the 1-nearest neighbour are used. Matthews's correlation coefficient obtained by our fusion method is approximately 0.97 when the jackknife cross-validation is used; this result outperforms the best performance obtained in the literature (0.924) using the same dataset where the SVM is trained using only the Chou's pseudo amino acid based features. In this work also the area under the ROC-curve (AUC) is reported and our results show that the fusion permits to obtain a very interesting 0.995 AUC. In particular we want to stress that our fusion obtains a 5% false negative with a 0% of false positive. Matthews's correlation coefficient obtained using the single best GO-number is only 0.7211 and hence it is not possible to use the gene ontology database as a simple lookup table. Finally, we test the complementarity of the two tested feature extraction methods using the Q-statistic. We obtain the very interesting result of 0.58, which means that the features extracted from the gene ontology database and the features extracted from the amino acid sequence are partially independent and that their parallel fusion should be studied more.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号