首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulatory agencies mandate the use of fecal coliforms, Escherichia coli or Enterococcus spp., as microbial indicators of recreational water quality. These indicators of fecal pollution do not identify the specific sources of pollution and at times underestimate health risks associated with recreational water use. This study proposes the use of human polyomaviruses (HPyVs), which are widespread among human populations, as indicators of human fecal pollution. A method was developed to concentrate and extract HPyV DNA from environmental water samples and then to amplify it by nested PCR. HPyVs were detected in as little as 1 μl of sewage and were not amplified from dairy cow or pig wastes. Environmental water samples were screened for the presence of HPyVs and two additional markers of human fecal pollution: the Enterococcus faecium esp gene and the 16S rRNA gene of human-associated Bacteroides. The presence of human-specific indicators of fecal pollution was compared to fecal coliform and Enterococcus concentrations. HPyVs were detected in 19 of 20 (95%) samples containing the E. faecium esp gene and Bacteroides human markers. Weak or no correlation was observed between the presence/absence of human-associated indicators and counts of indicator bacteria. The sensitivity, specificity, and correlation with other human-associated markers suggest that the HPyV assay could be a useful predictor of human fecal pollution in environmental waters and an important component of the microbial-source-tracking “toolbox.”  相似文献   

2.
A PCR-based assay (Mrnif) targeting the nifH gene of Methanobrevibacter ruminantium was developed to detect fecal pollution from domesticated ruminants in environmental water samples. The assay produced the expected amplification product only when the reaction mixture contained DNA extracted from M. ruminantium culture, bovine (80%), sheep (100%), and goat (75%) feces, and water samples from a bovine waste lagoon (100%) and a creek contaminated with bovine lagoon waste (100%). The assay appears to be specific and sensitive and can distinguish between domesticated- and nondomesticated-ruminant fecal pollution in environmental samples.  相似文献   

3.
Urban coasts receive watershed drainage from ecosystems that include highly developed lands with sewer and stormwater infrastructure. In these complex ecosystems, coastal waters are often contaminated with fecal pollution, where multiple delivery mechanisms that often contain multiple fecal sources make it difficult to mitigate the pollution. Here, we exploit bacterial community sequencing of the V6 and V6V4 hypervariable regions of the bacterial 16S rRNA gene to identify bacterial distributions that signal the presence of sewer, fecal, and human fecal pollution. The sequences classified to three sewer infrastructure-associated bacterial genera, Acinetobacter, Arcobacter, and Trichococcus, and five fecal-associated bacterial families, Bacteroidaceae, Porphyromonadaceae, Clostridiaceae, Lachnospiraceae, and Ruminococcaceae, served as signatures of sewer and fecal contamination, respectively. The human fecal signature was determined with the Bayesian source estimation program SourceTracker, which we applied to a set of 40 sewage influent samples collected in Milwaukee, WI, USA to identify operational taxonomic units (≥97 % identity) that were most likely of human fecal origin. During periods of dry weather, the magnitudes of all three signatures were relatively low in Milwaukee’s urban rivers and harbor and nearly zero in Lake Michigan. However, the relative contribution of the sewer and fecal signature frequently increased to >2 % of the measured surface water communities following sewer overflows. Also during combined sewer overflows, the ratio of the human fecal pollution signature to the fecal pollution signature in surface waters was generally close to that of sewage, but this ratio decreased dramatically during dry weather and rain events, suggesting that nonhuman fecal pollution was the dominant source during these weather-driven scenarios. The qPCR detection of two human fecal indicators, human Bacteroides and Lachno2, confirmed the urban fecal footprint in this ecosystem extends to at least 8 km offshore.  相似文献   

4.
A new, simple, and specific protocol to discriminate between human and animal fecal pollution is described. The procedure is based on the detection of certain Bifidobacterium species in the samples. Two 16S rRNA gene-targeted probes are described. One of these probes (BDE) has as its target a region of the 16S rRNA gene of Bifidobacterium dentium, a Bifidobacterium species of exclusively human origin. The other probe (BAN) is based on the sequence of a region of 16S rRNA gene for several Bifidobacterium species related with animal origins. The specificity of both probes was evaluated by using 24 Bifidobacterium species, and their threshold detection limit was established by DNA-DNA hybridization. DNA-DNA hybridization with the BDE probe showed it to be specific for B. dentium, whereas that with the BAN probe showed it to be specific for B. animalis, B. asteroides, B. coryneforme, B. cuniculi, B. globosum, B. magnum, B. minimum, and B. subtile. A simple and specific protocol was also developed for the detection of their target species in environmental samples (sewage and feces). DNA-DNA hybridization with the BAN probe was only positive for samples from cattle and goats. Thus, this probe is not suitable for the identification of any animal fecal pollution. Whereas all samples with human fecal pollution showed a positive DNA-DNA hybridization result with the BDE probe, none of those with animal fecal pollution did. Therefore, this finding supports the potential use of this probe in detecting fecal pollution of human origin.  相似文献   

5.
6.
A study was conducted to determine the primary sources of fecal pollution in a subtropical watershed using host-specific assays developed in temperate regions. Water samples (n = 534) from 10 different sites along the Rio Grande de Arecibo (RGA) watershed were collected mostly on a weekly basis (54 sampling events) during 13 months. DNA extracts from water samples were used in PCR assays to determine the occurrence of fecal bacteria (Bacteroidales, Clostridium coccoides, and enterococci) and human-, cattle-, swine-, and chicken-specific fecal sources. Feces from 12 different animals (n = 340) and wastewater treatment samples (n = 16) were analyzed to determine the specificity and distribution of host-specific assays. The human-specific assay (HF183) was found to be highly specific, as it did not cross-react with nontarget samples. The cattle marker (CF128) cross-reacted to some extent with swine, chicken, and turkeys and was present in 64% of the cattle samples tested. The swine assays showed poor host specificity, while the three chicken assays showed poor host distribution. Differences in the detection of host-specific markers were noted per site. While human and cattle assays showed moderate average detection rates throughout the watershed, areas impacted by wastewater treatment plants and cattle exhibited the highest prevalence of these markers. When conditional probability for positive signals was determined for each of the markers, the results indicated higher confidence levels for the human assay and lower levels for all the other assays. Overall, the results from this study suggest that additional assays are needed, particularly to track cattle, chicken, and swine fecal pollution sources in the RGA watershed. The results also suggest that the geographic stability of genetic markers needs to be determined prior to conducting applied source tracking studies in tropical settings.  相似文献   

7.
Accurate assessment of health risks associated with bovine (cattle) fecal pollution requires a reliable host-specific genetic marker and a rapid quantification method. We report the development of quantitative PCR assays for the detection of two recently described bovine feces-specific genetic markers and a method for the enumeration of these markers using a Markov chain Monte Carlo approach. Both assays exhibited a range of quantification from 25 to 2 × 106 copies of target DNA, with a coefficient of variation of <2.1%. One of these assays can be multiplexed with an internal amplification control to simultaneously detect the bovine-specific genetic target and presence of amplification inhibitors. The assays detected only cattle fecal specimens when tested against 204 fecal DNA extracts from 16 different animal species and also demonstrated a broad distribution among individual bovine samples (98 to 100%) collected from five geographically distinct locations. The abundance of each bovine-specific genetic marker was measured in 48 individual samples and compared to quantitative PCR-enumerated quantities of rRNA gene sequences representing total Bacteroidetes, Bacteroides thetaiotaomicron, and enterococci in the same specimens. Acceptable assay performance combined with the prevalence of DNA targets across different cattle populations provides experimental evidence that these quantitative assays will be useful in monitoring bovine fecal pollution in ambient waters.  相似文献   

8.
Calves make up about 16% of the current bovine population in the United States and can excrete high levels of human pathogens in their feces. We describe the density and distribution of genetic markers from 9 PCR- and real-time quantitative PCR-based assays, including CF128, CF193, CowM2, CowM3, GenBac3, Entero1, EC23S857, CampF2, and ttr-6, commonly used to help assess ambient surface water quality. Each assay was tested against a collection of 381 individual bovine fecal samples representing 31 mother and calf pairings collected over a 10-month time period from time of birth through weaning. Genetic markers reported to be associated with ruminant and/or bovine fecal pollution were virtually undetected in calves for up to 115 days from birth, suggesting that physiological changes in calf ruminant function impact host-associated genetic marker shedding. In addition, general fecal indicator markers for Bacteroidales, Escherichia coli, and Enterococcus spp. exhibited three separate trends across time, indicating that these bacteria respond differently to age-related physiological and dietary changes during calf development. The results of this study suggest that currently available PCR-based water quality indicator technologies can under- or overestimate fecal pollution originating from calves and identify a need for novel calf-associated source identification methods.  相似文献   

9.
Exposure to feces in two watersheds with different management histories was assessed by tracking cattle feces bacterial populations using multiple host-specific PCR assays. In addition, environmental factors affecting the occurrence of these markers were identified. Each assay was performed using DNA extracts from water and sediment samples collected from a watershed directly impacted by cattle fecal pollution (WS1) and from a watershed impacted only through runoff (WS2). In WS1, the ruminant-specific Bacteroidales 16S rRNA gene marker CF128F was detected in 65% of the water samples, while the non-16S rRNA gene markers Bac1, Bac2, and Bac5 were found in 32 to 37% of the water samples. In contrast, all source-specific markers were detected in less than 6% of the water samples from WS2. Binary logistic regressions (BLRs) revealed that the occurrence of Bac32F and CF128F was significantly correlated with season as a temporal factor and watershed as a site factor. BLRs also indicated that the dynamics of fecal-source-tracking markers correlated with the density of a traditional fecal indicator (P < 0.001). Overall, our results suggest that a combination of 16S rRNA gene and non-16S rRNA gene markers provides a higher level of confidence for tracking unknown sources of fecal pollution in environmental samples. This study also provided practical insights for implementation of microbial source-tracking practices to determine sources of fecal pollution and the influence of environmental variables on the occurrence of source-specific markers.  相似文献   

10.
Bacteroides species are promising indicators for differentiating livestock and human fecal contamination in water because of their high concentration in feces and potential host specificity. In this study, a real-time PCR assay was designed to target Bacteroides species (AllBac) present in human, cattle, and equine feces. Direct PCR amplification (without DNA extraction) using the AllBac assay was tested on feces diluted in water. Fecal concentrations and threshold cycle were linearly correlated, indicating that the AllBac assay can be used to estimate the total amount of fecal contamination in water. Real-time PCR assays were also designed for bovine-associated (BoBac) and human-associated (HuBac) Bacteroides 16S rRNA genes. Assay specificities were tested using human, bovine, swine, canine, and equine fecal samples. The BoBac assay was specific for bovine fecal samples (100% true-positive identification; 0% false-positive identification). The HuBac assay had a 100% true-positive identification, but it also had a 32% false-positive rate with potential for cross-amplification with swine feces. The assays were tested using creek water samples from three different watersheds. Creek water did not inhibit PCR, and results from the AllBac assay were correlated with those from Escherichia coli concentrations (r2 = 0.85). The percentage of feces attributable to bovine and human sources was determined for each sample by comparing the values obtained from the BoBac and HuBac assays with that from the AllBac assay. These results suggest that real-time PCR assays without DNA extraction can be used to quantify fecal concentrations and provide preliminary fecal source identification in watersheds.  相似文献   

11.
Zhang J  Yang S  Xie Y  Chen X  Zhao Y  He D  Li J 《Cancer epidemiology》2012,36(1):73-77
Background: To investigate the feasibility of detecting methylated tissue factor pathway inhibitor (TFPI2) and quantifying human long DNA with fluorescent quantitative Alu PCR in fecal DNA as a non-invasive screening tool for colorectal cancer (CRC). Materials and Methods: Methylation-specific PCR (MSP) was performed to analyze TFPI2 gene promoter methylation status in a blinded fashion in stool samples taken from 30 endoscopically diagnosed healthy controls, 20 patients with adenomas, and 60 patients with colorectal cancer. Real-time Alu PCR was used to quantify human long DNA. Results: The specificity of fecal TFPI2 MSP assay and long DNA assay was 100% and 83.3%, respectively. The sensitivity of fecal TFPI2 MSP assay and long DNA assay was 68.3% and 53.3%, respectively. The sensitivity of fecal DNA assay (either marker being positive) was 86.7%, which was high for CRC. Conclusions: Our results have demonstrated the feasibility of using TFPI2 methylation and quantify human long DNA with fluorescent quantitative Alu PCR in fecal samples as a new noninvasive test for CRC.  相似文献   

12.
There are numerous PCR-based assays available to characterize bovine fecal pollution in ambient waters. The determination of which approaches are most suitable for field applications can be difficult because each assay targets a different gene, in many cases from different microorganisms, leading to variation in assay performance. We describe a performance evaluation of seven end-point PCR and real-time quantitative PCR (qPCR) assays reported to be associated with either ruminant or bovine feces. Each assay was tested against a reference collection of DNA extracts from 247 individual bovine fecal samples representing 11 different populations and 175 fecal DNA extracts from 24 different animal species. Bovine-associated genetic markers were broadly distributed among individual bovine samples ranging from 39 to 93%. Specificity levels of the assays spanned 47.4% to 100%. End-point PCR sensitivity also varied between assays and among different bovine populations. For qPCR assays, the abundance of each host-associated genetic marker was measured within each bovine population and compared to results of a qPCR assay targeting 16S rRNA gene sequences from Bacteroidales. Experiments indicate large discrepancies in the performance of bovine-associated assays across different bovine populations. Variability in assay performance between host populations suggests that the use of bovine microbial source-tracking applications will require a priori characterization at each watershed of interest.The ability to discriminate between bovine and other sources of fecal contamination is necessary for the accurate evaluation of human health risks associated with agricultural runoff and focused water quality management to make waters safe for human use. Many methods have been proposed to identify bovine fecal pollution using a variety of different microbiology and molecular techniques. One of the most widely used approaches utilizes a PCR to amplify a gene target that is specifically found in a host population. Currently, there are numerous PCR-based assays for the detection and/or quantitative assessment of bovine fecal pollution available for microbial source-tracking (MST) applications (1, 5-7, 11, 14, 17, 18, 21, 23). These assays target genes ranging from mitochondrial DNA to ribosomal rRNA to other functional genes involved in microorganism-host interactions.The majority of the reported bovine-associated PCR assays target 16S rRNA genes from the order Bacteroidales. This bacterial group constitutes a large proportion of the normal gut microbiota of most animals, including bovines (28), and contains subpopulations closely associated with other animal hosts such as swine, horse, and human (1, 3, 6, 18, 24). Host-associated PCR-based assays targeting Bacteroidales genetic markers have been used to investigate the sources and levels of fecal pollution at a number of beaches and inland watersheds, with variable levels of success (10, 13, 22, 27). Researchers have postulated that differences in host animal age, health, diet, and geographic location may influence bacterial community structures in the bovine gastrointestinal tract (2, 9, 26). Without a priori knowledge of the potential representational bias introduced by such factors, it may be difficult to use these assays with confidence as indicators of bovine fecal pollution.Assay specificity and sensitivity and the prevalence and abundance of genetic marker determinations are typically estimated from the systematic testing of a collection of reference fecal sources collected from known animal sources. However, the characterization of assay performance has been limited, in most cases, to animal sources originating from a particular geographic region or industry, such as dairy or beef. The determination of assay performance across a range of different host populations is essential as the field moves toward the implementation of PCR-based host-associated fecal pollution assessment approaches.We report a performance study of seven PCR and quantitative PCR (qPCR) assays targeting Bacteroidales genes reported to be associated with either ruminant (e.g., bovine, goat, sheep, deer, and others) or bovine feces. Each assay was tested against a reference collection of DNA extracts from 247 individual bovine fecal samples representing 11 different populations. Assay specificity was determined by testing 175 fecal DNA extracts from 24 different animal species. For qPCR assays, the abundance of each genetic marker was measured within each bovine population and compared to quantities of Bacteroidales 16S rRNA genetic markers. These analyses indicated large discrepancies in assay performance across different bovine populations.  相似文献   

13.
Escherichia coli, total coliforms, fecal coliforms, and sulfite-reducing anaerobic spore formers from different polluted sites in a tropical environment were determined in order to test for their indication ability for fecal contamination. Quantification of E. coli contamination with Chromocult coliform agar proved to be efficient and feasible for determining fecal pollutions in the investigated area within 24 h. The other microbial parameters showed a lower ability to differentiate sites and cannot be recommended for monitoring fecal pollution in the studied tropical surface waters.  相似文献   

14.
15.
Fecal pollution of water resources is an environmental problem of increasing importance. Identification of individual host sources of fecal Escherichia coli, such as humans, pets, production animals, and wild animals, is prerequisite to formulation of remediation plans. Ribotyping has been used to distinguish fecal E. coli of human origin from pooled fecal E. coli isolates of nonhuman origin. We have extended application of this technique to distinguishing fecal E. coli ribotype patterns from human and seven individual nonhuman hosts. Classification accuracy was best when the analysis was limited to three host sources. Application of this technique to identification of host sources of fecal coliforms in water could assist in formulation of pollution reduction plans.  相似文献   

16.
Different types of water bodies, including lakes, streams, and coastal marine waters, are often susceptible to fecal contamination from a range of point and nonpoint sources, and have been evaluated using fecal indicator microorganisms. The most commonly used fecal indicator is Escherichia coli, but traditional cultivation methods do not allow discrimination of the source of pollution. The use of triplex PCR offers an approach that is fast and inexpensive, and here enabled the identification of phylogroups. The phylogenetic distribution of E. coli subgroups isolated from water samples revealed higher frequencies of subgroups A1 and B23 in rivers impacted by human pollution sources, while subgroups D1 and D2 were associated with pristine sites, and subgroup B1 with domesticated animal sources, suggesting their use as a first screening for pollution source identification. A simple classification is also proposed based on phylogenetic subgroup distribution using the w-clique metric, enabling differentiation of polluted and unpolluted sites.  相似文献   

17.
Assessment of health risk and fecal bacterial loads associated with human fecal pollution requires reliable host-specific analytical methods and a rapid quantification approach. We report the development of quantitative PCR assays for quantification of two recently described human-specific genetic markers targeting Bacteroidales-like cell surface-associated genes. Each assay exhibited a range of quantification from 10 to 1 × 106 copies of target DNA. For each assay, internal amplification controls were developed to detect the presence or absence of amplification inhibitors. The assays predominantly detected human fecal specimens and exhibited specificity levels greater than 97% when tested against 265 fecal DNA extracts from 22 different animal species. The abundance of each human-specific genetic marker in primary effluent wastewater samples collected from 20 geographically distinct locations was measured and compared to quantities estimated by real-time PCR assays specific for rRNA gene sequences from total Bacteroidales and enterococcal fecal microorganisms. Assay performances combined with the prevalence of DNA targets in sewage samples provide experimental evidence supporting the potential application of these quantitative methods for monitoring fecal pollution in ambient environmental waters.Waterborne diseases that originate from human fecal pollution remain a significant public health issue. As a result, a large number of methods have been developed to detect and quantify human fecal pollution (10, 12, 18, 20). The majority of these methods are based on real-time quantitative PCR (qPCR) assays designed to estimate the concentrations of 16S rRNA gene sequences from various subpopulations within the order Bacteroidales. This bacterial order constitutes a large proportion of the normal gut microbiota of most animals, including humans (3, 15, 27). Bacterial 16S rRNA genes are useful as markers because they have relatively low mutation rates (7) and are typically present in multiple operons, increasing template DNA levels available for detection (2, 11, 17, 29). While several studies have demonstrated the value of Bacteroides 16S rRNA gene-based qPCR assays, currently available assays cannot discriminate between several animal sources closely associated with humans, including cats, dogs, and/or swine (10, 12, 18, 20). Alternative qPCR assays targeting genes directly involved in host-specific interactions may be capable of increased discrimination of fecal pollution sources (22, 23) and are needed to complement existing qPCR-based approaches used to identify sources of human fecal pollution.A recent metagenomic survey of a human fecal bacterial community using genome fragment enrichment has led to the identification of hundreds of candidate human fecal bacterium-specific DNA sequences (23). PCR assays targeting two gene sequences encoding a hypothetical protein potentially involved in remodeling of bacterial surface polysaccharides and lipopolysaccharides (assay 19) and a putative RNA polymerase extracytoplasmic function sigma factor (assay 22) from Bacteroidales-like microorganisms exhibited a high level of specificity (100%) for human fecal material (23). However, it remained to be determined whether these reported chromosomal DNA sequences are abundant and uniform enough within human populations to be detected once diluted in the environment. On the basis of these considerations, the next steps toward the application of these gene sequences for water quality monitoring applications were to design qPCR assays for their detection and then to use these assays to evaluate the overall abundance and distribution of these sequences in human populations relative to those of rRNA gene sequences from different currently recognized fecal indicator bacterial groups.Here, we report the development of two qPCR assays for quantification of the human-specific DNA sequences targeted by previously reported PCR assays 19 and 22 (23). Method performance characteristics, including specificity, range of quantification (ROQ), limit of quantification, amplification efficiency, and analytical precision, were defined for each assay. An internal amplification control (IAC) was designed to monitor for the presence of inhibitors commonly associated with environmental sampling that can confound DNA target copy number estimations. Finally, the abundance of each DNA target in primary effluent wastewater samples representative of 20 geographically distinct human populations was measured by qPCR analysis. In addition, the abundances of these human-specific DNA genes in wastewater were compared to those of rRNA genes of Bacteroidales and enterococci, two general fecal indicator bacterial groups that have been widely used for water quality testing.  相似文献   

18.
In this study, we evaluated the specificity, distribution, and sensitivity of Prevotella strain-based (PF163 and PigBac1) and methanogen-based (P23-2) PCR assays proposed to detect swine fecal pollution in environmental waters. The assays were tested against 222 fecal DNA extracts derived from target and nontarget animal hosts and against 34 groundwater and 15 surface water samples from five different sites. We also investigated the phylogenetic diversity of 1,340 “Bacteroidales” 16S rRNA gene sequences derived from swine feces, swine waste lagoons, swine manure pits, and waters adjacent to swine operations. Most swine fecal samples were positive for the host-specific Prevotella-based PCR assays (80 to 87%), while fewer were positive with the methanogen-targeted PCR assay (53%). Similarly, the Prevotella markers were detected more frequently than the methanogen-targeted assay markers in waters historically impacted with swine fecal contamination. However, the PF163 PCR assay cross-reacted with 23% of nontarget fecal DNA extracts, although Bayesian statistics suggested that it yielded the highest probability of detecting pig fecal contamination in a given water sample. Phylogenetic analyses revealed previously unknown swine-associated clades comprised of clones from geographically diverse swine sources and from water samples adjacent to swine operations that are not targeted by the Prevotella assays. While deeper sequencing coverage might be necessary to better understand the molecular diversity of fecal Bacteroidales species, results of sequence analyses supported the presence of swine fecal pollution in the studied watersheds. Overall, due to nontarget cross amplification and poor geographic stability of currently available host-specific PCR assays, development of additional assays is necessary to accurately detect sources of swine fecal pollution.The size of swine farming operations has increased significantly during the last few decades as a result of the high demand for pork products. In fact, pork is now considered the most popular meat worldwide (15). In the United States, the number of large confined swine animal units increased by 3 orders of magnitude from 1982 to 1997 (18), making the swine industry among the top three producers of domesticated animal feces. A direct consequence of this trend is the increase in swine fecal waste, which in turn has raised environmental concerns. When introduced to water, swine fecal waste can present a risk to human health because this waste can harbor a variety of human pathogens (5, 13, 15, 21, 36). The diversity and relatively high frequency of human pathogens in swine feces make swine important reservoirs of zoonotic pathogens. Moreover, the marked increase in the number of large operations has resulted in increased manure production and application in small geographic areas, creating an imbalance between the assimilative capacity of manure-treated farmland and the amount of manure nutrients produced on each farm. This imbalance is evidenced by the 20% increase (from 1982 to 1997) in nitrogen and phosphorus produced in swine operations, thus potentially contributing to the detrimental eutrophication of aquatic ecosystems (18). Swine manure spills and leaks are commonplace in the top hog production states, such as Iowa and North Carolina, due to failure or overflow of manure storage, uncontrolled runoff from open feedlots, improper manure application on cropland, deliberate pumping of manure onto the ground, and intentional breaches in storage lagoons (28, 37).Recently, swine-associated PCR-based methods targeting members of the “Bacteroidales” order (i.e., Prevotella species) and methanogen populations (12, 29, 35) have been proposed to discriminate swine fecal pollution events from other potential fecal contributions (i.e., human, bovine, and wildlife) to environmental waters. Nevertheless, the value of these assays in reliably detecting fecal pollution sources in watershed-based studies has not been thoroughly investigated. The main goals of this study were to determine host specificity, frequency of detection, and detection limits of currently available swine-associated PCR-based, microbial source tracking assays. To achieve these objectives, assays were tested against swine and nontarget fecal samples, samples from swine manure pits and swine waste lagoons, and water samples presumed to be impacted by swine fecal sources. Furthermore, we investigated the phylogenetic diversity of Bacteroidales 16S rRNA gene sequences derived from some of the aforementioned samples to resolve the level of specificity, relative abundance, and environmental occurrence of Bacteroidales-specific 16S rRNA gene sequences.  相似文献   

19.
Bifidobacteria are one of the most common bacterial types found in the intestines of humans and other animals and may be used as indicators of human fecal pollution. The presence of nine human-related Bifidobacterium species was analyzed in human and animal wastewater samples of different origins by using species-specific primers based on 16S rRNA sequences. Only B. adolescentis and B. dentium were found exclusively in human sewage. A multiplex PCR approach with strain-specific primers was developed. The method showed a sensitivity threshold of 10 cells/ml. This new molecular method could provide useful information for the characterization of fecal pollution sources.  相似文献   

20.
Molecular methods for quantifying defined Bacteroidales species from the human gastrointestinal tract may have important clinical and environmental applications, ranging from diagnosis of infections to fecal source tracking in surface waters. In this study, sequences from the V2 region of the small subunit ribosomal RNA gene were targeted in the development of qPCR assays to quantify DNA from six Bacteroides and one Prevotella species. In silico and experimental analyses suggested that each of the assays was highly discriminatory in detecting DNA from the intended species. Analytical sensitivity, precision and ranges of quantification were demonstrated for each assay by coefficients of variation of less than 2% for cycle threshold measurements over a range from 10 to 4 × 104 target sequence copies. The assays were applied to assess the occurrence and relative abundance of their target sequences in feces from humans and five animal groups as well as in 14 sewage samples from 13 different treatment facilities. Sequences from each of the species were detected at high levels (>103 copies/ng total extracted DNA) in human wastes. Sequences were also detected by each assay in all sewage samples and, with exception of the Prevotella sequences, showed highly correlated (R2 ≥ 0.7) variations in concentrations between samples. In contrast, the occurrence and relative abundance profiles of these sequences differed substantially in the fecal samples from each of the animal groups. These results suggest that analyses for multiple individual Bacteroidales species may be useful in identifying human fecal pollution in environmental waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号