首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The anatomy and histology of the adult Argas (Persicargas) arboreus central nervous system are described and compared with these properties in other ticks. The single, integrated, central nerve mass (CNM) is formed by a fused supra-esophageal part (protocerebrum, cheliceral ganglia, palpal ganglia, and stomodeal pons) and a subesophageal part (4 pairs of pedal ganglia and the complex opisthosomatic ganglion). Single peripheral nerves (pharyngeal and recurrent) and paired peripheral nerves (compound protocerebral, cheliceral, palpal, pedal and opisthosomatic) extend from the CNM to body organs and appendages. Optic nerves, described in other Argas species, are not found in A. (P.) arboreus. Histologically, the CNM is enclosed by a thin-walled periganglionic blood sinus and invested by a collagenous neural lamella followed by a perineurial layer composed of glial cells and containing fine reticular spaces, a cortical layer of association, motor and neurosecretory cell bodies and glial cells, and inner neuropile regions of fiber tracts forming 5 horizontal levels of connectives and commissures.  相似文献   

2.
The synganglion of Dermacentor variabilis Say is a single nerve mass, condensed around the esophagus and within the periganglionic sinus of the ciculatory system. Protocerebral, cheliceral (including stomodeal bridge), and pedipalpal ganglia lie in the pre-esophageal portion of the nerve mass and bear optic, cheliceral, and pedipalpal nerves respectively. The unpaired stomodeal and the recurrent nerve which forms the hyper-esophageal ganglion arise from the stomodeal bridge. Paired primary and accessory nerves to the retrocerebral organ complex have mixed protocerebral-cheliceral origins. Pedal ganglia (including ventral olfactory lobes of pedal ganglia I) and composite opisthosomal ganglion lie in the post-esophageal nerve mass and bear pedal nerve trunks and two pairs of opisthosomal nerves respectively. Internally, the synganglion consists of cellular rind and fibrous core. A welldefined neurilemma with a laminar matrix covers nerve mass and peripheral nerves. The rind contains the somata of ganglionic neurons and ensheathing glial cells and is restricted to the synganglion mass. It is limited by two specialized glial layers, the external perineurium and internal subperineurium. Discrete glomerular formations are present within the protocerebrum and olfactory lobes. Olfactory glomeruli located in pedal ganglia I are associated with a pair of globuli cell groups. Possible physiological relationships between anatomical specializations of the synganglion, extraneural sinuses and circulating hemocytes are considered. The evolutionary significances of condensation in the stomatogastric neuropile regions and throughout the synganglion, together with the simplification and loss of glomerular formations, are discussed.  相似文献   

3.
The central nervous system of Ixodes scapularis is fused into a single compact synganglion. The esophagus runs through the synganglion and divides it into supraesophageal and subesophageal parts. The supraesophageal portion contains a single protocerebrum with four pairs of glomeruli, paired optic lobes and cheliceral ganglia, and a single stomodeal bridge. The subesophageal portion contains a centrally located network of commissures and connectives, a pair of palpal ganglia, paired olfactory lobes of the first pedal ganglia, four pairs of pedal ganglia, and a single opisthosomal ganglion. A retrocerebral organ complex (ROC) in close vicinity of the digestive tract, as described in some other tick species, apparently is lacking. Perhaps the function of the ROC is performed by the paired, large, ganglion-like bodies that lie anterolaterad to the cheliceral ganglia. The rind, which is formed from the neuronal somata and glial cells, surrounds the central fibrous core or neuropile. Neurosecretory cells (NSC) are distinct among rind cells due to their large size and concentration of cytoplasmic neurosecretions. NSC are present throughout the synganglion, although the subesophageal portion contains larger groups of these cells. Histological serial sections, stained with Meola's (Trans Am Microsc Soc 89:66-71, '70) paraldehyde fuchsin (PAF) procedure revealed 24 PAF-stained, putative neurosecretory regions in the synganglion of virgin, unfed females. All of these regions appear to be connected and associated with the nearest ganglion and are correspondingly named. Eighteen PAF-positive regions occur in the synganglion. In addition, PAF-negative (green-stained) cells occupy 6 distinct regions in the synganglion of unfed, unmated females.  相似文献   

4.
Although the order Opiliones constitutes the third‐largest group of arachnids, this creature is still mysterious and has a rich unexplored field compared to what is known about insects and crustaceans. The order Opiliones is traditionally regarded as a close relative of mites, mainly because of morphological similarities in external body structure; however microstructural organization of the ganglionic neurons and nerves in the harvestman Leiobunum japonicum is quite similar to the central nervous system (CNS) in all extant arachnids. The CNS consists of a large neural cluster with paired appendicular nerves. The esophagus passes through the neural cluster and divides it into the upper supraesophageal ganglion (SpG) and the lower subesophageal ganglion (SbG). The dorsal part of the SpG has a quite condensed cell body compared with other parts of the CNS and has two main components, the protocerebrum and the cheliceral ganglion. The protocerebrum receives the optic nerves and has four main groups of neuropiles from the optic lobes, the superior central body, the lateral neuropils (corpora pedunculata) and the inferior neuropil. However, a pair of pedipalpal and four pairs of appendage nerves including several pairs of abdominal nerves arise from the nerve masses of the SbG.  相似文献   

5.
The supraesophageal ganglion of the wolf spider Arctosa kwangreungensis is made up of a protocerebral and tritocerebral ganglion, whereas the subesophageal ganglionic mass is composed of a single pair of pedipalpal ganglia, four pairs of appendage ganglia, and a fused mass of abdominal neuromeres. In the supraesophageal ganglion, complex neuropile masses are located in the protocerebrum which include optic ganglia, the mushroom bodies, and the central body. Characteristically, the only nerves arising from the protocerebrum are the optic nerves, and the neuropiles of the principal eyes are the most thick and abundant in this wandering spider. The central body which is recognized as an important association center is isolated at the posterior of the protocerebrum and appears as a complex of highly condensed neurons. These cells give off fine parallel bundles of axons arranged in the mushroom bodies. The subesophageal nerve mass can be divided into two main tracts on the basis of direction of the neuropiles. The dorsal tracts are contributed to from the motor or interneurons of each ganglion, whereas the ventral tracts are from incoming sensory axons.  相似文献   

6.
ABSTRACT Central nervous system (CNS) of arachnids is still mysterious and has a rich unexplored field compare to what is known in insects or crustaceans. The CNS of the spider, Achaearanea tepidariorum, consists of a dorsal brain or supraesophageal ganglion and circumesophageal connectives joining it to the subesophageal mass. As the segmentation of the arachnid brain is still under discussion, we classify the brain as a protocerebral and tritocerebral ganglion depending on the evidences which generally accepted. The subesophageal nerve mass underneath the brain is the foremost part of the ventral nerve cord. All of this nerve mass is totally fused together, and forming subesophageal ganglia in this spider. In the brain, the nerve cells are packed in the frontal, dorsal and lateral areas, but are not absent from the posterior and ventral regions. In addition, the nerve cells of the subesophageal and abdominal ganglia are only restricted to the ventral and ventolateral regions. The CNS of the spider, Achaearanea tepidariorum is similar in feature to the Family Araneidae.  相似文献   

7.
The central nervous system of freshwater pulmonary molluscs Lymnaea stagnalis and Planorbarins corneus was stained by the method of neurobiotin retrograde transport along optic nerve fibers. In the animals of both species, bodies and fibers of stained neurons are found in all ganglia except for the buccal ones. Afferent fibers of the optic nerve form a dense sensor neuropil located in a small volume of cerebral ganglia. Characteristic groups of neurons sending their processes into optic nerves both of ipsi- and of contralateral half of the body are described. Revealed among them are neurons of visceral and parietal ganglia, which simultaneously innervate both eyes as well as give projections into peripheral nerves. It is suggested that these neurons can perform function of integration of sensor signals and, on its base, regulate photosensitivity of retina as well as activity of peripheral organs. There is established the presence of bilateral connections of the mollusc eye with cells of pedal ganglia and statocysts, which seems to be the structural basis of manifestation of the known behavior forms associated with stimulation of visual inputs of the studied gastropod molluscs.  相似文献   

8.
Control of leech swimming activity by the cephalic ganglia   总被引:2,自引:0,他引:2  
We investigated the role played by the cephalic nervous system in the control of swimming activity in the leech, Hirudo medicinalis, by comparing swimming activity in isolated leech nerve cords that included the head ganglia (supra- and subesophageal ganglia) with swimming activity in nerve cords from which these ganglia were removed. We found that the presence of these cephalic ganglia had an inhibitory influence on the reliability with which stimulation of peripheral (DP) nerves and intracellular stimulation of swim-initiating neurons initiated and maintained swimming activity. In addition, swimming activity recorded from both oscillator and motor neurons in preparations that included head ganglia frequently exhibited irregular bursting patterns consisting of missed, weak, or sustained bursts. Removal of the two head ganglia as well as the first segmental ganglion eliminated this irregular activity pattern. We also identified a pair of rhythmically active interneurons, SRN1, in the subesophageal ganglion that, when depolarized, could reset the swimming rhythm. Thus the cephalic ganglia and first segmental ganglion of the leech nerve cord are capable of exerting a tonic inhibitory influence as well as a modulatory effect on swimming activity in the segmental nerve cord.  相似文献   

9.
The general morphology of the central nervous system is analysed in intact females of the predatory mite, Phytoseiulus persimilis (Acari: Phytoseiidae), using a nucleic acid label (YOYO-1) and confocal laser scanning microscopy. The somata of all cells that comprise the synganglion reside in the cortex. The cortex harbours an estimated total of 10,000 cells. The somata are densely packed in the cortex and cells residing in the inner cortex may only occupy about 1.8 μm. As in all Arachnida, the synganglion is divided in a sub- and a supra-oesophageal nervous mass. Both the cortex and the neuropil appear continuous between these two nervous masses. The sub-oesophageal nervous mass mainly consists of the four paired pedal ganglia that are each associated with a leg. The prominent olfactory lobes are ventrally associated with the first pedal ganglia. A small opisthosomal ganglion occupies the most caudal part of the sub-oesophageal ganglion. The rostral part of the supra-oesophageal nervous mass consists of the paired cheliceral and palpal ganglia. The supra-oesophageal ganglion is the largest ganglion in the supra-oesophageal nervous mass and unlike all other ganglia it is not associated with any of the major nerves. It is therefore more likely involved in secondary information processing.  相似文献   

10.
Distribution of GABA-like immunoreactive neurons in the slug Limax maximus   总被引:2,自引:0,他引:2  
Summary Immunohistochemical techniques were used to study the distribution of gamma-amino butyric acid (GABA)-like immunoreactive neurons in the nervous system of the slug Limax maximus. Approximately 170 GABA-like immunoreactive cell bodies were found in the central nervous system. These were located in the cerebral, buccal and pedal ganglia. Most GABA-like immunoreactive neurons had small cell bodies, which were aggregated into discrete clusters within the cerebral and pedal ganglia. Three pairs of longer, uniquely identifiable, GABA-like immunoreactive cells were found in the cerebral ganglion. GABA-like immunoreactive nerve fibres were also found in all of the central ganglia but were absent from peripheral nerves. These results suggest that GABA acts as a central neurotransmitter in the slug. The possible roles of GABA-ergic neurotransmission in the slug are discussed.  相似文献   

11.
Summary In Cupiennius salei (Ctenidae), as in other spiders, the central nervous system is divided into the supraoesophageal ganglion or brain and the suboesophageal ganglia (Fig. 1). The two masses are interconnected by oesophageal connectives. The brain gives off four pairs of optic and one pair of cheliceral nerves. From the suboesophageal ganglia arise a pair of pedipalpal, four pairs of leg, and several pairs of opisthosomal nerves (Fig. 2). 1. Cell types. In the brain a total of 50900 cells were counted, in the suboesophageal ganglia 49000. They are all monopolar cells, found in the ganglion periphery and may be classified into four types: (a) Small globuli cells (nuclear diameter 6–7 m) forming a pair of compact masses in the protocerebrum (Fig. 10b); (b) Small and numerous cells (cell diameter 12–20 m) with processes forming the bulk of the neuropil in the brain and suboesophageal ganglia; (c) Neurosecretory cells (cell diameter ca. 45 m) in the brain and suboesophageal ganglia; (d) Large motor and interneurons (cell daimeter 40–112 m), mostly in the suboesophageal ganglia (Figs. 10a and c). 2. Suboesophageal mass. The cell bodies form a sheet of one to several cell layers on the ventral side of each ganglion and are arranged in groups. Three such groups were identified as motor neurons, four as interneurons. At the dorsal, dorso-lateral, and mid-central parts of the ganglion there are no cell somata. The fibre bundles arising from them form identifiable transverse commissural pathways (Fig. 9b). They form the fibrous mass in the central part of the suboesophageal mass.Neuropil is well-formed in association with the sensory terminations of all major nerves (Fig. 9a). As these proceed centrally they break up into five major sensory tracts forming five layers one above the other. There are six pairs of additional major longitudinal tracts arranged at different levels dorsoventrally (Fig. 8). They ascend into the brain through the oesophageal connectives and terminate mostly in the mushroom bodies and partly in the central body. 3. Protocerebrum. Fine processes of the globuli cells form the most important neuropil mass in the fibrous core, called the mushroom bodies. These consist of well developed glomeruli, hafts, and bridge which are interconnected with the optic masses of the lateral eyes and most fibre tracts from the brain and suboesophageal mass (Fig. 7). The median eye nerves form a small optic lamella and optic ganglia, connected to the central body through an optic tract. Each posterior median and posterior lateral eye nerve ends in large optic lamellae (Fig. 13a). These are connected through chiasmata to a large optic mass where fibres from globuli cells form conspicuous glomeruli. There are 10–12 large fibres (diameter 9 m) of unknown origin on each side, terminating in the optic lambella of the posterior lateral eye.The central body, another neuropil mass (Fig. 13b) in the protocerebrum, is well developed in Cupiennius and located transversely in its postero-dorsal region (Fig. 10d). It consists of two layers and is interconnected with optic masses of the median and lateral eyes through optic tracts. Fibre tracts from the brain and suboesophageal mass join the central body.  相似文献   

12.
Central nervous system of freshwater pulmonate molluscs Lymnaea stagnalis and Planorbarius corneus was stained using retrograde transport of neurobiotin in the optic tract fibers. In both species, perikarya and fibers of the stained neurons are found in all ganglia except the buccal ones. Afferent fibers of the optic nerve form dense sensory neuropil located in relatively small volume of cerebral ganglia. Typical neuronal groups sending their processes into the optic nerves of ipsilateral and contralateral body halves are described. Among them, neurons of visceral and parietal ganglia innervating both eyes concurrently as well as sending projections into peripheral nerves are revealed. These neurons, supposedly, have a function to integrate sensory signals, which may be a basis for regulation of light sensitivity of retina and functioning of peripheral organs. Bilateral links of the molluscan eye with the pedal ganglia cells and statocysts are found, which is, likely, a structural basis of certain known behavioral patterns related to stimulation of visual inputs in the studied gastropod molluscs.  相似文献   

13.
14.
Late stages of embryogenesis in the terrestrial snail Helix aspersa L. were studied and a developmental timetable was produced. The distribution of gamma-aminobutyric acid-like immunoreactive (GABA-ir) elements in the CNS of the snail was studied from embryos to adulthood in wholemounts. In adults, approximately 226 GABA-ir neurons were located in the buccal, cerebral and pedal ganglia. The population of GABA-ir cells included four pairs of buccal neurons, three neuronal clusters in the pedal ganglia, two clusters and six single neurons in the cerebral ganglia. GABA-ir fibers were observed in all ganglia and in some nerves. The first detected pair of GABA-ir cells in the embryos appeared in the buccal ganglia at about 63–64% of embryonic development. Five pairs of GABA-ir cell bodies were observed in the cerebral ganglia at about 64–65% of development. During the following 30% of development three more pairs of GABA-ir neurons were detected in the buccal ganglia and over fifteen cells were detected in each cerebral ganglion. At the stage of 70% of development, the first pair of GABA-ir neurons was found in the pedal ganglia. In the suboesophageal ganglion complex, GABA-ir fibers were first detected at about 90% of embryonic development. In the posthatching period, the quantity of GABA-ir neurons reached the adult status in four days in the cerebral ganglia, and in three weeks in the pedal ganglia. In juveniles, transient expression of GABA was found in the pedal ganglia (fourth cluster).  相似文献   

15.
脉红螺(Rapana Venosa)神经系统解剖的初步研究   总被引:11,自引:0,他引:11  
李国华  程济民 《动物学报》1990,36(4):345-351
本文对腹足纲、狭舌目、骨螺科的脉红螺神经系统的大体解剖和组织学进行了初步研究。脉红螺神经系统头向集中程度较高,神经节愈合现象较为明显。切片上观察,中枢神经节均由神经节被膜、胞体区和神经纤维网构成;形态上相似的神经细胞有集中分布的现象。  相似文献   

16.
A band of flexible cuticle encircles the deutonymph, separating the dorsal and ventral plates. The coxae are large, flat and fused with one another to form most of the ventor. Individual coxal margins are redefined as sternites, epimerites or simply apodemes according to which margins fuse with which others. A given area of cuticle may have patches of dark or light cuticle not corresponding to particular structures or cuticular contours; this is a source of confusion to taxonomists. Each leg has a dicondylic coxal-trochantal (adduction-abduction) and trochantal-femoral (promotion-remotion) joint with opposing muscles. The three more distal monocondylic joints (flexion-extension) have only flexor muscles; extension is by increased haemolymph pressure. The five apodemes of the sucker plate provide rigidity; the four suckers attach by a flexible cuticular ring to a solid flange or socket in the sucker plate. The sucker muscles attach to the center of each sucker. The flat, external face of the sucker plate apodemes may complement sucker action by adhesion. Coxal discs and sucker plate discs are identical, contain birefringent cuticular elements, and are considered modified setae. Functional mouthparts and a pharynx are lacking, but a cheliceral anlage is present. The esophagus, midgut and caecae, and malpighian tubules are lumenless and the cells small. The hindgut has a lumen, larger cells and opens externally via the anus. Whereas the digestive tract is regressed, the reproductive system is yet incompletely developed. In older deutonymphs anlagen of ducts, accessory glands and gonads are discernible. The nature of the haemocoel and peritoneum remains nuclear. The central nerve mass is conspicuously large for the size of the deutonymph. The supraesophageal ganglion gives rise to the cheliceral nerves; all other nerves arise from the subesophageal ganglion. Most major nerves were traced to the effector organs. The muscles are divided into leg, dorso-ventral (derived from coxal muscles), dorsal, sucker, and anogenital muscles. The trochantal adductor muscles originate on an endosternite, which is supported by muscles running to the dorsal hysterosoma. The dorso-ventral and propodosomal retractor muscles affect haemolymph pressure. The massive sucker retractor muscles are unique to this instar. Anogenital muscles are not well developed.  相似文献   

17.
The pulmonate snail Melampus bidentatus occupies the high intertidal zone of salt marshes in a nearly terrestrial environment. The hemolymph osmolarity of the snails collected in the field paralleled that of the adjacent water and was affected by the tides and precipitation. The snails initially gained or lost weight when submerged in hypo- or hyperosmotic media, respectively, but returned to their original weight after 24 h. The content of their immunoreactive (IR)-FMRFamide-Related Peptides (FaRPs) was measured in various tissues by radioimmunoassay, and IR-FaRPs were found in every tissue analyzed. The subesophageal part of the central nervous system (CNS) contained more IR-FaRPs than the supraesophageal part, and the kidney and the tissues of the reproductive tract contained more than other peripheral tissues. The levels of IR-FaRPs in the CNS, kidney, and hemolymph were higher in snails that were immersed in higher concentrations of seawater. Many IR neurons are present in all ganglia of the CNS except the pleural ganglia, and IR neurites are extensively distributed within the CNS and its connective tissue sheath. The visceral nerve from the visceral ganglion is immunoreactive and could be seen to innervate the kidney, which contains IR-varicosities. An osmoregulatory role for the FaRPs is suggested.  相似文献   

18.
Summary Crustacean cardioactive peptide-immunoreactive neurons occur in the entire central nervous system of Locusta migratoria. The present paper focuses on mapping studies in the ventral nerve cord and on peripheral projection sites. Two types of contralaterally projecting neurons occur in all neuromers from the subesophageal to the seventh abdominal ganglia. One type forms terminals at the surface of the thoracic nerves 6 and 1, the distal perisympathetic organs, the lateral heart nerves, and on ventral and dorsal diaphragm muscles. Two large neurons in the anterior part and several neurons of a different type in the posterior part of the terminal ganglion project into the last tergal nerves. In the abdominal neuromers 1–7, two types of ipsilaterally projecting neurons occur, one of which gives rise to neurosecretory terminals in the distal perisympathetic organs, in peripheral areas of the transverse, stigmata and lateral heart nerves. Four subesophageal neurons have putative terminals in the neurilemma of the nervus corporis allati II, and in the corpora allata and cardiaca. In addition, several immunoreactive putative interneurons and other neurons were mapped in the ventral nerve cord. A new in situ whole-mount technique was essential for elucidation of the peripheral pathways and targets of the identified neurons, which suggest a role of the peptide in the control of heartbeat, abdominal ventilatory and visceral muscle activity.Abbreviations AG abdominal ganglia - AM alary muscle - AMN alary muscle nerve - CA corpus allatum - CC corpus cardiacum - dPSO distal perisympathetic organ - LHN lateral heart nerve - LT CCAP-immunoreactive lateral tract - NCA nervus corporis allati - NCC nervus corporis cardiaci - NM neuromer - PMN paramedian nerve - PSO perisympathetic organ - SOG subesophageal ganglion - VDM ventral diaphragm muscles - VNC ventral nerve cord  相似文献   

19.
两种软体动物神经系统一氧化氮合酶的组织化学定位   总被引:8,自引:0,他引:8  
运用一氧化氮合酶(NOS)组织化学方法研究了软体动物门双壳纲种类中国蛤蜊和腹足纲种类嫁Qi神经系统中NOS阳性细胞以及阳性纤维的分布。结果表明:在蛤蜊脑神经节腹内侧,每侧约有10-15个细胞呈强NOS阳性反应,其突起也呈强阳性反应,并经脑足神经节进入足神经节的中央纤维网中;足神经节内只有2个细胞呈弱阳性反应,其突起较短,进入足神经节中央纤维网中,但足神经节中,来自脑神经节阳性细胞和外周神经系统的纤维大多呈NOS阳性反应;脏神经节的前内侧部和后外侧部各有一个阳性细胞团,其突起分别进入后闭壳肌水管后外套膜神经和脑脏神经索。脏神经节背侧小细胞层以及联系两侧小细胞层的纤维也呈NOS阳性反应。嫁Qi中枢神经系统各神经节中没有发现NOS阳性胞体存在;脑神经节、足神经节、侧神经节以及脑—侧、脑—足、侧—脏连索中均有反应程度不同的NOS阳性纤维,这些纤维均源于外周神经。与已研究的软体动物比较,嫁Qi和前鳃亚纲其它种类一样,神经系统中NO作为信息分子可能主要存在于感觉神经。而中国蛤蜊的神经系统中一氧化氮作为信息分子则可能参与更广泛的神经调节过程。  相似文献   

20.
The distribution of the ganglia and nerves of the stomatogastric nervous system and the innervation of the extrinsic and intrinsic muscles are described. Median unpaired frontal and hypocerebral ganglia and paired ingluvial ganglia are present. The anterior pharynx is innervated by branches of the frontal nerve and by the anterior and posterior pharyngeal nerves, originating from the frontal ganglion. The posterior pharyngeal nerves are linked to nerves innervating the posterior part of the pharynx which have their origin in the hypocerebral ganglion, the anterior portion of which has previously been regarded as part of the recurrent nerve. Paired esophageal nerves run the length of the esophagus and crop between the hypocerebral and and ingluvial ganglia, innervating the muscularis by serial side branches. From each ingluvial ganglion runs an ingluvial nerve which innervates the gizzard and a cecal nerve which innervates the midgut and its ceca. At the posterior end of the midgut there is a poorly developed nerve ring. Nerves running posteriorly from this nerve ring link the stomatogastric nervous system with the proctodeal innervation from the terminal abdominal ganglion. Multipolar peripheral neurons are present on the muscularis of the whole of the foregut, rather randomly distributed on the crop and gizzard but forming fairly definite groupings at some points on the pharynx. Though of varied appearance, these cells could not be divided into discrete morphological categories. Peripheral neurons on the midgut are of different and characteristic morphology, though a few cells of the same appearance as those of the foregut occur at the midgut-hindgut boundary. Nerve fibers on the gut almost invariably terminate on the fibers of the muscularis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号