首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuroblastoma (NB) is often described as an unfavorable target for both HLA-restricted and death receptor-mediated elimination by cytotoxic T lymphocytes (CTLs) due to low or absent HLA class I and caspase-8 expression. We investigated the effects of soluble factors released by CTLs activated by TCR triggering (named as activated supernatant; AS) on the levels and composition of cell surface molecules involved in HLA-restricted and HLA-independent NB cell recognition (surface immune phenotype). Using a panel of long-term propagated NB cell lines and freshly isolated primary human NB cells, we analyzed surface expression of the (1) cognate receptors for TNFα, Fas and TRAIL; (2) HLA class I and II heterodimers; (3) adhesion molecules; (4) the intracellular expression and activation of caspase-8, as well as (5) the susceptibility of NB cells to death receptor-mediated killing prior to and after exposure to AS. The exposure of NB cells to soluble factors released by activated CTLs skewed the surface immune phenotype of both long term cultured and primary NB cells, induced the expression and activation of caspase-8 and increased the susceptibility of tumor cells to lysis by TRAIL and Fas-agonistic antibody. Blocking experiments identified IFNγ and TNFα as main factors responsible for modulating the surface antigens of NB cells by AS. Our data suggest that recruitment of CTLs activated on third party targets into the vicinity of the NB tumor mass, may override the “silent” immune phenotype of NB cells via the action of soluble factors. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This work was supported by grants from the Swedish Children’s Cancer Foundation, the Swedish Cancer Society, the Cancer Society of Stockholm, the King Gustav the Vth Jubilee Fund, Karolinska Institutet and the Swedish Research Council.  相似文献   

2.
Continuous efforts are dedicated to develop immunotherapeutic approaches to neuroblastoma (NB), a tumor that relapses at high rates following high-dose conventional cytotoxic therapy and autologous bone marrow cell (BMC) reconstitution. This study presents a series of transplant experiments aiming to evaluate the efficacy of allogeneic BMC transplantation. Neuro-2a cells were found to express low levels of class I major histocompatibility complex (MHC) antigens. While radiation and syngeneic bone marrow transplantation (BMT) reduced tumor growth (P < 0.001), allogeneic BMT further impaired subcutaneous development of Neuro-2a cells (P < 0.001). Allogeneic donor-derived T cells displayed direct cytotoxic activity against Neuro-2a in vitro, a mechanism of immune-mediated suppression of tumor growth. The proliferation of lymphocytes from congenic mice bearing subcutaneous tumors was inhibited by tumor lysate, suggesting that a soluble factor suppresses cytotoxic activity of syngeneic lymphocytes. However, the growth of Neuro-2a cells was impaired when implanted into chimeric mice at various times after syngeneic and allogeneic BMT. F1 (donor-host) splenocytes were infused attempting to foster immune reconstitution, however they engrafted transiently and had no effect on tumor growth. Taken together, these data indicate: (1) Neuro-2a cells express MHC antigens and immunogenic tumor associated antigens. (2) Allogeneic BMT is a significantly better platform to develop graft versus tumor (GVT) immunotherapy to NB as compared to syngeneic (autologous) immuno-hematopoietic reconstitution. (3) An effective GVT reaction in tumor bearing mice is primed by MHC disparity and targets tumor associated antigens.  相似文献   

3.
In order to select the most cytotoxic effector cells for adoptive immunotherapy, lymphokine activated killer (LAK) cells, tumor infiltrating lymphocytes (TILs) and autologous mixed lymphocyte tumor cell culture (MLTC) cells derived from peripheral blood mononuclear cells (PBMC) in the same subject with head and neck carcinomas were prepared. The autologous tumor cell killing activity and cell surface phenotypes of each of the three effector cells were studied. MLTC cells cultured with interleukin-2 (IL-2) showed the strongest cytotoxic activity among these three different effector cells. Although TILs had suppressed killing activity immediately after isolation, after successive cultivations with IL-2, a cytotoxic activity against autologous tumor cells stronger than that of LAK cells appeared. Both IL-2 stimulated MLTC cells and TILs showed an enrichment of CD8 positive and CDU negative cells in a CD3 positive subpopulation.Abbreviations CD cluster differentiation - IL-2 interleukin-2 - LA lymphokine activated - LAK lymphokine activated killer - MLTC mixed lymphocyte tumor cell culture - NK natural killer - PBMC peripheral blood mononuclear cells - TILs tumor infiltrating lymphocytes  相似文献   

4.
Tumor-associated, MHC-restricted peptides, recognized by tumor-specific CD8(+) lymphocytes, are desirable targets for novel approaches in immunotherapy because of their highly restricted fine specificity. Abs that recognize these tumor-associated MHC-peptide complexes, with the same specificity as TCR, would therefore be valuable reagents for studying Ag presentation by tumor cells, for visualizing MHC-peptide complexes on cells, and eventually for developing new targeting agents for cancer immunotherapy. To generate molecules with such a unique, fine specificity, we immunized HLA-A2 transgenic mice with a single-chain HLA-A2, complexed with a common antigenic T cell HLA-A2-restricted epitope derived from the melanoma differentiation Ag gp100. Using a phage display approach, we isolated a recombinant scFv Ab that exhibits a characteristic TCR-like binding specificity, yet, unlike TCRs, it did so with a high affinity in the nanomolar range. The TCR-like Ab can recognize the native MHC-peptide complex expressed on the surface of APCs, and on peptide-pulsed or native melanoma cells. Moreover, when fused to a very potent cytotoxic effector molecule in the form of a truncated bacterial toxin, it was able to specifically kill APCs in a peptide-dependent manner. These results demonstrate the utility of high affinity TRC-like scFv recombinant Abs directed toward human cancer T cell epitopes. Such TCR-like Abs may prove to be very useful for monitoring and visualizing the expression of specific MHC-peptide complexes on the surface of tumor cells, APCs, and lymphoid tissues, as well as for developing a new family of targeting agents for immunotherapy.  相似文献   

5.
《Translational oncology》2020,13(3):100738
The interaction of the host immune system with tumor cells in the tissue microenvironment is essential in understanding tumor immunity and development of successful cancer immunotherapy. The presence of lymphocytes in tumors is highly correlated with an improved outcome. T cells have a set of cell surface receptors termed immune checkpoints that when activated suppress T cell function. Upregulation of immune checkpoint receptors such as programmed cell death 1 (PD-1) and cytotoxic T lymphocyte associated protein 4 (CTLA-4) occurs during T cell activation in an effort to prevent damage from an excessive immune response. Immune checkpoint inhibitors allow the adaptive immune system to respond to tumors more effectively. There has been clinical success in different types of cancer blocking immune checkpoint receptors such as PD-1 and CTLA. However, relapse has occurred. The innate and acquired/therapy induced resistance to treatment has been encountered. Aberrant cellular signal transduction is a major contributing factor to resistance to immunotherapy. Combination therapies with other co-inhibitory immune checkpoints such as TIM-3, LAG3 and VISTA are currently being tested to overcome resistance to cancer immunotherapy. Expression of TIM-3 has been associated with resistance to PD-1 blockade and combined blockade of TIM-3 and PD-1 has demonstrated improved responses in preclinical models. LAG3 blockade has the potential to increase the responsiveness of cytotoxic T-cells to tumors. Furthermore, tumors that were found to express VISTA had an increased rate of growth due to the T cell suppression. The growing understanding of the inhibitory immune checkpoints’ ligand biology, signaling mechanisms, and T-cell suppression in the tumor microenvironment continues to fuel preclinical and clinical advancements in design, testing, and approval of agents that block checkpoint molecules. Our review seeks to bridge fundamental regulatory mechanisms across inhibitory immune checkpoint receptors that are of great importance in resistance to cancer immunotherapy. We will summarize the biology of different checkpoint molecules, highlight the effect of individual checkpoint inhibition as anti-tumor therapies, and outline the literatures that explore mechanisms of resistance to individual checkpoint inhibition pathways.  相似文献   

6.
Twenty-four patients with liver metastases from gastric or colorectal cancer were treated with OK-432-combined adoptive immunotherapy (AIT). Lymphocytes isolated from regional lymph nodes or peripheral blood were cultured with medium containing T cell growth factor and sonicated tumor extract antigen (SE-Ag) for 9–13 days. The cultured lymphocytes were transferred mainly through the hepatic artery after the administration of OK-432, a streptococcal preparation. Sixteen of the 24 patients received a low dose of anti-cancer agents between the OK-432 injection and cell transfer. When cultured without SE-Ag, regional lymph node lymphocytes (RLNL) showed significantly (P<0.05) higher cytotoxic activity against autologous tumor cells and, on the contrary, lower cytotoxic activity against K562 than peripheral blood lymphocytes (PBL). When cultured with SE-Ag, cytotoxicity of RLNL against autologous tumor cells was nearly equivalent to that of PBL. The blastogenesis of fresh PBL to SE-Ag was significantly (P<0.05) augmented after the OK-432-combined AIT. Two patients showed complete response and 4 patients showed partial response among 19 patients who had evaluable lesions. Five patients whose liver metastases were resected were treated with OK-432-combined AIT as an adjuvant therapy. To date they are alive without recurrence in the liver.Abbreviations AIT adoptive immunotherapy - RLNL regional lymph node lymphocytes - SE-Ag sonicated tumor extract antigen  相似文献   

7.
8.
The current therapy of uveal melanoma (UM) metastases remains inefficient, which warrants the development of new treatment modalities. For the first time we investigated the effects of retinoic acid (RA) on a panel of UM cell lines and found that RA induces morphological changes compatible with differentiation, suppresses proliferation and causes apoptosis in these cells. RA treatment resulted in an increase of p21, p27 and p53 protein levels and G1 arrest in UM cells, which correlated with significant down-modulation of surface Her2/neu proto-oncogene expression. In addition, RA-treated UM cells exhibited increased sensitivity to both MHC class I-restricted killing by cytotoxic T lymphocytes and NK cell-mediated lysis that were accompanied by more efficient conjugate formation between UM cells and killer lymphocytes. Taken together, our results implicate UM as a new target for treatment with retinoids and suggest that retinoids and T- or NK-cell based immunotherapy can have mutually enhancing effects in UM patients.  相似文献   

9.
Adoptive cell transfer (ACT) of antigen-specific CD8(+) cytotoxic T lymphocytes (CTLs) is a promising treatment for a variety of malignancies (1). CTLs can recognize malignant cells by interacting tumor antigens with the T cell receptors (TCR), and release cytotoxins as well as cytokines to kill malignant cells. It is known that less-differentiated and central-memory-like (termed highly reactive) CTLs are the optimal population for ACT-based immunotherapy, because these CTLs have a high proliferative potential, are less prone to apoptosis than more differentiated cells and have a higher ability to respond to homeostatic cytokines (2-7). However, due to difficulties in obtaining a high number of such CTLs from patients, there is an urgent need to find a new approach to generate highly reactive Ag-specific CTLs for successful ACT-based therapies. TCR transduction of the self-renewable stem cells for immune reconstitution has a therapeutic potential for the treatment of diseases (8-10). However, the approach to obtain embryonic stem cells (ESCs) from patients is not feasible. Although the use of hematopoietic stem cells (HSCs) for therapeutic purposes has been widely applied in clinic (11-13), HSCs have reduced differentiation and proliferative capacities, and HSCs are difficult to expand in in vitro cell culture (14-16). Recent iPS cell technology and the development of an in vitro system for gene delivery are capable of generating iPS cells from patients without any surgical approach. In addition, like ESCs, iPS cells possess indefinite proliferative capacity in vitro, and have been shown to differentiate into hematopoietic cells. Thus, iPS cells have greater potential to be used in ACT-based immunotherapy compared to ESCs or HSCs. Here, we present methods for the generation of T lymphocytes from iPS cells in vitro, and in vivo programming of antigen-specific CTLs from iPS cells for promoting cancer immune surveillance. Stimulation in vitro with a Notch ligand drives T cell differentiation from iPS cells, and TCR gene transduction results in iPS cells differentiating into antigen-specific T cells in vivo, which prevents tumor growth. Thus, we demonstrate antigen-specific T cell differentiation from iPS cells. Our studies provide a potentially more efficient approach for generating antigen-specific CTLs for ACT-based therapies and facilitate the development of therapeutic strategies for diseases.  相似文献   

10.
IL-21 is an immune-enhancing cytokine, which showed promising results in cancer immunotherapy. We previously observed that the administration of anti-CD4 cell-depleting antibody strongly enhanced the anti-tumor effects of an IL-21-engineered neuroblastoma (NB) cell vaccine. Here, we studied the therapeutic effects of a combination of recombinant (r) IL-21 and anti-CD4 monoclonal antibodies (mAb) in a syngeneic model of disseminated NB. Subcutaneous rIL-21 therapy at 0.5 or 1 μg/dose (at days 2, 6, 9, 13 and 15 after NB induction) had a limited effect on NB development. However, coadministration of rIL-21 at the two dose levels and a cell-depleting anti-CD4 mAb cured 28 and 70 % of mice, respectively. Combined immunotherapy was also effective if started 7 days after NB implant, resulting in a 30 % cure rate. Anti-CD4 antibody treatment efficiently depleted CD4+ CD25high Treg cells, but alone had limited impact on NB. Combination immunotherapy by anti-CD4 mAb and rIL-21 induced a CD8+ cytotoxic T lymphocyte response, which resulted in tumor eradication and long-lasting immunity. CD4+ T cells, which re-populated mice after combination immunotherapy, were required for immunity to NB antigens as indicated by CD4+ T cell depletion and re-challenge experiments. In conclusion, these data support a role for regulatory CD4+ T cells in a syngeneic NB model and suggest that rIL-21 combined with CD4+ T cell depletion reprograms CD4+ T cells from immune regulatory to anti-tumor functions. These observations open new perspectives for the use of IL-21-based immunotherapy in conjunction with transient CD4+ T cell depletion, in human metastatic NB.  相似文献   

11.
Glioblastoma is a highly heterogeneous aggressive primary brain tumor, with the glioma stem‐like cells (GSC) being more sensitive to cytotoxic lymphocyte‐mediated killing than glioma differentiated cells (GDC). However, the mechanism behind this higher sensitivity is unclear. Here, we found that the mitochondrial morphology of GSCs modulates the ER–mitochondria contacts that regulate the surface expression of sialylated glycans and their recognition by cytotoxic T lymphocytes and natural killer cells. GSCs displayed diminished ER–mitochondria contacts compared to GDCs. Forced ER–mitochondria contacts in GSCs increased their cell surface expression of sialylated glycans and reduced their susceptibility to cytotoxic lymphocytes. Therefore, mitochondrial morphology and dynamism dictate the ER–mitochondria contacts in order to regulate the surface expression of certain glycans and thus play a role in GSC recognition and elimination by immune effector cells. Targeting the mitochondrial morphology, dynamism, and contacts with the ER could be an innovative strategy to deplete the cancer stem cell compartment to successfully treat glioblastoma.  相似文献   

12.
Phorbol esters with tumor promoter activity enhance the spontaneous cytotoxicity of human lymphocytes against a variety of target cell lines, with an efficiency that correlates with their potency as tumor promoters or skin irritants. Analysis of surface marker expression of the lymphocytes cytotoxic after treatment with phorbol ester identified the cytotoxic cell subset as that containing natural killer cells. Although gamma-interferon (IFN gamma) is produced by T cells treated with phorbol esters, IFN gamma is probably not the mediator of enhancement of natural killer cell activity, because anti-IFN gamma antibodies failed to block this enhancement. Spontaneous cell-mediated cytotoxicity is inhibited when phorbol esters are present during the cytotoxic assay, but is enhanced when the effector cells are pretreated with these agents. On the other hand, antibody-dependent cytotoxicity mediated by lymphocytes is inhibited by phorbol ester pretreatment of the effector cells or by phorbol esters present during the cytotoxic assay. Treatment of lymphocytes with phorbol esters at 37 degrees C, but not at 4 degrees C, completely abrogates in 1 to 2 hr the expression of the receptor for the Fc fragment of IgG, as detected by rosette formation with IgG-sensitized erythrocytes and by reactivity with anti-Fc receptor antibodies. The inhibition of antibody-dependent cytotoxicity by phorbol esters is probably secondary to their effect on the Fc receptor.  相似文献   

13.
Among several approaches to augment the therapeutic effect of adoptive immunotherapy, we focused the antitumor synergy between transferred killer cells and host's fresh lymphocytes. Immunotherapy models using murine tumors or clinical experiments revealed that preadministration of immunostimulator such as OK-432, followed by chemotherapeutic agents such as cyclophosphamide, can induce host's non-cytotoxic fresh lymphocytes that act synergistically with cultured killer cells against autologous tumor cells. Immuno-chemo-lymphocytotherapy (a sequential treatment with OK-432, chemotherapy and adoptive immunotherapy) is useful to treat the patients with advanced cancer even if the number of transferred lymphocytes is limited.  相似文献   

14.
The development of protocols for the ex vivo generation of dendritic cells (DCs) has led to intensive research of their potential use in immunotherapy. Accumulating results show the efficacy of this treatment on melanomas which are highly immunogenic. However, its efficacy remains unclear in other tumors. In this study, allogeneic gastric cancer cell–DC hybrids were used to determine the efficacy of this type of immunotherapy in gastric cancer. Fusion cells of DC and allogeneic gastric cancer cells were generated by polyethylene glycol (PEG) and electrofusion. These hybrids were used to induce tumor associated antigen (TAA) specific cytotoxic T lymphocytes (CTLs). The DCs were successfully fused with the allogeneic gastric cancer cells resulting in hybrid cells. These hybrid cells were functional as antigen-presenting cell because they induced allogeneic CD4+ T cells proliferation. CD8+ T cells stimulated by the MKN-45-DC hybrid cells were able to kill MKN-45 when used for immunization. The CTLs killed another gastric cancer cell line, MKN-1, as well as a melanoma cell line, 888mel, suggesting the recognition of a shared tumor antigen. MKN-45 specific CTLs can recognize carcinoembryonic antigen (CEA), indicating that the killing is due to tumor antigens as well as alloantigens. This approach suggests the possible use of allogeneic gastric cancer cell–DC hybrids in DC based immunotherapy for gastric cancer treatment.  相似文献   

15.
Aim Several lines of evidence suggest that NK cell immunotherapy may represent a successful approach in neuroblastoma (NB) patients refractory to conventional therapy. However, homing properties, safety and therapeutic efficacy of NK cell infusions need to be evaluated in a suitable preclinical murine NB model. Materials and methods Here, the therapeutic efficacy of NK cell infusions in the presence or absence of NK-activating cytokines have been evaluated in a NB metastatic model set up in NOD/scid mice, that display reduced functional activity of endogenous NK cells. Results In NOD/scid mice the injected NB cells rapidly reached all the typical sites of metastatization, including bone marrow. Infusion of polyclonal IL2-activated NK cells was followed by dissemination of these cells into various tissues including those colonized by metastatic NB cells. The early repeated injection of IL2-activated NK cells in NB-bearing NOD/scid mice significantly increased the mean survival time, which was associated with a reduced bone marrow infiltration. The therapeutic effect was further enhanced by low doses of human recombinant IL2 or IL15. Conclusion Our results indicate that NK-based adoptive immunotherapy can represent a valuable adjuvant in the treatment of properly selected NB patients presenting with metastatic disease, if performed in a minimal residual disease setting. Roberta Castriconi and Alessandra Dondero equally contributed to the work.  相似文献   

16.
Known for years as the principal messengers of the immune system, dendritic cells (DC) represent a heterogeneous population of antigen presenting cells critically located at the nexus between innate and adaptive immunity. DC play a central role in the initiation of tumor-specific immune responses as they are endowed with the unique ability to take up, process and present tumor antigens to naïve CD4+ or CD8+ effector T lymphocytes. By virtue of the cytokines they produce, DC also regulate the type, strength and duration of T cell immune responses. In addition, they can participate in anti-tumoral NK and NKT cell activation and in the orchestration of humoral immunity. More recent studies have documented that besides their primary role in the induction and regulation of adaptive anti-tumoral immune responses, DC are also endowed with the capacity to directly kill cancer cells. This dual role of DC as killers and messengers may have important implications for tumor immunotherapy. First, the direct killing of malignant cells by DC may foster the release and thereby the immediate availability of specific tumor antigens for presentation to cytotoxic or helper T lymphocytes. Second, DC may participate in the effector phase of the immune response, potentially augmenting the diversity of the killing mechanisms leading to tumor elimination. This review focuses on this non-conventional cytotoxic function of DC as it relates to the promotion of cancer immunity and discusses the potential application of killer DC (KDC) in tumor immunotherapy.  相似文献   

17.
Antigen-specific cancer immunotherapy is a promising strategy for improving cancer treatment. Recently, many tumor-associated antigens and their epitopes recognized by cytotoxic T lymphocytes (CTLs) have been identified. However, the density of endogenously presented antigen-derived peptides on tumor cells is generally sparse, resulting in the inability of antigen-specific CTLs to work effectively. We hypothesize that increasing the density of an antigen-derived peptide would enhance antigen-specific cancer immunotherapy. Here, we demonstrated that intratumoral peptide injection leads to additional peptide loading onto major histocompatibility complex class I molecules of tumor cells, enhancing tumor cell recognition by antigen-specific CTLs. In in vitro studies, human leukocyte antigen (HLA)-A*02:01-restricted glypican-3144–152 (FVGEFFTDV) and cytomegalovirus495–503 (NLVPMVATV) peptide-specific CTLs showed strong activity against all peptide-pulsed cell lines, regardless of whether the tumor cells expressed the antigen. In in vivo studies using immunodeficient mice, glypican-3144–152 and cytomegalovirus495–503 peptides injected into a solid mass were loaded onto HLA class I molecules of tumor cells. In a peptide vaccine model and an adoptive cell transfer model using C57BL/6 mice, intratumoral injection of ovalbumin257–264 peptide (SIINFEKL) was effective for tumor growth inhibition and survival against ovalbumin-negative tumors without adverse reactions. Moreover, we demonstrated an antigen-spreading effect that occurred after intratumoral peptide injection. Intratumoral peptide injection enhances tumor cell antigenicity and may be a useful option for improvement in antigen-specific cancer immunotherapy against solid tumors.  相似文献   

18.
Cancer survivors often relapse due to evolving drug-resistant clones and repopulating tumor stem cells. Our preclinical study demonstrated that terminal cancer patient's lymphocytes can be converted from tolerant bystanders in vivo into effective cytotoxic T-lymphocytes in vitro killing patient's own tumor cells containing drug-resistant clones and tumor stem cells. We designed a clinical trial combining peginterferon α-2b with imatinib for treatment of stage III/IV gastrointestinal stromal tumor (GIST) with the rational that peginterferon α-2b serves as danger signals to promote antitumor immunity while imatinib's effective tumor killing undermines tumor-induced tolerance and supply tumor-specific antigens in vivo without leukopenia, thus allowing for proper dendritic cell and cytotoxic T-lymphocyte differentiation toward Th1 response. Interim analysis of eight patients demonstrated significant induction of IFN-γ-producing-CD8(+), -CD4(+), -NK cell, and IFN-γ-producing-tumor-infiltrating-lymphocytes, signifying significant Th1 response and NK cell activation. After a median follow-up of 3.6 years, complete response (CR) + partial response (PR) = 100%, overall survival = 100%, one patient died of unrelated illness while in remission, six of seven evaluable patients are either in continuing PR/CR (5 patients) or have progression-free survival (PFS, 1 patient) exceeding the upper limit of the 95% confidence level of the genotype-specific-PFS of the phase III imatinib-monotherapy (CALGB150105/SWOGS0033), demonstrating highly promising clinical outcomes. The current trial is closed in preparation for a larger future trial. We conclude that combination of targeted therapy and immunotherapy is safe and induced significant Th1 response and NK cell activation and demonstrated highly promising clinical efficacy in GIST, thus warranting development in other tumor types.  相似文献   

19.
Adoptive cellular immunotherapy of cancer has been limited to date mostly due to the poor immunogenicity of tumor cells, the immunocompromised status of cancer patients in advanced stages of their disease, and difficulties in raising sufficient numbers of autologous tumor-specific T lymphocytes. On the other hand, the slow tumor penetration and short half-life of exogenously administered tumor-specific monoclonal antibodies have provided major obstacles for an effective destruction of tumor cells by the humoral effector arm of the immune system. Attempts to improve the efficacy of adoptive cellular cancer immunotherapy have led to the development of novel strategies that combine advantages of T cell-based (i.e., efficient tumor penetration, cytokine release and cytotoxicity) and antibody-based (high specificity for tumor-associated antigens) immunotherapy by grafting cytotoxic T lymphocytes (CTLs) with chimeric receptors composed of antibody fragments (which recognize tumor-cell antigens) and a cellular activation motif. Antigen recognition is therefore not restricted by major histocompatibility genes, as the physiological T-cell receptor, but rather is directed to native cell surface structures. Since the requirements of major histocompatibility complex (MHC) restriction in the interaction of effector cells with target cells are bypassed, the tumor cell-binding of CTLs grafted with chimeric receptors is not affected by down-regulation of HLA class I antigens and by defects in the antigen-processing machinery. Ligand binding by the chimeric receptor triggers phosphorylation of immunoglobulin tyrosine activation motifs (ITAMs) in the cytoplasmic region of the molecule and this activates a signaling cascade that is required for the induction of cytotoxicity, cytokine secretion and proliferation. Here, the authors discuss the potential of lymphocytes grafted with chimeric antigen receptors in the immunotherapy of malignant disease.  相似文献   

20.
Immunotherapy is one of the most rapidly progressing and promising fields in antitumor therapy. It is based on the idea of using immune cells of patient or healthy donors for elimination of malignant cells. T lymphocytes play a key role in cell-mediated immunity including the response to tumors. Recently developed approaches of altering antigen specificity of T cells consist of their genetic modification (introduction of additional T cell receptor or chimeric antigen receptor), as well as the use of bispecific molecules that crosslink target and effector cells. These approaches are used to retarget T lymphocytes with arbitrary specificity against tumor antigens in the context of antitumor immunotherapy. The high potential of T cell immunotherapy was demonstrated in a number of clinical trials. In the future, it is possible to develop approaches to the therapy of a wide spectrum of tumors. The selection of the optimal antigen is the main challenge in successful T cell immunotherapy, as it largely determines the effectiveness of the treatment, as well as the risk of side effects. In this review we discuss potential methods of modification of T cell specificity and targets for immunotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号