首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The physiological effects of incubation at nonpermissive temperatures of Escherichia coli mutants that carry a temperature-sensitive dnaZ allele [dnaZ(Ts)2016] were examined. The temperature at which the dnaZ(Ts) protein becomes inactivated in vivo was investigated by measurements of deoxyribonucleic acid (DNA) synthesis at temperatures intermediate between permissive and nonpermissive. DNA synthesis inhibition was reversible by reducing the temperature of cultures from 42 to 30 degrees C; DNA synthesis resumed immediately after temperature reduction and occurred even in the presence of chloramphenicol. Inasmuch as DNA synthesis could be resumed in the absence of protein synthesis, we concluded that the protein product of the dnaZ allele (Ts)2016 is renaturable. Cell division, also inhibited by 42 degrees C incubation, resumed after temperature reduction, but the length of time required for resumption depended on the duration of the period at 42 degrees C. Replicative synthesis of cellular DNA, examined in vitro in toluene-permeabilized cells, was temperature sensitive. Excision repair of ultraviolet light-induced DNA lesions was partially inhibited in dnaZ(Ts) cells at 42 degrees C. The dnaZ(+) product participated in the synthesis of both Okazaki piece (8-12S) and high-molecular-weight DNA. During incubation of dnaZ(Ts)(lambda) lysogens at 42 degrees C, prophage induction occurred, and progeny phage were produced during subsequent incubation at 30 degrees C. The temperature sensitivity of both DNA synthesis and cell division in the dnaZ(Ts)2016 mutant was suppressed by high concentrations of sucrose, lactose, or NaCl. Incubation at 42 degrees C was neither mutagenic nor antimutagenic for the dnaZ(Ts) mutant.  相似文献   

3.
The existence of a conditional lethal temperature-sensitive mutant affecting peptidyl-tRNA hydrolase in Escherichia coli suggests that this enzyme is essential to cell survival. We report here the isolation of both chromosomal and multicopy suppressors of this mutant in pth, the gene encoding the hydrolase. In one case, the cloned gene responsible for suppression is shown to be lysV, one of three genes encoding the unique lysine acceptor tRNA; 10 other cloned tRNA genes are without effect. Overexpression of lysV leading to a 2- to 3-fold increase in tRNA(Lys) concentration overcomes the shortage of peptidyl-tRNA hydrolase activity in the cell at non-permissive temperature. Conversely, in pth, supN double mutants, where the tRNA(Lys) concentration is reduced due to the conversion of lysV to an ochre suppressor (supN), the thermosensitivity of the initial pth mutant becomes accentuated. Thus, cells carrying both mutations show practically no growth at 39 degrees C, a temperature at which the pth mutant grows almost normally. Growth of the double mutant is restored by the expression of lysV from a plasmid. These results indicate that the limitation of growth in mutants of E.coli deficient in Pth is due to the sequestration of tRNA(Lys) as peptidyl-tRNA. This is consistent with previous observations that this tRNA is particularly prone to premature dissociation from the ribosome.  相似文献   

4.
To analyse the mechanism by which rare codons near the initiation codon inhibit cell growth and protein synthesis, we used the bacteriophage lambda int gene or early codon substitution derivatives. The lambda int gene has a high frequency of rare ATA, AGA and AGG codons; two of them (AGA AGG) located at positions 3 and 4 of the int open reading frame (ORF). Escherichia coli pth (rap) cells, which are defective in peptidyl-tRNA hydrolase (Pth) activity, are more susceptible to the inhibitory effects of int expression as compared with wild-type cells. Cell growth and Int protein synthesis were enhanced by overexpression of Pth and tRNAArg4 cognate to AGG and AGA but not of tRNAIle2a specific for ATA. The increase of Int protein synthesis also takes place when the rare arginine codons AGA and AGG at positions 3 and 4 are changed to common arginine CGT or lysine AAA codons but not to rare isoleucine ATA codons. In addition, overexpression of int in Pth defective cells provokes accumulation of peptidyl-tRNAArg4 in the soluble fraction. Therefore, cell growth and Int synthesis inhibition may be due to ribosome stalling and premature release of peptidyl-tRNAArg4 from the ribosome at the rare arginine codons of the first tandem, which leads to cell starvation for the specific tRNA.  相似文献   

5.
6.
Cellular changes have been monitored during the suppression, mediated by the overproduction of tRNALys, of thermosensitivity in Escherichia coli strain AA7852 carrying a mutation in peptidyl-tRNA hydrolase (Pth) encoded by the pth(Ts) gene. The presence in AA7852 cells of a plasmid bearing lysV gene helped to maintain low levels of the unstable Pth(Ts) protein and to preserve the viability of the mutant line at 41°C whereas plasmids bearing other tRNA genes were ineffective. At 32°C the excess of tRNALys did not alter the percentages of the free-, charged- or peptidyl-tRNALys species compared with those found in strains that did not overproduce tRNALys. At 41°C, however, despite increases in the level of peptidyl-tRNALys, the excess tRNALys helped to maintain the concentration of charged-tRNALys at a level comparable with that found in non-overproducer cells grown at a permissive temperature. In addition, the excess tRNALys at 41°C provoked a reduction in the concentrations of various peptidyl-tRNAs, which normally accumulate in pth(Ts) cells, and a proportional increase in the concentrations of the corresponding aminoacyl-tRNAs. The possible mechanism of rescue due to the overexpression of tRNALys and the causes of tRNALys starvation in pth(Ts) strains grown at non-permissive temperatures are considered.  相似文献   

7.
Two temperature-sensitive (ts) mutants of mouse hepatitis virus strain A59, ts43 and ts379, have been described previously to be ts in infectivity but unaffected in RNA synthesis (M. J. M. Koolen, A. D. M. E. Osterhaus, G. van Steenis, M. C. Horzinek, and B. A. M. van der Zeijst, Virology 125:393-402, 1983). We present a detailed analysis of the protein synthesis of the mutant viruses at the permissive (31 degrees C) and nonpermissive (39.5 degrees C) temperatures. It was found that synthesis of the nucleocapsid protein N and the membrane protein M of both viruses was insensitive to temperature. However, the surface protein S of both viruses was retained in the endoplasmic reticulum at the nonpermissive temperature. This was shown first by analysis of endoglycosidase H-treated and immunoprecipitated labeled S proteins. The mature Golgi form of S was not present at the nonpermissive temperature for the ts viruses, in contrast to wild-type (wt) virus. Second, gradient purification of immunoprecipitated S after pulse-chase labeling showed that only wt virus S was oligomerized. We conclude that the lack of oligomerization causes the retention of the ts S proteins in the endoplasmic reticulum. As a result, ts virus particles that were devoid of S were produced at the nonpermissive temperature. This result could be confirmed by biochemical analysis of purified virus particles and by electron microscopy.  相似文献   

8.
A temperature-sensitive dnaK mutant (strain MT112) was isolated from Escherichia coli B strain H/r30RT by thymineless death selection at 43 degrees C. By genetic mapping, the mutation [dnaK7(Ts)] was located near the thr gene (approximately 0.2 min on the may). E. coli K-12 transductants of the mutation to temperature sensitivity were assayed for their susceptibility to transducing phage lambda carrying the dnaK and/or the dnaJ gene. All of the transductants were able to propagate phage lambda carrying the dnaK gene. When macromolecular synthesis of the mutant was assayed at 43 degrees C, it was observed that both deoxyribonucleic acid and ribonucleic acid syntheses were severely inhibited. Thus, it was suggested that the conditionally defective dnaK mutation affects both cellular deoxyribonucleic acid and ribonucleic acid syntheses at the nonpermissive temperature in addition to inability to propagate phage lambda at permissive temperature.  相似文献   

9.
Ubiquitin-like (UBL)-ubiquitin-associated (UBA) proteins such as Rad23 and Dsk2 mediate the delivery of polyubiquitinated proteins to the proteasome in the ubiquitin-proteasome pathway. We show here that budding yeast peptidyl-tRNA hydrolase 2 (Pth2), which was previously recognized as a peptidyl-tRNA hydrolase, is a UBL domain-binding protein that participates in the ubiquitin-proteasome pathway. Pth2 bound to the UBL domain of both Rad23 and Dsk2. Pth2 also interacted with polyubiquitinated proteins through the UBA domains of Rad23 and Dsk2. Pth2 overexpression caused an accumulation of polyubiquitinated proteins and inhibited the growth of yeast. Ubiquitin-dependent degradation was accelerated in the pth2Delta mutant and was retarded by overexpression of Pth2. Pth2 inhibited the interaction of Rad23 and Dsk2 with the polyubiquitin receptors Rpn1 and Rpn10 on the proteasome. Furthermore, Pth2 function involving UBL-UBA proteins was independent of its peptidyl-tRNA hydrolase activity. These results suggest that Pth2 negatively regulates the UBL-UBA protein-mediated shuttling pathway in the ubiquitin-proteasome system.  相似文献   

10.
T Watanabe  S Hayashi    H C Wu 《Journal of bacteriology》1988,170(9):4001-4007
Export of the outer membrane lipoprotein in Escherichia coli was examined in conditionally lethal mutants that were defective in protein export in general, including secA, secB, secC, and secD. Lipoprotein export was affected in a secA(Ts) mutant of E. coli at the nonpermissive temperature; it was also affected in a secA(Am) mutant of E. coli at the permissive temperature, but not at the nonpermissive temperature. The export of lipoprotein occurred normally in E. coli carrying a null secB::Tn5 mutation; on the other hand, the export of an OmpF::Lpp hybrid protein, consisting of the signal sequence plus 11 amino acid residues of mature OmpF and mature lipoprotein, was affected by the secB mutation. The synthesis of lipoprotein was reduced in the secC mutant at the nonpermissive temperature, as was the case for synthesis of the maltose-binding protein, while the synthesis of OmpA was not affected. Lipoprotein export was found to be slightly affected in secD(Cs) mutants at the nonpermissive temperature. These results taken together indicate that the export of lipoprotein shares the common requirements for functional SecA and SecD proteins with other exported proteins, but does not require a functional SecB protein. SecC protein (ribosomal protein S15) is required for the optimal synthesis of lipoprotein.  相似文献   

11.
Y C Chen  M J Hayman  P K Vogt 《Cell》1977,11(3):513-521
Fibroblasts from European field vole (Microtus agrestis) and from normal rat kidney (NRK) have been infected by avian sarcoma virus mutants which are temperature-sensitive for the maintenance of transformation. These cells are transformed at 33 degrees C, but show normal cell characteristics in morphology, colony formation in agar, saturation density, sugar uptake and membrane proteins at 39 degrees C and 40 degrees C, the nonpermissive temperatures. Ts mutant virus was rescued from most of the ts transformed cell lines. NRK cells infected by avian sarcoma virus ts mutants and kept at the nonpermissive temperature can be transformed by wild-type avian sarcoma virus. The susceptibility of the temperature-sensitive NRK lines to this transformation is higher than the susceptibility of uninfected NRK at either permissive or nonpermissive temperature.  相似文献   

12.
After nitrosoguanidine mutagenesis, a mutant Escherichia coli strain harboring the Clo DF13::Tn901 plasmid pJN03 was isolated that is thermosensitive (Ts) for growth at 43 degrees C. The mutation responsible for this thermosensitive phenotype resides on the pJN03 plasmid genome. Cells harboring the pJN03 cop-1(Ts) plasmid mutant showed a large increase in plasmid copy number at 43 degrees C accompanied by an increase in the synthesis of plasmid-specified gene products like cloacin DF13 and beta-lactamase. The pJN03 cop-1(Ts) mutant showed uncontrolled plasmid DNA replication at the nonpermissive temperature. Analysis of plasmid deletions showed that the mutation is located in the Clo DF13 map interval from 0 to 12% or 29 to 45%. This implies that native cloacin DF13 and the Clo DF13-specified polypeptides B, C, D, E, and G are not involved in the pleiotropic phenotype of the plasmid mutant pJN03 cop-1(Ts).  相似文献   

13.
14.
The enzyme peptidyl-tRNA hydrolase (Pth, EC 3.1.1.29) is essential for the viability of bacteria. The ORF Rv1014c of Mycobacterium tuberculosis H37Rv, designated as the mtpth gene, was cloned and over-expressed and the product was purified. Generation of polyclonal antibodies against the purified recombinant protein, termed MtPth, facilitated detection of endogenously expressed MtPth in M. tuberculosis H37Rv cell lysate. MtPth could release diacetyl-[(3)H]-lysine from diacetyl-[(3)H]-lysyl-tRNA(Lys) with Michaelis-Menten kinetic parameters of K (m)=0.7+/-0.2 microM and k (cat)=1.22+/-0.2 s(-1). Transformation of a pTrc99c/mtpth vector allowed the growth of E. coli thermosensitive Pth(ts) mutant strain AA7852 at the non-permissive temperature of 42 degrees C, demonstrating the in vivo activity of MtPth. In addition, at 39 degrees C, over-expression of MtPth in AA7852 cells allowed the cells to remain viable in the presence of up to 200 microg/ml erythromycin. A 3D fold based on NMR and a structural model based on the E. coli Pth crystal structure were generated for MtPth. The essential nature of conserved active-site residues N12, H22 and D95 of MtPth for catalysis was demonstrated by mutagenesis and complementation in E. coli mutant strain AA7852. Thermal and urea/guanidinium chloride (GdmCl)-induced unfolding curves for MtPth indicate a simple two-state unfolding process without any intermediates.  相似文献   

15.
Fifteen low-temperature conditional division mutants of Escherichia coli K-12 was isolated. They grew normally at 39 degrees C but formed filaments at 30 degrees C. All exhibited a coordinated burst of cell division when the filaments were shifted to the permissive temperature (39 degrees C). None of the various agents that stimulate cell division in other mutant systems (salt, sucrose, ethanol, and chloramphenicol) was very effective in restoring colony-forming ability at 25 degrees C or in stimulating cell division in broth. One of these mutants, strain JS10, was found to have an altered cell envelope as evidenced by increased sensitivity to deoxycholate and antibiotics, as well as leakage of ribonulcease I, a periplasmic enzyme. This mutant had normal rates of DNA synthesis, RNA synthesis, and phospholipid synthesis at both the nonpermissive and permissive temperatures. However, strain JS10 required new protein synthesis in the apparent absence of new RNA synthesis for division of filaments at the permissive temperature. The division of lesion in strain JS10 is cotransducible with malA, aroB, and glpD and maps within min 72 to 75 on the E. coli chromosome.  相似文献   

16.
The effect of temperature shiftdown on the assembly of ts3 virions was investigated by both scanning (SEM) and transmission (TEM) electron microscopy. Ts3 is a spontaneous temperature-sensitive mutant of Moloney murine leukemia virus (Mo-MuLV) which previous studies indicated to be defective in assembly or release of the virions. In the present study, both SEM and TEM revealed the following: (i) there were more cell-associated virions in ts3-infected cells grown at the nonpermissive temperature (39 degrees C) than either in cells grown at the permissive temperature (34 degrees C) or in wild-type MuLV-infected cells grown at 39 degrees C; (ii) there were more normal single particles than multiploids (virions with two or more pieces of genomic RNA) in ts3-infected cells grown at the nonpermissive temperature; (iii) there were more multiploids in ts3-infected cells grown at the nonpermissive temperature than either in cells grown at the permissive temperature or in wild-type MuLV-infected cells grown at the nonpermissive temperature; (iv) upon temperature shift from 39 to 34 degrees C, about 90% of the cell-associated virions dissociated from the cell surface. TEM studies also indicated that upon temperature shiftdown, virion assembly rapidly occurred. The above observations suggest that faulty assembly, which results in the production of multiploids, may not be the reason why ts3 virions accumulate on the cell surface at the nonpermissive temperature. The relatively higher proportion of multiploids found in ts3-infected cells grown at 39 degrees C compared with those grown at 34 degrees C may be due to the higher density of budding virions at the cell surface at the nonpermissive temperature, which increases the possibility of two or more particles assembling close to one another. The accumulation of ts3 virions in all stages of assembly at the nonpermissive temperature, together with the fact that rapid assembly and release of ts3 virions occurred on temperature shiftdown, indicates that virion assembly is restricted after it has been initiated. The probable role of altered glycoprotein(s) in restricting virion assembly is discussed.  相似文献   

17.
The Ffh protein of Escherichia coli is a 48-kDa polypeptide that is homologous to the SRP54 subunit of the eukaryotic signal recognition particle (SRP). Efforts to understand the function of Ffh in bacteria have depended largely on the use of E. coli strains that allow depletion of the wild-type gene product. As an alternative approach to studying Ffh, a temperature-sensitive ffh mutant was isolated. The ffh-10(Ts) mutation results in two amino acid changes in conserved regions of the Ffh protein, and characterization of the mutant revealed that the cells rapidly lose viability at the nonpermissive temperature of 42 degrees C as well as show reduced growth at the permissive temperature of 30 degrees C. While the ffh mutant is defective in insertion of inner membrane proteins, the export of proteins with cleavable signal sequences is not impaired. The mutant also shows elevated expression of heat shock proteins and accumulates insoluble proteins, especially at 42 degrees C. It was further observed that the temperature sensitivity of the ffh mutant was suppressed by overproduction of 4.5S RNA, the RNA component of the bacterial SRP, by stabilizing the thermolabile protein. Collectively, these results are consistent with a model in which Ffh is required only for localization of proteins integral to the cytoplasmic membrane and suggest new genetic approaches to the study of how the structure of the SRP contributes to its function.  相似文献   

18.
When cultures of the temperature-sensitive Chinese hamster ovary cell mutant tsH1 are shifted from 34 degrees C (permissive temperature) to 39.5 degrees C (nonpermissive temperature), protein synthesis is inhibited by more than 80%. This is due principally to a block in activity of polypeptide chain initiation factor eIF-2. In this paper we show that there is impairment of the ability of the guanine nucleotide exchange factor (GEF) to displace GDP from eIF-2 X GDP complexes in extracts from cells incubated at the nonpermissive temperature. Addition of GEF or of high concentrations of eIF-2 stimulates protein synthesis to the level observed in control cell extracts, suggesting that GEF is rate-limiting for eIF-2 activity and overall protein synthesis at the nonpermissive temperature. Analysis of eIF-2 by two-dimensional gel electrophoresis and immunoblotting reveals an increase in the proportion of the alpha subunit in the phosphorylated form from 5.5 +/- 2.4% to 17.2 +/- 3.9% on shifting tsH1 cells from 34 to 39.5 degrees C. No such effect is seen in wild-type cells, which do not exhibit temperature-sensitive protein synthetic activity. Since the primary lesion in tsH1 cells is in their leucyl-tRNA synthetase, these results suggest a role for eIF-2 phosphorylation and GEF activity in coupling the rate of polypeptide chain initiation to the activity of the chain elongation machinery.  相似文献   

19.
Mutations of temperature sensitivity in R plasmid pSC101.   总被引:10,自引:5,他引:10       下载免费PDF全文
Temperature-sensitive (Ts) mutant plasmids isolated from tetracycline resistance R plasmid pSC101 were investigated for their segregation kinetics and deoxyribonucleic acid (DNA) replication. The results fit well with the hypothesis that multiple copies of a plasmid are distributed to daughter cells in a random fashion and are thus diluted out when a new round of plasmid DNA replication is blocked. When cells harboring type I mutant plasmids were grown at 43 degrees C in the absence of tetracycline, antibiotic-sensitive cells were segregated after a certain lag time. This lag most likely corresponds to a dilution of plasmids existing prior to the temperature shift. The synthesis of plasmid DNA in cells harboring type I mutant plasmids was almost completely blocked at 43 degrees C. It seems that these plasmids have mutations in the gene(s) necessary for plasmid DNA replication. Cells haboring a type II mutant plasmid exhibited neither segregation due to antibiotic sensitivity nor inhibition of plasmid DNA replication throughout cultivation at high temperature. It is likely that the type II mutant plasmid has a temperature-sensitive mutation in the tetracycline resistance gene. Antibiotic-sensitive cells haboring type III mutant plasmids appeared at high frequency after a certain lag time, and the plasmid DNA synthesis was partially suppressed at the nonpermissive temperature. They exhibited also a pleiotrophic phenotype, such as an increase of drug resistance level at 30 degrees C and a decrease in the number of plasmid genomes in a cell.  相似文献   

20.
Studies of the synthesis of viral ribonucleates and polypeptides in cells infected with two RNA- ts mutants of Mengo virus (ts 135 and ts 520) have shown that when ts 135 infected cells are shifted from the permissive (33 degrees C) to the nonpermissive (39 degrees C) temperature: (i) the synthesis of all three species of viral RNA (single stranded, replicative form, and replicative intermediate) is inhibited to about the same extent, and (ii) the posttranslational cleavage of structural polypeptide precursors A and B is partially blocked. Investigations of the in vivo and in vitro stability of the viral RNA replicase suggest that the RNA- phentotype reflects a temperature-sensitive defect in the enzyme. The second defect does not appear to result from the inhibition of viral RNA synthesis at 39 degrees C, since normal cleavage of polypeptides A and B occurs in wt Mengo-infected cells in which viral RNA synthesis is blocked by cordycepin, and at the nonpermissive temperature in ts 520 infected cells. Considered in toto, the evidence suggests that ts 135 is a double mutant. Subviral (53S) particles have been shown to accumulate in ts 520 (but not ts 135) infected cells when cultures are shifted from 33 to 39 degrees C. This observation provides supporting evidence for the proposal that this recently discovered particle is an intermediate in the assembly pathway of Mengo virions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号