首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An efficient micropropagation protocol produced large number of plants of the three elite banana (Musa spp.) cultivars Robusta (AAA), Giant Governor (AAA) and Martaman (AAB) from shoot tip meristem. The genetic relationships and fidelity among the cultivars and micropropagated plants as assessed by random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers, revealed three somaclonal variants from Robusta and three from Giant Governor. A total of 5330 RAPD and 2741 ISSR fragments were generated with 21 RAPD and 12 ISSR primers in micropropagated plants. The percentage of polymorphic loci by RAPD and ISSR were found to be 1.75, 5.08 in Robusta and 0.83, 5.0 in Giant Governor respectively. Among the two marker systems used, ISSR fingerprinting detected more polymorphism than RAPD in Robusta and Giant Governor with most of the primers showing similar fingerprinting profile, whereas Martaman revealed complete genetic stability.  相似文献   

2.
Two approaches were used to detect variability within 23 pea cultivars. Eight random amplified polymorphic DNA (RAPD) primers produced 163 bands (114 polymorphic), whereas five isoenzyme systems produced 25 bands (20 polymorphic). Both methods provided good results in finger-printing and identified all cultivars tested. Genetic similarity analysis (UPGMA) gave different results from RAPD and isoenzyme data. This could reflect different properties of both marker types. These data were also analysed using the bootstrap method, which supported the idea of one common progenitor of cultivated peas. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
The CAPS (PCR-RFLP) method was used to analyze polymorphism in sequences of unique genes among specimens of 24 pea lines and cultivars. Analysis of each employed molecular-genetic marker was found to reveal three to seven polymorphic sequence variants. Analysis with the use of five selected markers allows the unambiguous identification of any of examined specimens. Thus, the possibility of using CAPS markers for identification and classification of garden pea cultivars has been shown. Possible prospects for this approach and the ways of its further implementation are considered.  相似文献   

4.
Hop (Humulus lupulus L.) cultivars are vegetatively propagated and it is difficult to differentiate them during the process of propagation. Fingerprinting with molecular markers based on DNA could be a useful means of identifying different cultivars. Simple sequence repeats, or microsatellite markers, are the most suitable marker for genetic fingerprinting because they are multi‐allelic and co‐dominant. For this purpose, we have developed primers for 10 new polymorphic microsatellite loci that are suitable for genetic fingerprinting in hop.  相似文献   

5.
Red rod is an economically important disease of sugarcane caused by the fungus Colletotrichum falcatum. We used a simple sequence repeat (SSR)-based marker system to identify and analyze genetic relationships of red rot resistant and susceptible sugarcane cultivars grown in Pakistan. Twenty-one highly polymorphic SSR markers were used for DNA fingerprinting and genetic diversity analysis of 20 sugarcane cultivars. These SSR markers were found to be highly robust; we identified 144 alleles, with 3-11 alleles per marker and a mean of 6.8. Three SSR markers were able to identify all 20 cultivars. DNAMAN(?)-generated homology tree was used to analyze genetic diversity among these cultivars; all cultivars shared 58% or more similarity. We correlated polymorphism information content and resolving power values with marker effectiveness in the process of sugarcane cultivar identification. We concluded that a small number of SSR-derived DNA markers will allow breeders to identify red rot resistant and susceptible cultivars.  相似文献   

6.
采用ISSR标记对中华猕猴桃(Actinidia chinensis Planch.)、美味猕猴桃〔A.chinensis var.deliciosa(A.Chev.)A.Chev.〕、软枣猕猴桃〔A.arguta(Sieb.et Zucc.)Planch.ex Miq.〕和毛花猕猴桃(A.eriantha Benth.)的32个样本进行了遗传多样性分析,并以ISSR标记为基础构建了DNA指纹图谱.结果表明:筛选的10个多态性高且条带清晰的引物共扩增出200个条带(位点),其中,多态性位点195个,多态性位点百分率(PPL)达97.50%;各引物的多态性信息含量(PIC)以及供试样本的观测等位基因数(Na)、有效等位基因数(Ne)、Nei's基因多样性指数(H)和Shannon's多样性指数(I)的总均值分别为0.9080、1.9800、1.3569、0.2255和0.3613,4个猕猴桃种间的遗传分化系数(Gst)为0.4146,基因流(Nm)为0.7059,且32个样本间的Na、Ne、H和I值差异极显著(P<0.001).供试32个样本间的遗传相似系数(GS)为0.5650~0.9650,平均值为0.7164;基于GS值进行UPGMA聚类分析,在GS值为0.76处将32个样本分为4组,基本对应供试的4个猕猴桃种类,其中,第Ⅰ组的大多数样本属于美味猕猴桃品种,第Ⅱ组的样本均属于中华猕猴桃品种,第Ⅲ组的样本属于毛花猕猴桃品种,第Ⅳ组的样本均属于软枣猕猴桃品种.分子方差分析结果表明:4个猕猴桃的种间变异占总变异的40.84%,种内变异占总变异的59.16%.研究结果表明:供试的猕猴桃品种间遗传分化程度较高,基因交流频率较低,且总遗传变异的近60%存在于种内,说明供试的猕猴桃品种具有较丰富的遗传多样性.另外,根据10个ISSR引物的扩增结果,筛选出引物UBC818、UBC824、UBC854和UBC895扩增的15个多态性位点构建的DNA指纹图谱可用于供试32个猕猴桃样本的鉴定.  相似文献   

7.
Retrotransposons (RTNs) constitute informative molecular markers for plant species as a result of their ability of integrating into a multitude of loci throughout the genome and thereby generating insertional polymorphisms between individuals. Inter-retrotransposon amplified polymorphisms (IRAPs) and the retrotransposon-microsatellite amplified polymorphisms (REMAPs) are marker systems based on long terminal repeats (LTRs) RTNs, developed for plants, that have been widely used for evolution, genetic diversity, DNA fingerprinting of cultivars and varieties, genetic mapping linkage and for detection of genetic rearrangements induced by polyploidisation. In the present study, we aimed to analyse the genetic variability among 48 Old Portuguese bread wheat cultivars using both IRAP and REMAP markers. Five IRAP and six REMAP primer combinations were used. IRAP produced 103 polymorphic fragments in a total of 113 bands. On average, 22.6 bands were amplified per IRAP primer combination. The bands ranged in size from 250 to 5000 bp. The REMAP primer combinations allowed the amplification of 53 bands, 51 of them polymorphic. An average of 8.8 REMAP bands was scored per primer combination. The REMAP bands ranged from 250 to 3000 bp. Both marker systems presented high percentages of polymorphism. However, IRAP markers were suitable for detecting genetic variability at the individual level and did not differentiate higher taxa. The REMAP maker system allowed the clustering by botanical variety and identified most of the homonym bread wheat cultivars.  相似文献   

8.
Random amplified polymorphic DNA (RAPD) markers are used widely to develop high resolution genetic maps and for genome fingerprinting. Typically, single oligomers of approximately 10 nucleotides are used to PCR amplify characteristic RAPD marker fragments. We describe an efficient method for the direct end-sequencing of gel-purified RAPD fragments using one primer from a set of four 3'-terminal extended (A, T, C or G) oligonucleotides, identical to the RAPD primer but for the single nucleotide extension. Strand-specific DNA sequence could be independently read from each of the RAPD fragments without recourse to strand separation or fragment cloning. Informative RAPD fragments could be readily converted into mapped STS or SCAR loci using this technology. The 3'-extended primers may also be used to amplify independent genomic RAPD markers.  相似文献   

9.
The authors' studies on the organization and variation of plant genome with the use of molecular markers are briefly reviewed with special emphasis on random amplified polymorphic DNA (RAPD), inter simple sequence repeat (ISSR), sequence characterized amplified region (SCAR), and cleaved amplified polymorphic sequence (CAPS) markers detected with the use of polymerase chain reaction (PCR). These markers have been demonstrated to be promising for identifying cultivars and determining the purity of genetic strains of pea. Genetic relationships between strains, cultivars, and mutants of pea have been studied. The role of molecular markers in molecular genetic mapping and localizing the genes of commercially important characters of pea has been shown. The possibility of the use of molecular markers for studying somaclonal variation and detecting mutagenic factors in plants during long-term spaceflights is considered. The prospects of using DNA markers for understanding the organization and variability of higher plant genomes are discussed.  相似文献   

10.
The availability of a simple, reproducible and cost-effective molecular marker is a prerequisite for plant genetic analysis. We have developed a novel promoter-targeted marker, CAAT box- derived polymorphism (CBDP) using the nucleotide sequence of CAAT box of plant promoters. CBDP, like random amplified polymorphic DNA (RAPD), uses single primer in polymerase chain reaction (PCR) for generating markers. However unlike RAPD, the CBDP primers are 18 nucleotides long and consist of a central CCAAT nucleotides core flanked by the filler sequence towards the 5′ end and di- or trinucleotides towards the 3′ end. In this study, a small set of 25 CBDP primer was designed and initially tested in a representative set of eight cultivars of jute for generation of polymorphic markers. Further, to achieve high reproducibility, a touchdown PCR was employed with an annealing temperature of 50ºC. All the CBDP primers generated polymorphic markers in jute cultivars, and an UPGMA dendrogram based on Jaccard’s similarity grouped them into two clusters represented by Corchorus capsularis and C. olitorius, respectively. Interestingly, such grouping of jute cultivars was consistent with genetic relationships established earlier for these cultivars using other DNA markers. Moreover, these CBDP primers also generated polymorphic markers in representative sets of cotton (Gossypium species) and linseed (Linum usitatissimum ) cultivars. Given the high success rate of CBDP primers in generating markers in the tested species and advantages like ease in marker development and assay with reproducible profiles, they could potentially be exploited in other species as well for assessing genetic diversity, cultivar identification, construction of linkage map and marker- assisted selection.  相似文献   

11.
Accurate and reliable cultivar identification of crop species is essential to guarantee plant material identity for purposes of registration, cultivar protection and production. To facilitate identification of plant cultivars, we developed a novel strategy for efficient recording of DNA molecular fingerprints in genotyped plant individuals. These fingerprints can be used as efficient referential information for quick plant identification. We made a random amplified polymorphic DNA (RAPD) marker analysis of 68 pear cultivars. All pear genotypes could be distinguished by a combination of eight 11-mer primers. The efficiency of the method was further verified by correct identification of four cultivars randomly chosen from the initial 68. The advantages of this identification include use of fewer primers and ease of cultivar separation by the corresponding primers marked on the cultivar identification diagram. The cultivar identification diagram can efficiently serve for pear cultivar identification by readily providing the information needed to separate cultivars. To the best of our knowledge, this is the most efficient strategy for identification of plant varieties using DNA markers; it could be employed for the development of the pear industry and for the utilization of DNA markers to identify other plant species.  相似文献   

12.
In many crop species, DNA fingerprinting is required for the precise identification of cultivars to protect the rights of breeders. Many families of retrotransposons have multiple copies throughout the eukaryotic genome and their integrated copies are inherited genetically. Thus, their insertion polymorphisms among cultivars are useful for DNA fingerprinting. In this study, we conducted a DNA fingerprinting based on the insertion polymorphisms of active retrotransposon families (Rtsp-1 and LIb) in sweet potato. Using 38 cultivars, we identified 2,024 insertion sites in the two families with an Illumina MiSeq sequencing platform. Of these insertion sites, 91.4% appeared to be polymorphic among the cultivars and 376 cultivar-specific insertion sites were identified, which were converted directly into cultivar-specific sequence-characterized amplified region (SCAR) markers. A phylogenetic tree was constructed using these insertion sites, which corresponded well with known pedigree information, thereby indicating their suitability for genetic diversity studies. Thus, the genome-wide comparative analysis of active retrotransposon insertion sites using the bench-top MiSeq sequencing platform is highly effective for DNA fingerprinting without any requirement for whole genome sequence information. This approach may facilitate the development of practical polymerase chain reaction-based cultivar diagnostic system and could also be applied to the determination of genetic relationships.  相似文献   

13.
Several techniques of DNA analysis were applied to identify chrysanthemum cultivars. Unrelated cultivars could be distinguished by using RAPDs (random amplified polymorphic DNAs), inter-SSR (simple sequence repeat) PCR (polymerase chain reaction), hybridization-based DNA fingerprinting, as well as RFLPs (restriction fragment length polymorphisms). Cultivars with different flower colours and belonging to one family, i.e. vegetatively derived from 1 cultivar, appeared to have the same DNA fragment patterns, whichever technique was applied. The absence of polymorphisms between different accessions of the same cultivar indicated a high stability of the observed patterns.  相似文献   

14.
A simplified AFLP method, based on methylation-sensitive Alw44I restriction endonuclease, has been developed and evaluated for fingerprinting 15 wheat cultivars. The selected germplasms represented groups of spring and winter wheats with and without the 1BL.1RS translocation. Ten selective primers yielded 57 markers, including 19 polymorphic bands. Three markers (15.8%) were specific to wheat carrying the 1BL.1RS translocation, thus conflicting with the frequency expected by random marker distribution (2.4%), and suggesting qualitative differences in DNA methylation among winter wheat cultivars with the 1BL.1RS translocation. Mean Dice's similarities ranged from 0.85 to 0.99, thus all cultivars could be identified by the banding profile. Winter wheat cultivars, with and without the 1BL.1RS chromosome, were slightly more similar to one another (0.959) than spring wheat cultivars (0.952). Five (9%) specific markers were obtained from cultivars Sicco, Cheyenne, Fenman, Disponent and Chinese Spring.  相似文献   

15.
Identification of Prunus armeniaca cultivars by RAPD and SCAR markers   总被引:2,自引:0,他引:2  
Nineteen cultivars of apricot (Prunus armeniaca) were distinguished using random amplified polymorphic DNA (RAPD) markers. One decamer out of 44 used was useful to differentiate cultivars of the Campania Region from those of Northern Italy, North America and Greece. A sequence characterized amplified region (SCAR) marker was obtained. The results provide a protocol to fingerprint DNA of apricots as an efficient way to quality control and fraud prevention.  相似文献   

16.
This study characterises the genetic variability of fig, Ficus carica L., using simple sequence repeat (SSR) and amplified fragment length polymorphism (AFLP) markers. It compares the efficiency and utility of the two techniques in detecting variation and establishing genetic relationships among Tunisian fig cultivars. Our results show that using both marker systems, the Tunisian fig germ plasm is characterised by having a large genetic diversity at the deoxyribonucleic acid level, as most of AFLP bands were detected and all SSR markers were polymorphic. In fact, 351 (342 polymorphic) and 57 (57 polymorphic) bands were detected using AFLP and SSR primers, respectively. SSR markers were the most polymorphic with an average polymorphic information content value of 0.94, while AFLP markers showed the highest effective multiplex ratio (56.9) and marker index (45.2). The effective marker index was recorded highest (4.19) for AFLP markers and lowest (0.70) for the SSR ones. Our results demonstrate that (1) independent as well as combined analyses of cluster analyses of SSR and AFLP fragments showed that cultivars are clustered independently from their geographical origin, horticultural classifications and tree sex; (2) the analysis of molecular variance allowed the partitioning of genetic variation within and among fig groups and showed greater variation within groups and (3) AFLP and SSR markers datasets showed positive correlation. This study suggests the SSR and AFLP markers are suitable for diversity analysis and cultivars fingerprinting. An understanding of the genetic diversity and population structure of F. carica in Tunisia can also provide insight into the conservation and management of this species.  相似文献   

17.
A set of twelve CAPS markers was mapped for linkage group III of pea (Pisum sativum L.). New primers were designed to use a polymerase chain reaction to amplify fragments of sequenced pea genes containing at least one large intron. Amplification products were tested for polymorphism across three pea lines (Chi115, Flagman and WL1238) using eleven four-base restriction endonucleases. Nine STS markers for linkage group III from the literature were also tested for polymorphism, and five of these were used in this mapping study as anchor points. All polymorphic loci were located by genetic analysis of the F(2)population from the cross Chi115 x WL1238, and a map of linkage group III consisting of one morphological and twelve CAPS markers was created. The map covers the full length of the chromosome and is about 162 cM long. All the CAPS markers in a set were used to test for polymorphism among 10 additional pea DNA samples extracted from different marker lines and cultivars.  相似文献   

18.
We have optimized the genomic DNA extraction method from freshand dry laminas, as well as fresh and dry corolla lobes ofIxoracultivars.Some woody tropical species such as these contain excessiveamounts of phenolic compounds that co-precipitate with DNA resultingin poor or no amplification during the polymerase chain reaction(PCR). Repeated precipitation with CsCl coupled with phenol:chloroformextraction yielded high quality DNA suitable for consistentPCR amplification. The DNA from fresh laminas of 22 cultivarsofIxorawas subjected to random amplified polymorphic DNA (RAPD)analysis. Individual taxa could be identified using specificDNA markers from the RAPD profiles. Cluster analysis of datafrom six primers grouped all 22 cultivars distinctly under twocultivar groups, viz.,IxoraCoccinea andI.Javanica. The percentagegenetic similarity was calculated for all the cultivars basedon the RAPD data. The two cultivar groups and the outgroup plantswere also clearly distinguishable with polar ordination usinga matrix of genetic dissimilarities (one minus similarity).Our data indicate that besides the use of RAPD markers for identificationof particularIxoracultivars within a germplasm collection, thephylogenetic relationships generated by RAPD analysis may beuseful for future breeding programmes. IxoraL. cultivars; Rubiaceae; RAPD fingerprinting; DNA extraction; woody tropical species  相似文献   

19.
Koveza OV  Gostimskiĭ SA 《Genetika》2005,41(11):1522-1530
In order to develop more specific markers that characterize particular regions of the pea genome, the data on nucleotide sequences of RAPD fragments were used for choosing more extended primers, which may be helpful in amplifying a fragment corresponding to the particular DNA region. Of the 14 STS markers obtained from 14 polymorphic RAPD fragments, 12 were polymorphic, i.e., they are SCAR markers that can be used in genetic analysis. The transition from complex RAPD spectra to amplification of a particular SCAR marker substantially facilitates analysis of large samples for the presence or absence of the examined fragment. Inheritance of the developed SCAR markers was studied in F1 and F2. SCAR markers were used to identify various pea lines, cultivars, and mutants. It was established that the study of amplification of STS markers in various pea genotypes at varying temperatures of annealing and the comparison with amplification of the original RAPD fragments in the same genotypes provide an approach for analysis of RAPD polymorphism type.  相似文献   

20.
Pea (Pisum sativum L.) somaclones of cultivars Adept, Komet and Bohatýr were obtained after selection in vitro with Fusarium solani filtrate and fusaric acid (FA). R2 regenerants were analysed by random amplification of polymorphic DNA (RAPD; OPAB4, P-14, UBC-556) and inter-retrotransposon amplification polymorphism (IRAP; Ogre) markers. Marker UBC-556 showed different banding patterns for each cultivar, but without specific bands for selected and control plants. Markers OPAB4, P14 and Ogre were useful for clear discrimination between selected and non-selected variants of all three cultivars. Flow cytometry analysis proved the same genome size of selected and non-selected pea lines. Therefore in vitro selection by pathogen derived agents could be the efficient method for obtaining of pea somaclones with increased resistance to F. solani.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号