首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Salmonella spp. are Gram-negative enteropathogenic bacteria that infect a variety of vertebrate hosts. Like any other living organism, protein secretion is a fundamental process essential for various aspects of Salmonella biology. Herein we report the identification and characterization of a horizontally acquired, autonomous and previously unreported secretion pathway. In Salmonella enterica serovar Typhimurium, this novel secretion pathway is encoded by STM1669 and STM1668, designated zirT and zirS, respectively. We show that ZirT is localized to the bacterial outer membrane, expected to adopt a compact beta-barrel conformation, and functions as a translocator for ZirS. ZirS is an exoprotein, which is secreted into the extracellular environment in a ZirT-dependent manner. The ZirTS secretion pathway was found to share several important features with two-partner secretion (TPS) systems and members of the intimin/invasin family of adhesions. We show that zirTS expression is affected by zinc; and that in vivo, induction of zirT occurs distinctively in Salmonella colonizing the small intestine, but not in systemic sites. Additionally, strong expression of zirT takes place in Salmonella shed in fecal pellets during acute and persistent infections of mice. Inactivation of ZirTS results in a hypervirulence phenotype of Salmonella during oral infection of mice. Cumulatively, these results indicate that the ZirTS pathway plays a unique role as an antivirulence modulator during systemic disease and is involved in fine-tuning a host-pathogen balance during salmonellosis.  相似文献   

2.
Here, the PduX enzyme of Salmonella enterica is shown to be an L-threonine kinase used for the de novo synthesis of coenzyme B(12) and the assimilation of cobyric acid (Cby). PduX with a C-terminal His tag (PduX-His(6)) was produced at high levels in Escherichia coli, purified by nickel affinity chromatography, and partially characterized. (31)P NMR spectroscopy established that purified PduX-His(6) catalyzed the conversion of l-threonine and ATP to L-threonine-O-3-phosphate and ADP. Enzyme assays showed that ATP was the preferred substrate compared with GTP, CTP, or UTP. PduX displayed Michaelis-Menten kinetics with respect to both ATP and l-threonine and nonlinear regression was used to determine the following kinetic constants: V(max) = 62.1 +/- 3.6 nmol min(-1) mg of protein(-1); K(m)(, ATP) = 54.7 +/- 5.7 microm and K(m)(,Thr) = 146.1 +/- 8.4 microm. Growth studies showed that pduX mutants were impaired for the synthesis of coenzyme B(12) de novo and from Cby, but not from cobinamide, which was the expected phenotype for an L-threonine kinase mutant. The defect in Cby assimilation was corrected by ectopic expression of pduX or by supplementation of growth medium with L-threonine-O-3-phosphate, providing further support that PduX is an L-threonine kinase. In addition, a bioassay showed that a pduX mutant was impaired for the de novo synthesis of coenzyme B(12) as expected. Collectively, the genetic and biochemical studies presented here show that PduX is an L-threonine kinase used for AdoCbl synthesis. To our knowledge, PduX is the first enzyme shown to phosphorylate free L-threonine and the first L-threonine kinase shown to function in coenzyme B(12) synthesis.  相似文献   

3.
Lethal mutations in the isoprenoid pathway of Salmonella enterica   总被引:1,自引:0,他引:1       下载免费PDF全文
Essential isoprenoid compounds are synthesized using the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway in many gram-negative bacteria, some gram-positive bacteria, some apicomplexan parasites, and plant chloroplasts. The alternative mevalonate pathway is found in archaea and eukaryotes, including cytosolic biosynthesis in plants. The existence of orthogonal essential pathways in eukaryotes and bacteria makes the MEP pathway an attractive target for the development of antimicrobial agents. A system is described for identifying mutations in the MEP pathway of Salmonella enterica serovar Typhimurium. Using this system, point mutations induced by diethyl sulfate were found in the all genes of the essential MEP pathway and also in genes involved in uptake of methylerythritol. Curiously, none of the MEP pathway genes could be identified in the same parent strain by transposon mutagenesis, despite extensive searches. The results complement the biochemical and bioinformatic approaches to the elucidation of the genes involved in the MEP pathway and also identify key residues for activity in the enzymes of the pathway.  相似文献   

4.
5.
Caspase enzymes are a family of cysteine proteases that play a central role in apoptosis. Recently, it has been demonstrated that caspases can be S-nitrosylated and inhibited by nitric oxide (NO). The present report shows that in chick embryo heart cells (CEHC), NO donor molecules such as S-nitroso-N-acetylpenicillamine (SNAP), S-nitrosoglutathione, spermine-NO or sodium nitroprusside inhibit caspase activity in both basal and staurosporine-treated cells. However, the inhibitory effect of NO donors on caspase activity is accompanied by a parallel cytotoxic effect, that precludes NO to exert its antiapoptotic capability. N-Acetylcysteine (NAC) at a concentration of 10 mM blocks depletion of cellular glutathione and cell death in SNAP-treated CEHC, but it poorly affects the ability of SNAP to inhibit caspase activity. Consequently, in the presence of NAC, SNAP attenuates not only caspase activity but also cell death of staurosporine-treated CEHC. These data show that changes in the redox environment may inhibit NO-mediated toxicity, without affecting the antiapoptotic capability of NO, mediated by inhibition of caspase enzymes. NO may thus be transformed from a killer molecule into an antiapoptotic agent.  相似文献   

6.
Suppressor of cytokine signaling (SOCS)-2 is a member of a family of intracellular proteins implicated in the negative regulation of cytokine signaling. The generation of SOCS-2-deficient mice, which grow to one and a half times the size of their wild-type littermates, suggests that SOCS-2 may attenuate growth hormone (GH) signaling. In vitro studies indicate that, while SOCS-2 can inhibit GH action at low concentrations, at higher concentrations it may potentiate signaling. To determine whether a similar enhancement of signaling is observed in vivo or alternatively whether increased SOCS-2 levels repress growth in vivo, we generated and analyzed transgenic mice that overexpress SOCS-2 from a human ubiquitin C promoter. These mice are not growth-deficient and are, in fact, significantly larger than wild-type mice. The overexpressed SOCS-2 was found to bind to endogenous GH receptors in a number of mouse organs, while phosphopeptide binding studies with recombinant SOCS-2 defined phosphorylated tyrosine 595 on the GH receptor as the site of interaction. Together, the data implicate SOCS-2 as having dual effects on GH signaling in vivo.  相似文献   

7.
Synthesis of cobalamin de novo by Salmonella enterica serovar Typhimurium strain LT2 and the absence of this ability in Escherichia coli present several problems. This large synthetic pathway is shared by virtually all salmonellae and must be maintained by selection, yet no conditions are known under which growth depends on endogenous B12. The cofactor is required for degradation of 1,2-propanediol and ethanolamine. However, cofactor synthesis occurs only anaerobically, and neither of these carbon sources supports anaerobic growth with any of the alternative electron acceptors tested thus far. This paradox is resolved by the electron acceptor tetrathionate, which allows Salmonella to grow anaerobically on ethanolamine or 1,2-propanediol by using endogenously synthesized B12. Tetrathionate provides the only known conditions under which simple cob mutants (unable to make B12) show a growth defect. Genes involved in this metabolism include the ttr operon, which encodes tetrathionate reductase. This operon is globally regulated by OxrA (Fnr) and induced anaerobically by a two-component system in response to tetrathionate. Salmonella reduces tetrathionate to thiosulfate, which it can further reduce to H2S, by using enzymes encoded by the genes phs and asr. The genes for 1,2-propanediol degradation (pdu) and B12 synthesis (cob), along with the genes for sulfur reduction (ttr, phs, and asr), constitute more than 1% of the Salmonella genome and are all absent from E. coli. In diverging from E. coli, Salmonella acquired some of these genes unilaterally and maintained others that are ancestral but have been lost from the E. coli lineage.  相似文献   

8.
Salmonella enterica degrades 1,2-propanediol (1,2-PD) in a coenzyme B(12)-dependent manner. Previous enzymatic assays of crude cell extracts indicated that a phosphotransacylase (PTAC) was needed for this process, but the enzyme involved was not identified. Here, we show that the pduL gene encodes an evolutionarily distinct PTAC used for 1,2-PD degradation. Growth tests showed that pduL mutants were unable to ferment 1,2-PD and were also impaired for aerobic growth on this compound. Enzyme assays showed that cell extracts from a pduL mutant lacked measurable PTAC activity in a background that also carried a pta mutation (the pta gene was previously shown to encode a PTAC enzyme). Ectopic expression of pduL corrected the growth defects of a pta mutant. PduL fused to eight C-terminal histidine residues (PduL-His(8)) was purified, and its kinetic constants were determined: the V(max) was 51.7 +/- 7.6 micromol min(-1) mg(-1), and the K(m) values for propionyl-PO(4)(2-) and acetyl-PO(4)(2-) were 0.61 and 0.97 mM, respectively. Sequence analyses showed that PduL is unrelated in amino acid sequence to known PTAC enzymes and that PduL homologues are distributed among at least 49 bacterial species but are absent from the Archaea and Eukarya.  相似文献   

9.
Adenosylcobalamin (Ado-B12) is both the cofactor and inducer of ethanolamine ammonia lyase (EA-lyase), a catabolic enzyme for ethanolamine. De novo synthesis of Ado-B12 by Salmonella enterica occurs only under anaerobic conditions. Therefore, aerobic growth on ethanolamine requires import of Ado-B12 or a precursor (CN-B12 or OH-B12) that can be adenosylated internally. Several known enzymes adenosylate corrinoids. The CobA enzyme transfers adenosine from ATP to a biosynthetic intermediate in de novo B12 synthesis and to imported CN-B12, OH-B12, or Cbi (a B12 precursor). The PduO adenosyl transferase is encoded in an operon (pdu) for cobalamin-dependent propanediol degradation and is induced by propanediol. Evidence is presented here that a third transferase (EutT) is encoded within the operon for ethanolamine utilization (eut). Surprisingly, these three transferases share no apparent sequence similarity. CobA produces sufficient Ado-B12 to initiate eut operon induction and to serve as a cofactor for EA-lyase when B12 levels are high. Once the eut operon is induced, the EutT transferase supplies more Ado-B12 during the period of high demand. Another protein encoded in the operon (EutA) protects EA-lyase from inhibition by CN-B12 but does so without adenosylation of this corrinoid.  相似文献   

10.
11.
Chowdhury S  Banerjee R 《Biochemistry》1999,38(46):15287-15294
The recent structures of cobalamin-dependent methionine synthase and methylmalonyl-CoA mutase have revealed a striking conformational change that accompanies cofactor binding to these proteins. Alkylcobalamins have octahedral geometry in solution at physiological pH, and the lower axial coordination position is occupied by the nucleotide, dimethylbenzimidazole ribose phosphate, that is attached to one of the pyrrole rings of the corrin macrocycle via an aminopropanol moiety. In contrast, in the active sites of these two B12-dependent enzymes, the nucleotide tail is held in an extended conformation in which the base is far removed from the cobalt in cobalamin. Instead, a histidine residue donated by the protein replaces the displaced intramolecular base. This unexpected mode of cofactor binding in a subgroup of B12-dependent enzymes has raised the question of what role the nucleotide loop plays in cofactor binding and catalysis. To address this question, we have synthesized and characterized two truncated cofactor analogues: adenosylcobinamide and adenosylcobinamide phosphate methyl ester, lacking the nucleotide and nucleoside moieties, respectively. Our studies reveal that the nucleotide tail has a modest effect on the strength of cofactor binding, contributing approximately 1 kcal/mol to binding. In contrast, the nucleotide has a profound influence on organizing the active site for catalysis, as evidenced by the retention of the base-off conformation in the truncated cofactor analogues bound to the mutase and by their inability to support catalysis. Characterization of the kinetics of adenosylcobalamin (AdoCbl) binding by stopped-flow fluorescence spectroscopy reveals a pH-sensitive step that titrates to a pKa of 7.32 +/- 0.19 that is significantly different from the pKa of 3.7 for dimethylbenzimidazole in free AdoCbl. In contrast, the truncated cofactors associate very rapidly with the enzyme at rates that are too fast to measure. Based on these observations, we propose a model in which the base-on to base-off conformational change is slow and is assisted by the enzyme, and is followed by a rapid docking of the cofactor in the active site.  相似文献   

12.
13.
Sulfatases of enteric bacteria can provide access to heavily sulfated mucosal glycans. In this study, we show that aslA (STM0084) of Salmonella enterica serovar Typhimurium LT2 encodes a sulfatase that requires mildly acidic pH for its expression and activity. AslA is not regulated by sulfur compounds or tyramine but requires the EnvZ-OmpR and PhoPQ regulatory systems, which play an important role in pathogenesis.  相似文献   

14.
15.
AIMS: DNA fingerprinting of Salmonella enterica serotype Paratyphi B isolated in Malaysia during 1982-83, 1992 and 1996-2002 was carried out by pulsed-field gel electrophoresis (PFGE), antimicrobial susceptibility tests and D-tartrate utilization tests to assess the extent of genetic diversity of these isolates in Malaysia. METHODS AND RESULTS: Eighty-six human isolates and one food isolate of Salm. Paratyphi B were analysed by PFGE, antimicrobial susceptibility tests and D-tartrate utilization tests. Sixty-five strains were D-tartrate-negative (dT-) while 22 strains were D-tartrate-positive (dT+). Thirty-seven per cent of the Salm. Paratyphi B strains were resistant to one or more antimicrobial agents. PFGE analysis clearly distinguished the dT- and dT+ strains into two clusters based on the unweighted pair group average method (UPGMA). Twenty-two XbaI-pulsotypes were observed among the 65 dT- strains while 17 XbaI-pulsotypes were observed among the 22 isolates of Salm. Paratyphi B dT+. CONCLUSIONS: The present study showed that PFGE was very discriminative with 33.7% of the strains yielding distinct fingerprints. Paratyphoid fever in Malaysia is probably caused by one predominant, endemic clone of Salm. Paratyphi B dT- with various subtypes. There was no association between the pulsotypes and the severity of the disease indicating that the severity of the disease is probably multifactorial. SIGNIFICANCE AND IMPACT OF THE STUDY: The findings of the present study verify the usefulness of PFGE in characterizing strains of Salm. Paratyphi B. This is the first report on the application of PFGE on a large collection of Salm. Paratyphi B in Malaysia.  相似文献   

16.
Salmonella enterica forms polyhedral organelles during coenzyme B(12)-dependent growth on 1,2-propanediol (1,2-PD). Previously, these organelles were shown to consist of a protein shell partly composed of the PduA protein, the majority of the cell's B(12)-dependent diol dehydratase, and additional unidentified proteins. In this report, the polyhedral organelles involved in B(12)-dependent 1,2-PD degradation by S. enterica were purified by a combination of detergent extraction and differential and density gradient centrifugation. The course of the purification was monitored by electron microscopy and gel electrophoresis, as well as enzymatic assay of B(12)-dependent diol dehydratase. Following one- and two-dimensional gel electrophoresis of purified organelles, the identities and relative abundance of their constituent proteins were determined by N-terminal sequencing, protein mass fingerprinting, Western blotting, and densitometry. These analyses indicated that the organelles consisted of at least 15 proteins, including PduABB'CDEGHJKOPTU and one unidentified protein. Seven of the proteins identified (PduABB'JKTU) have some sequence similarity to the shell proteins of carboxysomes (a polyhedral organelle involved in autotrophic CO(2) fixation), suggesting that the S. enterica organelles and carboxysomes have a related multiprotein shell. In addition, S. enterica organelles contained four enzymes: B(12)-dependent diol dehydratase, its putative reactivating factor, aldehyde dehydrogenase, and ATP cob(I)alamin adenosyltransferase. This complement of enzymes indicates that the primary catalytic function of the S. enterica organelles is the conversion of 1,2-PD to propionyl coenzyme A (which is consistent with our prior proposal that the S. enterica organelles function to minimize aldehyde toxicity during growth on 1,2-PD). The possibility that similar protein-bound organelles may be more widespread in nature than currently recognized is discussed.  相似文献   

17.
18.
P Chen  M Ailion  N Weyand    J Roth 《Journal of bacteriology》1995,177(6):1461-1469
The cob operon of Salmonella typhimurium includes 20 genes devoted to the synthesis of adenosyl-cobalamin (coenzyme B12). Mutants with lesions in the promoter-distal end of the operon synthesize vitamin B12 only if provided with 5,6-dimethylbenzimidazole (DMB), the lower ligand of vitamin B12. In the hope of identifying a gene(s) involved in synthesis of DMB, the DNA base sequence of the end of the operon has been determined; this completes the sequence of the cob operon. The cobT gene is the last gene in the operon. Four CobII (DMB-) mutations mapping to different deletion intervals of the CobII region were sequenced; all affect the cobT open reading frame. Both the CobT protein of S. typhimurium and its Pseudomonas homolog have been shown in vitro to catalyze the transfer of ribose phosphate from nicotinate mononucleotide to DMB. This reaction does not contribute to DMB synthesis but rather is the first step in joining DMB to the corrin ring compound cobinamide. Thus, the phenotype of Salmonella cobT mutants conflicts with the reported activity of the affected enzyme, while Pseudomonas mutants have the expected phenotype. J. R. Trzebiatowski, G. A. O'Toole, and J. C. Escalante Semerena have suggested (J. Bacteriol. 176:3568-3575, 1994) that S. typhimurium possesses a second phosphoribosyltransferase activity (CobB) that requires a high concentration of DMB for its activity. We support that suggestion and, in addition, provide evidence that the CobT protein catalyzes both the synthesis of DMB and transfer of ribose phosphate. Some cobT mutants appear defective only in DMB synthesis, since they grow on low levels of DMB and retain their CobII phenotype in the presence of a cobB mutation. Other mutants including those with deletions, appear defective in transferase, since they require a high level of DMB (to activate CobB) and, in combination with a cobB mutation, they eliminate the ability to join DMB and cobinamide. Immediately downstream of the cob operon is a gene (called ORF in this study) of unknown function whose mutants have no detected phenotype. Just counterclockwise of ORF is an asparagine tRNA gene (probably asnU). Farther counterclockwise, a serine tRNA gene (serU or supD) is weakly cotransducible with the cobT gene.  相似文献   

19.
The Ca2+- and oxidative stress-induced mitochondrial permeability transition (MPT) plays an important role in phenomena ranging from tissue damage upon infarction to muscle wasting in some forms of dystrophy. The process is due to the activation of a large pore in the inner mitochondrial membrane. Anti-oxidants are considered a preventive and remedial tool, and mitochondria-targeted redox-active compounds have been developed. Plant polyphenols are generally considered as anti-oxidants, and thus candidates to the role of mitochondria-protecting agents. In patch-clamp experiments, easily oxidizable polyphenols induced closure of the MPT channel. In swelling experiments with suspensions of mitochondria, high (20–50 μM) concentrations of quercetin, the most efficient inhibitor, promoted instead the onset of the MPT. Chelators of Fe2+/3+ and Cu+/2+ ions counteracted this effect. Fluorescent indicators of superoxide production confirmed that quercetin potentiates O2? generation by isolated mitochondria and cultured cells. Since this was not affected by chelating Fe and Cu ions, the MPT-inducing effect can be ascribed to a “secondary”, metal ion-catalyzed production of ROS. These results are a direct demonstration of the ambivalent redox character of polyphenols. Their mode of action in vivo cannot be taken for granted, but needs to be experimentally verified.  相似文献   

20.
We report that cobC strains of Salmonella enterica serovar Typhimurium are impaired in the ability to salvage cobyric acid (Cby), a de novo corrin ring biosynthetic intermediate, under aerobic growth conditions. In vivo and in vitro evidence support the conclusion that this new phenotype of cobC strains is due to the inability of serovar Typhimurium to dephosphorylate adenosylcobalamin-5'-phosphate (AdoCbl-5'-P), the product of the condensation of alpha-ribazole-5'-phosphate (alpha-RP) and adenosylcobinamide-GDP by the AdoCbl-5'-P synthase (CobS, EC 2.7.8.26) enzyme. Increased flux through the 5,6-dimethylbenzimidazole and cobinamide (Cbi) activation branches of the nucleotide loop assembly pathway in cobC strains restored AdoCbl-5'-P synthesis from Cby in a cobC strain. The rate of the CobS-catalyzed reaction was at least 2 orders of magnitude higher with alpha-RP than with alpha-ribazole as substrate. On the basis of the data reported herein, we conclude that removal of the phosphoryl group from AdoCbl-5'-P is the last step in AdoCbl biosynthesis in serovar Typhimurium and that the reaction is catalyzed by the AdoCbl-5'-P phosphatase (CobC) enzyme. Explanations for the correction of the Cby salvaging phenotype are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号