首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytotoxic T lymphocytes, generated in C57BL/6 mice in response to herpes simplex virus type 1 (HSV) and known to be restricted in their recognition of HSV-encoded antigen(s) in association with the class I H-2Kb gene product, were consistently found to contain a subpopulation that recognized and lysed uninfected, SV40-transformed cells that expressed the H-2Kbm3 and H-2Kbm11 mutant class I gene products on their cell surface. The mutant cell lines, designated Lgbm3SV and Kbm11SV, share a common amino acid substitution at position 77, with the bm3 mutation having an additional amino acid substitution at position 89. Cross-reactive lysis was observed only after in vivo priming with HSV, suggesting an important role for an antigen-dependent driving step in the expansion of these cross-reactive CTL. The phenotype of the cross-reactive effector population was further confirmed as a T lymphocyte by negative-selection techniques. Limiting dilution analysis of the frequency of cross-reactive CTL precursors suggested that cross-reactivity was mediated by a subpopulation of HSV-specific CTL, and this was confirmed by clonal analysis of the reactivity patterns of short-term, HSV-specific CTL clones. However, analysis of the specificity of the cross-reactive CTL population by cold-target inhibition of bulk culture-derived CTL, or by Spearman ranking analysis of limiting dilution-derived CTL, indicated that the specificity of the cross-reactive population for HSV-infected H-2b target cells and for uninfected bm3 or bm11 target cells was quite distinct. These findings suggested that the cross-reactive CTL population played little, if any, role in the HSV-specific CTL response as measured in vitro. The findings also suggested that the HSV-specific CTL clones able to mediate cross-reactive recognition of the bm3 and bm11 targets had a higher intrinsic avidity for the foreign target than for the inducing antigen.  相似文献   

2.
Two new C57BL/6 H-2 mutants, B6.C-H-2bm13 and B6.C-H-2bm14 are described. They arose independently in C57BL/6 as spontaneous mutations of the gain and loss type. Complementation studies map the mutations in both bm13 and bm14 to the H-2Db gene. However, these two mutant strains are not identical, but occurred as independent mutations at the same locus, as shown by reciprocal graft rejection and by the inability of the (bm13 X bm14)F1 hybrid to accept C57BL/6 grafts. Serological studies by direct testing (cytotoxicity and hemagglutination) and by quantitative absorption demonstrated a decrease in the H-2Db private specificity H-2.2 in both bm13 and bm14 when compared to C57BL/6. This was confirmed by SDS-PAGE analysis using antisera detecting the H-2.2 specificity. Attempts to produce antibodies to either the gained or lost specificities of the two mutant strains failed.  相似文献   

3.
The H-2K glycoprotein from the MHC mutant bm10 was analyzed biochemically to determine where primary structural differences distinguished it from the parental standard molecule, Kb. Comparative peptide maps showed differences in two peptides known to be part of the parental CNBr fragment spanning amino acids 139 to 228. Partial sequence analyses of CNBr fragments and tryptic peptides identified two tightly clustered amino acid substitutions at amino acids 165 (Val to Met) and 173 (Lys to unknown). The substitutions in bm10 represent the most carboxy-terminal substitutions characterized in the Kb molecules of the spontaneous, histogenically active H-2 mutants.  相似文献   

4.
The BM12 mutation and autoantibodies to dsDNA in NZB.H-2bm12 mice   总被引:4,自引:0,他引:4  
Molecular and genetic tools have been used to shed light on the genes that contribute to susceptibility to murine lupus and the mechanisms that lead to immunopathology. The MHC genes and their products have been consistently shown to contribute toward the development of disease. To understand the contribution of MHC-class II genes, our laboratory had derived two inbred strains of mice, NZB.H-2bm12 and NZB.H-2b. These new colonies of mice were studied and compared in the 10th generation backcross; inbreeding was serially followed by H-2 typing, responses to beef/porcine insulin, and the presence of the B6 Ig allotype, IgG2ab. Of great interest is the finding that NZB.H-2bm12, in contrast to NZB.H-2b or NZB (H-2d), mice develop high titer autoantibodies to dsDNA. This result is unique because NZB (H-2d) mice, unliked NZB x NZW (NZB/W F1) or NZB x SWR (SNF1) hybrids do not develop autoantibodies to dsDNA, even after immunization. NZB mice, in contrast, are characterized only by autoantibodies to ssDNA. Our observation is also striking because the gene conversion that resulted in the I-A beta bm12 mutation occurred at amino acid residues 68, 71, and 72 of I-E beta b. Recently the contribution of NZW to accelerated autoimmunity in the NZB x NZW F1 hybrid has also been linked to H-2 and a single amino acid change at amino acid 72 of I-E beta. Thus, amino acid residue 72 may be a hot spot for disorders of immune regulation when superimposed on the appropriate genetic background. NZB mice expressing the I-Abm12 mutation will allow specific dissection of the requirements for autoantibody production to dsDNA uncomplicated by heterozygosity.  相似文献   

5.
In an earlier paper, we presented evidence that two independent mutants of the bg series, B6-H-2 bm5 (bm5) and B6-H-2 bm16 (bm16) carry identical mutations such that tyrosine at residue number 116 of the H-2Kb molecule from the parent strain C57BL/6Kh is replaced by a phenylalanine in each of the two mutant molecules. In this paper, we demonstrate, using similar techniques, that the independent bg series mutants B6-H-2 bm6 (bm6), B6.C-H-2 bm7 (bm7), and B6.C-H-2 bm9 (bm9), which share biological properties with bm5 and bm16, can be grouped together because they share two identical mutations, one of which is common to bm5 and bm16, a Tyr to Phe interchange at residue number 116. In addition, a second mutation is at residue number 121, where a Cys in the H-2K molecule from 136 is substituted with an Arg in the mutant. Since all of the bg series mutants arose independently and share biological and biochemical characteristics, it is anticipated that study of these mutants could lead to some understanding of the high mutation rate in the Kb molecule.  相似文献   

6.
7.
Structural studies of the H-2 gene products from a group of five closely related but independent C57BL/6 H-2 mutant mice were undertaken. Each of the mutants exhibits reciprocal graft rejection with the parent. The group is remarkable, however, because each member of this group can accept skin grafts from any other member. The results of biochemical analysis of the H-2 glycoproteins from two of these related mutants, bm5 and bm16, are presented in this report. Evidence is given that the H-2K molecules from these two mutants are identical to each other based on comparative tryptic peptide mapping profiles with the parent. From partial amino acid sequence analysis, K products of both mutants have at least one common difference from the parental type located at residue number 116. Definitive studies established that in both bm5 and bm16 a tryosine found in the parent molecule is substituted with a phenylalanine in the mutant. These results show that a biochemical difference between the K products of the two mutants and of the parent can be detected, that the mutants appear to be identical with one another even though they arose independently, and that they differ from the other H-2K b mutants analyzed.Abbreviations used in this paper B6 C57BL/6Kh - bm5 B6-H-2bm5 - bm6 B6-H-2 bm6 - bm7 B6.C-H-2 bm7 - bm9 B6.C-H-2 bm9 - bm16 B6-H-2 bm16 - D H-2D - K H-2K - MHC major histocompatibility complex  相似文献   

8.
We have previously demonstrated that the introduction of the bm12 mutation into NZB mice results in animals that spontaneously produce high titer IgG autoantibodies to dsDNA. The observation that NZB.H-2bm12 develop lupus although NZB.H-2b control mice do not, provides a unique system to study the role of Th cells in the production of antibodies to dsDNA. We have isolated, in the absence of a known stimulating autoantigen, a series of seven autoreactive T cell clones that provide help in vitro for the production of IgG anti-dsDNA antibodies by syngeneic B cells. The data on these seven cloned T cell lines was compared to two cloned T cell lines specific for keyhole limpet hemocyanin. The seven cloned T cell lines, coined clones 19D, 23G, 410F, 410H, C1, C15, and C52 all show significant help in vitro for production of IgM and IgG antibodies to ssDNA and dsDNA; antibody levels increased 7- to 30-fold compared to cultures without T cells. Clones C1, C15, and C52 were furthered studied and were shown to provide help for IgM antihistone and anti-OVA responses but provided significantly less help for IgG antibodies. In contrast, keyhole limpet hemocyanin-specific cloned T cell lines TK2 and TK5 provided help for IgM antibodies to ssDNA, dsDNA, and histone, but failed to significantly increase IgG antibodies to ssDNA, dsDNA, or histone. The cloned T cell lines were restricted to H-2bm12 and proliferated only in response to APC from NZB.H-2bm12 and B6.C-H-2bm12 but not NZB.H-2b or NZB.H-2d mice; their in vitro helper activity was inhibited by antibodies to class II. All cloned T cell lines expressed Thy-1, CD5, and TCR-alpha/beta. Three of the seven clones used TCR-V beta 4. However, the V beta expression of the four remaining autoreactive T cell clones could not be determined. All of the autoreactive cloned T cell lines produce significant IL-4 but no detectable IL-2 or IFN-gamma. We believe that HPLC-purified peptides eluted from I-Abm12 molecules from APC can potentially provide insight on the putative autoantigen.  相似文献   

9.
Two new C57BL/6H-2 mutants,B6.C-H- 2bm13 and B6.C-H- 2bm14 are described. They arose independently in C57BL/6 as spontaneous mutations of the gain and loss type. Complementation studies map the mutations in both bm13 and bm14 to theH-2D b gene. How ever, these two mutant strains are not identical, but occurred as independent mutations at the same locus, as shown by reciprocal graft rejection and by the inability of the (bm13 × bm114)F1 hybrid to accept C57BL/6 grafts. Serological studies by direct testing (cytotoxicity and hemagglutination) and by quantitative absorption demonstrated a decrease in the H-2Db private specificity H-2.2 in both bm13 and bm14 when compared to C57BL/6. This was confirmed by SDS-PAGE analysis using antisera detecting the H-2.2 specificity. Attempts to produce antibodies to either the gained or lost specificities of the two mutant strains failed.  相似文献   

10.
In C57BL/6 (B6, H-2b) mice, the secondary in vitro CTL response against Moloney leukemia virus is restricted and regulated by the H-2Db locus. B6.C-H- 2bm13 ( bm13 ) mice, however, carrying a mutation at the Db locus, show an increased H-2Kb-restricted CTL response without a demonstrable CTL component restricted by the mutant Dbm13 molecule (D----K shift). These purely Kb-restricted bm13 virus-specific CTL were incubated with a series of Kb mutant virus-infected target cells to study the effect of the mutations at the target cell level. Of six Kb-mutant virus-infected target cells tested, bm1 cells were not recognized and bm8 cells were recognized only marginally by bm13 virus-specific CTL, whereas bm3 , bm5 , bm6 , and bm11 cells were fully recognized. Thus, the bm3 , bm5 , bm6 , and bm11 Kb mutants fully share the relevant H-2K restriction specificities with H-2Kb, whereas the bm1 mutant totally and the bm8 mutant almost completely lack these specificities. This result differs markedly from the restriction site relationships among B6 and these Kb mutants in other antigenic systems. The most striking example concerns the bm11 mutant, which is fully recognized by Moloney-specific CTL, but not at all by Sendai, minor H (H-3.1, H-4.2), and sulfhydryl hapten-specific CTL. Monoclonal anti-H-2Kb antibody B8-3-24 inhibited virus-specific lysis by bm13 CTL of all Kb virus-infected mutant target cells to which this antibody binds. Lysis of bm5 and bm11 but not of bm3 target cells was inhibited, in line with the fact that B8-3-24 antibody does not bind bm3 . On the other hand, not only bm5 and bm11 but also bm3 virus-infected target cells blocked virus-specific lysis to the same extent as syngeneic bm13 target cells. Therefore, bm13 virus-specific CTL populations do not recognize the discrete cluster alteration in the Kbm3 molecule, as identified by antibody B8-3-24. The bm1 and the bm8 mutations, which have structural alterations in completely different sites of the Kb molecule, show complete or almost complete loss, respectively, of Kb-Moloney restriction sites. This finding supports the notion that these virus-specific CTL recognize conformational determinants rather than linear amino acid sequences.  相似文献   

11.
The H-2Kf allele and the spontaneous mutant Kfm1 have been cloned using locus-specific sequences. The mutation consists of a cluster of four nucleotide changes, resulting in amino acid substitutions at positions 95 (Leu----Ile) and 97 (Val----Arg). This finding has structural, genetic, and technical implications. The amino acid substitutions are located on the beta-strands of the antigen recognition site. Their influence on the allogeneic properties of the Kf glycoprotein is consistent with the hypothesis that alloreactivity results from alterations in the spectrum of peptides presented to T cells. These substitutions would not, however, be predicted to be directly accessible for binding to antibodies. Nonetheless, the fm1 mutant binds anti Kf alloantisera and mAb much less strongly than the parent molecule, suggesting some indirect effect of these residues on serologic phenotype. The mutant is also interesting genetically because the sequence of the mutated region is identical to the sequence of the Df gene. This implies that there is a gene conversion-like mutational mechanism operating in the H-2f haplotype. Finally, the strategy used to obtain these K-locus cDNA should prove generally useful for isolating other MHC alleles.  相似文献   

12.
13.
Using the fluorescence-activated cell sorter (FACS II), we have analyzed the expression of H-2K- and H-2D-gene products on the membrane of various cellular components of the murine immune system. Using this serological technique we show a basic difference between T and B lymphocytes. Whereas all cellular components analyzed — hydrocortisone-resistant thymocytes, splenic T and B lymphocytes, macrophages and bone-marrow cells — expressed H-2K-subregion-encoded alloantigens at a high density, it seems that the high density expression of H-2D-encoded alloantigens is restricted mainly to B cells and to macrophages. Hydrocortisone-resistant thymocytes, splenic T lymphocytes and bone-marrow cells, on the other hand, showed significant expression of the H-2D alloantigens only at low membrane density. These results, then, provide evidence for the existence of an imbalance in serologically detectable expression of H-2K- and H-2D-region-gene products on the cell membrane of various cells comprising the murine immune system.Abbreviations usedin this paper DTH delayed type hypersensitivity - FCS fetal calf serum - FITC fluorescein isothiocyanate - HrT hydrocortisone-resistant thymocytes - Ig immunoglobulins P. De Baetselier is an EMBO and Euratom postdoctoral fellow  相似文献   

14.
15.
16.
Homozygous brachymorphic (bm/bm) mice have a disproportionately short stature. Previous studies have shown that the cartilage proteoglycan is undersulfated as a result of decreased 3′-phosphoadenosine 5′-phosphosulfate (PAPS) levels. In the studies reported here, PAPS synthesizing activity was found to be decreased in both skin fibroblasts and prechondrogenic mesenchyme, but sulfation of glycosaminoglycan was normal in those tissues unless glycosaminoglycan synthesis was enhanced by β-d-xyloside. Furthermore, undersulfation was correlated with increased proteoglycan synthesis as the limb mesenchyme cultures underwent chondrogenesis, and sulfation proceeded in an “all or none” manner. These observations demonstrate that the molecular defect in bm/bm mice is not restricted to cartilage, but is manifested there because of the large amount of chondroitin sulfate synthesized.  相似文献   

17.
18.
Light microscopy, including immunohistochemical techniques, and electron microscopy were performed on epiphyseal growth cartilage from brachymorphic (bm/bm) mice and age-matched phenotypically normal siblings aged 5, 16 and 25 days. In the bm/bm mice light microscopy showed a disturbed columnar arrangement and numerous chondrocytes with pronounced regressive changes. The normal development of proliferative cells into hypertrophic cells was halted and thus only a rather small and ill-defined hypertrophic zone was seen. The calcifying zone was irregular and the normal lacunae were replaced by a densely staining matrix. Using immunofluorescence techniques, the presence of considerable amounts of both type II and type V collagen was demonstrated in the bm/bm mice, while the cartilage from controls contained only type II. Ultrastructurally the lacunar matrix contained bundles of fine fibrils without the typical collagen periodicity which might indicate synthesis of a defective procollagen. Our observations together with the previously demonstrated deficiency of 3'-phosphoadenosine 5'-phosphosulphate, illustrate the complexity of the growth cartilage disturbance in the bm/bm mouse. Most of our findings are at variance with those described in the literature and possible pathogenetic mechanisms for the observed alterations in the growth cartilage are discussed.  相似文献   

19.
Herpes-simplex-virus (HSV) specific, H-2k-restricted, immune cytotoxic T lymphocytes also lyse noninfected H-2d target cells. Genetic mapping studies revealed that HSV-specific Dk-restricted CTL cross-react with allogeneic targets expressing Dd alloantigens. Cold target inhibition experiments indicate that only a minority of HSV-specific CTL mediate cross-reactive cytolysis. The data give an example of where the phenomenon of H-2-restricted versus nonrestricted responsiveness is not due to distinct subsets of T cells but solely depends on the antigenic determinants recognized.This work was supported by the SFB 107 and the Stiftung Volkswagenwerk.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号