首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crenarchaeote Sulfolobus spp. is a host for a remarkably large spectrum of viruses and plasmids. The genetic elements characterized so far indicate a large degree of novelty in terms of morphology (viruses) and in terms of genome content (plasmids and viruses). The viruses and conjugative plasmids encode a great number of conserved proteins of unknown function due to the lack of sequence similarity to functionally characterized proteins. These apparently essential proteins remain to be studied and should help to understand the physiology and genetics of the respective genetic elements as well as the host. Sulfolobus is one of the best-studied archaeons and could develop into an important model organism of the crenarchaea and the archaea.  相似文献   

2.
An intracellular glycogen was purified and characterized from the acetoclastic bacteria Methanothrix str. FE, its average chain length was about 13 glucose residues. Acetyl-CoA was shown to be synthesized by the action of acetate thiokinase; in addition pyruvate synthase, phosphoenolpyruvate synthetase and enzymes of gluconeogenesis were detected in cell extracts. For glycogen synthase activity, both adenosine diphosphate glucose and uridine diphosphate glucose were used as glycosyl donors, apparent K m were, respectively, 8 M for ADPGlc and 625 M for UDPGLe, at the opposite the V m were the same for both precursors. This was in accordance with competition experiments and strongly suggested that only one glucosyl transferase was involved and that ADPGlc was the physiological glycosyl donor in Methanothrix str. FE. In addition branching enzyme activity (1-4-glucan-6-glucosyl transferase) was detected in cell extracts.Abbreviations ADPGlc adenosine diphosphate glucose - UDPGlc uridine diphosphate glucose  相似文献   

3.
We describe a new species, Thermococcus litoralis, which is different from the type species Thermococcus celer in molecular, morphological and physiological characteristics.Abbreviations 3 x SSC (standard saline citrate) - 0.45 M NaCl 0.045 M Na3-citrate  相似文献   

4.
Summary The genes corresponding to the L10 and L12 equivalent ribosomal proteins (L10e and L12e) ofEscherichia coli have been cloned and sequenced from two widely divergent species of archaebacteria,Halobacterium cutirubrum andSulfolobus solfataricus. The deduced amino acid sequences of the L10e and L12e proteins have been compared to each other and to available eubacterial and eucaryotic sequences. We have identified the hyman P0 protein as the eucaryotic L10e. The L10e proteins from the three kingdoms were found to be colinear. The eubacterial L10e protein is much shorter than the archaebacterial-eucaryotic proteins because of two large deletions, one internal and one at the carboxy terminus. The archaebacterial and eucaryotic L12e proteins were also colinear; the eubacterial protein is homologous to the archaebacterial and eucaryotic L12e proteins, but has suffered rearrangement through what appear to be gene fusion events. Intraspecies comparisons between L10e and L12e sequences indicate the archaebacterial and eucaryotic L10e proteins contain a partial copy of the L12e protein fused to their carboxy terminus. In the eubacteria most of this fusion has been removed by the carboxy terminal deletion. Within the L12e-derived region, a 26-amino acid-long internal modular sequence reiterated thrice in the archaebacterial L10e, twice in the eucaryotic L10e, and once in the eubacterial L10e was discovered. This modular sequence also appears to be present as a single copy in all L12e proteins and may play a role in L12e dimerization, L10e–L12e complex formation, and the function of L10e–L12e complex in translation. From these sequence comparisons a model depicting the evolutionary progression of the L10e and L12e genes and proteins from the primordial state to the contemporary archaebacterial, eucaryotic, and eubacterial states is presented.  相似文献   

5.
Abstract The bioenergetic properties of the thermoacidophilic archaebacterium Sulfolobus acidocaldarius are reviewed and discussed under the aspect whether this archaebacterium conserved energy by oxidative phosphorylation and how the involved catalysts are related to those from eubacteria and eukaryotes. The thermodynamic parameters contributing to the proton-motive force and the efficiency of proton pumping are presented. The major components of the electron transport system are identified and a novel type of heme- aa 3 containing terminal oxidase is described, oxidizing reduced caldariella quinone. The properties of an F 1-analogous ATPase and of a DCCD-binding proteolipid from the plasmamembrane of Sulfolobus are discussed as likely components of an F 0 F 1-analogous ATP-synthase. The structural and functional properties of this and other archaebacterial ATPases are compared to each other and with respect to evolutionary relations.  相似文献   

6.
Penetration of glucose into cells of several extremely halophilic archaebacteria of the Halobacterium and Haloferax genera (Halobacterium saccharovorum and Halobacterium salinarium, Haloferax volcanii and Haloferax mediterranei) has been studied. Some characteristics of transport systems of carbohydrate-utilizing halobacteria Halobacterium saccharovorum, Haloferax mediterranei and Haloferax volcanii (pH and temperature optima, stereospecificity, kinetic parameters) have been determined. Inability of H. salinarium cells for active glucose transport has been shown. The dependence of glucose transport on the Na+ ions gradient (on the whole cells and membrane vesicles) has been demonstrated. Cells or membrane vesicles of carbohydrate-utilizing halobacteria grown in media containing this sugar indicated the activation of glucose transport, whereas cells grown in media without sugars did not. This fact has allowed us to conclude that corresponding transport systems are inducible.  相似文献   

7.
8.
9.
Several hot springs in the Rotorua-Taupo regions, North Island, New Zealand, were tested for the presence of extremely thermophilic acidophilic bacteria. In the majority of the springs, ranging in temperature from 43–96°C and in pH from 2.1–6.9, direct microscopic observations revealed the presence of both rod-shaped and spherical bacteria. Isolations were attempted at 70°C and pH 2.0 and 7.0, with either yeast extract for heterotrophic growth, or elemental sulfur as the sole source of energy for autotrophic growth. Eight of the samples produced grwoth at pH 2.0 with either yeast extract or sulfur, but none of the samples grew at pH 7.0. All the isolates obtained, resembled Sulfolobus acidocaldarius, a thermophilic acidophilic bacterium which has previously been reported from various regions in the Northern Hemisphere. Immunofluorescence examination of six of these isolates revealed varying degrees of cross reactions with two already characterized Sulfolobus isolates from the Yellowstone National Park, U.S.A. This paper is the first published record of Sulfolobus from the Southern Hemisphere.  相似文献   

10.
The autotrophic carbon fixation pathway was studied in the thermophilic hydrogen oxidizing eubacterium Aquifex pyrophilus and in the thermophilic sulfur reducing archaebacterium Thermoproteus neutrophilus. Neither organism contained ribulose-1,5-bisphosphate carboxylase activity suggesting that the Calvin cycle is not operating. Rather, all enzymes of the reductive citric acid cycle were found in A. pyrophilus. In T. neutrophilus ATP citrate lyase activity was detected which has not been achieved so far; this finding corroborates earlier work suggesting the presence of the reductive citric acid cycle in this archaebacterium. The reductive citric acid cycle for autotrophic CO2 fixation now has been documented in the eubacterial branches of the proteobacteria, in green sulfur bacteria, and in the thermophilic Knallgas bacteria as well as in the branch of the sulfur dependent archaebacteria.  相似文献   

11.
Sulfolobus strain LM was grown in tetrathionate and thiosulphate-limited continuous culture. CO2 limitation resulted in a decrease of the steady-state biomass and an increase in the specific rate of thiosulphate oxidation so that substrate did not accumulate in the medium. The initial step in thiosulphate utilization appeared to be its conversion to tetrathionate. The affinity for tetrathionate oxidation appeared to increase with prolonged continuous culture giving an apparent K m of about 6 M tetrathionate, a higher affinity than for thiosulphate oxidation and in the same range as values observed with acidophilic, sulphur-oxidizing eubacteria.  相似文献   

12.
The crenarchaea Sulfolobus acidocaldarius, S. solfataricus and S. tokodaii, release membrane vesicles into the medium. These membrane vesicles consist of tetraether lipids and are coated with an S-layer. A proteomic analysis reveals the presence of proteins homologous to subunits of the eukaryotic endosomal sorting complex required for transport (ESCRT). Immunodetection of one of these homologs suggest a cell surface localization in intact cells. These data suggest that the membrane vesicles in Sulfolobus sp. emerge from a specific budding process with similarity to the endosomal sorting pathway.  相似文献   

13.
The levels of synthesis of six proteins were increased at elevated growth temperature of the extremely halophilic archaebacterium Halobacterium cutirubrum. One of these proteins, with an apparent molecular mass of 97 kDa on sodium dodecylsulfate–polyacrylamide gel electrophoresis (SDS–PAGE), bound to an ATP-agarose column in the presence of 4 M NaCl, but not in the absence of salt, indicating that this protein retained its ATP-binding activity only at high salt concentration. The NH2-terminal sequence of this protein and the internal sequences of the tryptic peptides covering 1/3 of the total number of residues coincided with that deduced from the nucleotide sequence of the dnaK gene isolated from H. cutirubrum. The results strongly suggest that this apparent 97-kDa protein is the gene product of dnaK, although the molecular mass calculated from the nucleotide sequence is only 68,495, much smaller than the value of this protein determined by SDS–PAGE. Ferguson plot analysis indicated that this protein showed anomalous mobility on SDS–PAGE. We have purified DnaK homologue to greater than 90% homogeneity with stepwise elution from an ATP-agarose column.  相似文献   

14.
The successful extraction and isolation of the hydrolysed tetraether lipid calditoglycerocaldarchaeol (GDNT) from Sulfolobus metallicus, a key thermophilic bioleaching archaeon, is described. The archaeal biomass was recovered directly from a thermophilic (68 degrees C) bioleaching tank reactor used to extract nickel from a pentlandite mineral concentrate. The initial Soxhlet extraction method employed was scaled to a bench-scale extraction procedure suitable for the preparation of gram-scale quantities of GDNT. The GDNT so obtained was analysed by 1D- and 2D-NMR techniques, providing the first complete 13C and 2D-NMR data-set for GDNT, including that for the intact underivatised calditol moiety. The study demonstrates the feasibility of recovering high-quality GNDT from thermophilic archaeal-mediated bioleaching reactors. The recovery of these lipids at relatively low cost, as a by-product from bioleaching reactors used in the metals processing industry, has important implications for future tetraether lipid availability and costs.  相似文献   

15.
16.
Summary The amino acid sequences of the largest subunits of the RNA polymerases I, II, and III from eukaryotes were compared with those of archaebacterial and eubacterial homologs, and their evolutionary relationships were analyzed in detail by a recently developed tree-making method, the likelihood method of protein phylogeny, as well as by the neighbor-joining method and the parsimony method, together with bootstrap analyses. It was shown that the best tree topologies predicted by the first two methods are identical, whereas the last one predicts a distinct tree. The maximum likelihood tree revealed that, after the separation from archaebacteria, the three eukaryotic RNA polymerases diverged from an ancestral precursor in the eukaryotic lineage. This result is contrasted with the published result showing multiple origins for the three eukaryotic polymerases. It was shown that eukaryotic RNA polymerase I evolved much more rapidly than RNA polymerases II and III: The N-terminal half of RNA polymerase I shows an extraordinarily high evolutionary rate, possibly due to relaxed functional constraints. In contrast the evolutionary rate of archaebacterial RNA polymerase is remarkably limited. In addition, including the second largest subunit of the RNA polymerase, a detailed analysis for the branching pattern of the three major groups of archaebacteria was carried out by the maximum likelihood method. It was shown that the three major groups of archaebacteria are likely to form a single cluster; that is, archaebacteria are likely to be monophyletic as originally proposed by Woese and his colleagues.  相似文献   

17.
Hamana K  Itoh T 《Microbios》2001,104(408):105-114
Cellular polyamines of eight new thermophilic archaebacteria were investigated to determine the chemotaxonomic significance of polyamine distribution profiles. Hyperthermoacidophilic Caldivirga maquilingensis belonging to the family Thermoproteaceae of the Crenarchaeota have a unique polyamine profile comprising spermidine, norspermidine and norspermine as the major polyamines. Within the order Thermococcales of the Euryarchaeota, the major polyamines of an extremely thermophilic terrestrial species of Thermococcus, T. zilligii, were spermidine and agmatine, whereas hyperthermophilic submarine species of Thermococcus and hyperthermophilic submarine Palaeococcus ferrophilus contained a quaternary branched penta-amine, N4-bis(aminopropyl)spermidine, as a major polyamine. A hyperthermophilic methanogen, Methanothermus sociabilis, belonging to Euryarchaeota, contained spermidine and spermine as the major polyamine.  相似文献   

18.
Extensive diversity in features of aromatic amino acid biosynthesis and regulation has become recognized in eubacteria, but almost nothing is known about the extent to which such diversity exists within the archaebacteria. Methanohalophilus mahii, a methylotrophic halophilic methanogen, was found to synthesize l-phenylalanine and l-tyrosine via phenylpyruvate and 4-hydroxyphenylpyruvate, respectively. Enzymes capable of using l-arogenate as substrate were not found. Prephenate dehydrogenase was highly sensitive to feedback inhibition by l-tyrosine and could utilize either NADP+ (preferred) or NAD+ as cosubstrate. Tyrosine-pathway dehydrogenases having the combination of narrow specificity for a cyclohexadienyl substrate but broad specificity for pyridine nucleotide cofactor have not been described before. The chorismate mutase enzyme found is a member of a class which is insensitive to allosteric control. The most noteworthy character state was prephenate dehydratase which proved to be subject to multimetabolite control by feedback inhibitor (l-phenylalanine) and allosteric activators (l-tyrosine, l-tryptophan, l-leucine, l-methionine and l-isoleucine). This interlock type of prephenate dehydratase, also known to be broadly distributed among the gram-positive lineage of the eubacteria, was previously shown to exist in the extreme halophile, Halobacterium vallismortis. The results are consistent with the conclusion based upon 16S rRNA analyses that Methanomicrobiales and the extreme halophiles cluster together.Abbreviation DAHP 3-deoxy-d-arabino-heptulosonate-7-phosphate  相似文献   

19.
The trehalosyl dextrin-forming enzyme (TDFE) mainly catalyzes an intramolecular transglycosyl reaction to form trehalosyl dextrins from dextrins by converting the -1,4-glucosidic linkage at the reducing end to an -1,1-glucosidic linkage. In this study, the treY gene encoding TDFE was PCR cloned from the genomic DNA of Sulfolobus solfataricus ATCC 35092 to an expression vector with a T7 lac promoter and then expressed in Escherichia coli. The recombinant TDFE was purified sequentially by using heat treatment, ultrafiltration, and gel filtration. The obtained recombinant TDFE showed an apparent optimal pH of 5 and an optimal temperature of 75°C. The enzyme was stable in a pH range of 4.5–11, and the activity remained unchanged after a 2-h incubation at 80°C. The transglycosylation activity of TDFE was higher when using maltoheptaose as substrate than maltooligosaccharides with a low degree of polymerization (DP). However, the hydrolysis activity of TDFE became stronger when low DP maltooligosaccharides, such as maltotriose, were used as substrate. The ratios of hydrolysis activity to transglycosylation activity were in the range of 0.2–14% and increased when the DP of substrate decreased. The recombinant TDFE was found to exhibit different substrate specificity, such as its preferred substrates for the transglycosylation reaction and the ratio of hydrolysis to transglycosylation of the enzyme reacting with maltotriose, when compared with other natural or recombinant TDFEs from Sulfolobus.  相似文献   

20.
Autotrophic growth yields of four strains of Sulfolobus using tetrathionate as sole energy substrate fell in the range 6.2–7.8 g dry weight (mol tetrathionate oxidized)-1. Autotrophic organisms lacked ribulose 1,5-bis-phosphate carboxylase, but contained pyruvate and phosphoenolpyruvate carboxylases. S. brierleyi and strains B6-2 and LM exhibited mixotrophic growth, with tetrathionate oxidation, CO2-fixation and organic substrate assimilation occurring concurrently, using media containing glucose or acetate. Yeast extract or succinate supported heterotrophic growth and showed strain-dependent repression of one or both of tetrathionate oxidation and CO2-fixation resulting in biphasic growth. All four carbon atoms of succinate were assimilated to cell-carbon during growth. Acetate was the major source of cell-carbon during mixotrophic growth. These observations are not inconsistent with the possibility of a reductive carboxylic acid cycle in these organisms. Radiorespirometric analysis of glucose oxidation indicated CO2 release to occur by means of an Entner-Doudoroff pathway (followed by pyruvate decarboxylation) and oxidative pentose phosphate pathway reactions. There was little evidence from the glucose radiorespirometry of the large-scale use of an oxidative tricarboxylic acid cycle for terminal oxidation of acetate derived from pyruvate. These results demonstrate the considerable metabolic versatility of Sulfolobus strains and show that there is significant variation among them.Abbreviations PIPES Piperazine-N,N-bis (2-ethane sulphonic acid)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号