首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
George, David T., Stuart A. Binder-Macleod, Thomas N. Delosso, and William P. Santamore. Variable-frequency trainstimulation of canine latissimus dorsi muscle during shorteningcontractions. J. Appl. Physiol. 83(3):994-1001, 1997.In cardiomyoplasty, the latissimus dorsi muscle(LDM) is wrapped around the heart ventricles and electrically activatedwith a constant-frequency train (CFT). This study tested the hypothesesthat increased mechanical performance from the LDM could be achieved byactivating the muscle with variable-frequency trains (VFTs) of shorterduration or containing fewer stimulus pulses than the CFT now used. Themechanical performance of the canine LDM (n = 7) during shortening contractionswas measured while the muscle was stimulated with 5- and 6-pulse CFTs(of duration 132 and 165 ms, respectively) and 5- and 6-pulse VFTs (ofduration 104 and 143 ms, respectively) that were designed to takeadvantage of the catchlike property of skeletal muscle. Measurementswere made from fresh and fatigued muscles. For the fresh muscles, the VFTs elicited significantly greater peak power than did the 6-pulse CFT. When the muscles were fatigued, VFT stimulation significantly improved both the peak and mean power produced compared withstimulation by CFTs. These results show that stimulation of the LDMwith shorter duration VFTs is potentially useful for application incardiomyoplasty.

  相似文献   

2.
James, R. S., V. M. Cox, I. S. Young, J. D. Altringham, andD. F. Goldspink Mechanical properties of rabbit latissimus dorsimuscle after stretch and/or electrical stimulation.J. Appl. Physiol. 83(2): 398-406, 1997.The work loop technique was used to measure the mechanicalperformance in situ of the latissimus dorsi (LD) muscles of rabbitsmaintained under fentanyl anesthesia. After 3 wk of incrementallyapplied stretch the LD muscles were 36% heavier, but absolute poweroutput (195 mW/muscle) was not significantly changed relative to thatof external control muscle (206 mW). In contrast, continuous 10-Hzelectrical stimulation reduced power output per kilogram of muscle>75% after 3 or 6 wk and muscle mass by 32% after 6 wk. Whencombined, stretch and 10-Hz electrical stimulation preserved orincreased the mass of the treated muscles but failed to prevent an 80%loss in maximum muscle power. However, this combined treatmentincreased fatigue resistance to a greater degree than electricalstimulation alone. These stretched/stimulated muscles, therefore, aremore suitable for cardiomyoplasty. Nonetheless, further work will benecessary to find an ideal training program for this surgicalprocedure.

  相似文献   

3.
Skeletal muscle has an inherent biochemical phenotypic plasticity that provides the possibility for it to be remodeled into a "heart-like" muscle for use in cardiac-assist devices. The purpose of this study was to chronically stimulate skeletal muscle electrically to transform the biochemical capacities of the three major subcellular systems (i.e., metabolic, calcium regulating, and contractile) to resemble those of heart muscle. The latissimus dorsi muscle (LDM) of mongrel dogs weighing 22-27 kg was stimulated via the thoracodorsal nerve at 2 Hz for 6-8 wk. This stimulation protocol reduced the phosphorylase (glycogenolytic) and phosphofructokinase (glycolytic) activities by 70%. The aerobic (citrate synthase activity) and fatty acid oxidative (3-hydroxyacyl-CoA dehydrogenase activity) capacities were not significantly increased by chronic stimulation and remained at about one-fourth those in the canine heart. The calcium-dependent sarcoplasmic reticulum adenosinetriphosphatase (ATPase) activity in the microsomal fraction, which was sixfold greater in the nonstimulated LDM than in the heart, was reduced by electrical stimulation to a level similar to that of the dog heart. The contractile capacity was evaluated by determining the percentage of types I and II fibers, the myofibrillar ATPase activity, and the proportion of myosin isoforms. The transformed muscle was comprised of 93 +/- 2% type I fibers, a myofibrillar ATPase activity similar to that in heart with primarily a slow-twitch muscle myosin isoform. In conclusion, electrical stimulation of canine LDM at 2 Hz for 6-8 wk resulted in two of the three biochemical systems, which confer physiological expression and fatigue resistance to muscle being transformed to resemble those of the myocardium.  相似文献   

4.
Reiser, Peter J., William O. Kline, and Pal L. Vaghy.Induction of neuronal type nitric oxide synthase in skeletal muscle by chronic electrical stimulation in vivo. J. Appl. Physiol. 82(4): 1250-1255, 1997.Fast-twitch skeletal muscles contain more neuronal-type nitricoxide synthase (nNOS) than slow-twitch muscles because nNOS is presentonly in fast (type II) muscle fibers. Chronic in vivo electricalstimulation of tibialis anterior and extensor digitorum longus musclesof rabbits was used as a method of inducing fast-to-slow fiber typetransformation. We have studied whether an increase in musclecontractile activity induced by electrical stimulation alters nNOSexpression, and if so, whether the nNOS expression decreases to thelevels present in slow muscles. Changes in the expression of myosinheavy chain isoforms and maximum velocity of shortening of skinnedfibers indicated characteristic fast-to-slow fiber type transformationafter 3 wk of stimulation. At the same time, activity of NOS doubled inthe stimulated muscles, and this correlated with an increase in theexpression of nNOS shown by immunoblot analysis. These data suggestthat nNOS expression in skeletal muscle is regulated by muscle activityand that this regulation does not necessarily follow the fast-twitchand slow-twitch pattern during the dynamic phase of phenotypetransformation.

  相似文献   

5.
Yajid, Fatima, Jacques G. Mercier, Béatrice M. Mercier, Hervé Dubouchaud, and Christian Préfaut.Effects of 4 wk of hindlimb suspension on skeletal musclemitochondrial respiration in rats. J. Appl.Physiol. 84(2): 479-485, 1998.We investigated inrats the effect of 4 wk of hypodynamia on the respiration of mitochondria isolated from four distinct muscles [soleus,extensor digitorum longus, tibial anterior, and gastrocnemius(Gas)] and from subsarcolemmal (SS) and intermyofibrillar (IMF)regions of mixed hindlimb muscles that mainly contained the four citedmuscles. With pyruvate plus malate as respiratory substrate, 4 wk ofhindlimb suspension produced an 18% decrease in state3 respiration for IMF mitochondria compared with thosein the control group (P < 0.05). TheSS mitochondria state 3 were notsignificantly changed. Concerning the four single muscles, themitochondrial respiration was significantly decreased in the Gasmuscle, which showed a 59% decrease in state3 with pyruvate + malate(P < 0.05). The other musclespresented no significant decrease in respiratory rate in comparisonwith the control group. With succinate + rotenone, there was nosignificant difference in the respiratory rate compared with therespective control group, whatever the mitochondrial origin (SS, orIMF, or from single muscle). We conclude that 4 wk of hindlimbsuspension alters the respiration of IMF mitochondria in hindlimbskeletal muscles and seems to act negatively on complex I of theelectron-transport chain or prior sites. The muscle mitochondria mostaffected are those isolated from the Gas muscle.

  相似文献   

6.
Vandenberghe, K., M. Goris, P. Van Hecke, M. Van Leemputte,L. Vangerven, and P. Hespel. Long-term creatine intake isbeneficial to muscle performance during resistance training. J. Appl. Physiol. 83(6):2055-2063, 1997.The effects of oral creatine supplementation onmuscle phosphocreatine (PCr) concentration, muscle strength, and bodycomposition were investigated in young female volunteers(n = 19) during 10 wk ofresistance training (3 h/wk). Compared with placebo, 4 days ofhigh-dose creatine intake (20 g/day) increased(P < 0.05) muscle PCr concentration by 6%. Thereafter, this increase was maintained during 10 wk of training associated with low-dose creatine intake (5 g/day).Compared with placebo, maximal strength of the muscle groups trained,maximal intermittent exercise capacity of the arm flexors, and fat-free mass were increased 20-25, 10-25, and 60% more(P < 0.05), respectively, duringcreatine supplementation. Muscle PCr and strength, intermittent exercise capacity, and fat-free mass subsequently remained at a higherlevel in the creatine group than in the placebo group during 10 wk ofdetraining while low-dose creatine was continued. Finally, on cessationof creatine intake, muscle PCr in the creatine group returned to normalwithin 4 wk. It is concluded that long-term creatine supplementationenhances the progress of muscle strength during resistance training insedentary females.

  相似文献   

7.
Hokama, Jason Y., Ryan S. Streeper, and Erik J. Henriksen.Voluntary exercise training enhances glucose transport in muscle stimulated by insulin-like growth factor I. J. Appl. Physiol. 82(2): 508-512, 1997.Skeletal muscle glucosetransport can be regulated by hormonal factors such as insulin andinsulin-like growth factor I (IGF-I). Although it is well establishedthat exercise training increases insulin action on muscle glucosetransport, it is currently unknown whether exercise training leads toan enhancement of IGF-I-stimulated glucose transport in skeletal muscle. Therefore, we measured glucose transport activity [by using 2-deoxy-D-glucose (2-DG)uptake] in the isolated rat epitrochlearis muscle stimulated bysubmaximally and maximally effective concentrations of insulin (0.2 and13.3 nM) or IGF-I (5 and 50 nM) after 1, 2, and 3 wk of voluntary wheelrunning (WR). After 1 wk of WR, both submaximal andmaximal insulin-stimulated 2-DG uptake rates were significantly(P < 0.05) enhanced (43 and 31%)compared with those of sedentary controls, and these variables werefurther increased after 2 (86 and 57%) and 3 wk (71 and 70%) ofWR. Submaximal and maximal IGF-I-stimulated 2-DG uptakerates were significantly enhanced after 1 wk of WR (82 and 61%), andthese increases did not expand substantially after 2 (71 and 58%) and3 wk (96 and 70%) of WR. This enhancement of hormone-stimulated 2-DGuptake in WR muscles preceded any alteration in glucose transporter(GLUT-4) protein level, which increased only after 2 (24%) and 3 wk(54%) of WR. Increases in GLUT-4 protein were significantly correlated (r = 0.844) with increases in citratesynthase. These results indicate that exercise training can enhanceboth insulin-stimulated and IGF-I-stimulated muscle glucose transportactivity and that these improvements can develop without an increase inGLUT-4 protein.

  相似文献   

8.
Hayashi, Yoshihiro, Takaaki Ikata, Hiroaki Takai, ShinjiroTakata, Takayuki Sogabe, and Keiko Koga. Time course of recoveryfrom nerve injury in skeletal muscle: energy state and localcirculation. J. Appl. Physiol. 82(3):732-737, 1997.This study examined the time course of recoveryfrom nerve injury on energy state assessed by phosphorus-31 magneticresonance spectroscopy and local circulation dynamics by fluorine-19magnetic resonance spectroscopy in skeletal muscles ofrats. The hindlimb muscles that had undergone unilateralsciatic nerve compression for 2 wk (CN) were compared withsham-operated (SO) muscles and with muscles that had the compressionremoved after 2 wk and were allowed to recover for 4 wk (R4) or for 6 wk (R6). The energy state and local circulation dynamics of CN muscleswere less than those of SO muscles (P < 0.01). The energy state of R4 muscles remained at levels similar toCN muscles, whereas the local circulation dynamics improved but notback to SO values. In R6 muscles, both parameters returned to SOvalues. These results showed that the recovery processes of circulationprecede those of energy state in skeletal muscles.

  相似文献   

9.
Booth, Frank W., Wei Lou, Marc T. Hamilton, and Zhen Yan.Cytochrome c mRNA in skeletalmuscles of immobilized limbs. J. Appl.Physiol. 81(5): 1941-1945, 1996.Even thoughimmobilization of a slow skeletal muscle in a lengthened positionprevents muscle atrophy, it is unknown whether this treatment wouldprevent a decrease in mitochondrial quantity. We found that, regardless of muscle length in immobilized limbs, the mRNA of a marker for mitochondrial quantity, cytochrome c,decreased. Cytochrome c mRNA permilligram of muscle was 62 and 72% less 1 wk after fixation of thesoleus muscle in shortened and lengthened positions, respectively, thanage-matched controls. Cytochrome cmRNA per milligram wet weight was 36 and 32% less in the tibialisanterior muscle fixed for 1 wk in the shortened and lengthenedpositions, respectively, compared with age-matched controls. Recently,in the 3-untranslated region of cytochromec mRNA a novel RNA-protein interactionthat decreases in chronically stimulated rat skeletal musclewas identified.[Z. Yan, S. Salmons, Y. L. Dang, M. T. Hamilton, and F. W. Booth. Am. J. Physiol. 271 (CellPhysiol. 40): C1157- C1166,1996]. The RNA-protein interaction inthe 3-untranslated region of cytochrome c mRNA in soleus and tibialis anteriormuscles was unaffected by fixation in either shortened or lengthenedposition. We conclude that, whereas lengthening muscle during limbfixation abates the loss of total muscle protein, the percentagedecrease in cytochrome c mRNA isproportionally greater than total protein. This suggests that thedesign of countermeasures to muscle atrophy should include differentexercises to maintain total protein and mitochondria.

  相似文献   

10.
Charan, Nirmal B., and Paula Carvalho. Angiogenesis inbronchial circulatory system after unilateral pulmonary artery obstruction. J. Appl. Physiol. 82(1):284-291, 1997.We studied the effects of left pulmonary artery(LPA) ligation on the bronchial circulatory system (BCS) by using asheep model. LPA was ligated in the newborn lambs soon after birth(n = 8), and when the sheep were ~3yr of age anatomic studies revealed marked angiogenesis in BCS.Bronchial blood flow and cardiac output were studied by placing flowprobes around the bronchial and pulmonary arteries in four adult sheep.After LPA ligation, bronchial blood flow increased from 35 ± 6 to134 ± 42 ml/min in ~3 wk (P < 0.05). We also studied gas-exchange functions of BCS ~3 yr after the ligation of LPA in newborn lambs (n = 4) and used a control group (n = 12)in which LPA was ligated acutely. In the left lung,O2 uptake after acute ligation was16 ± 3 ml/min and was similar to the chronic model, whereasCO2 output in the control group was 27 ± 3 ml/min compared with 79 ± 12 ml/min in the chronic preparation (P < 0.05).We conclude that LPA ligation causes marked angiogenesis in BCS that iscapable of performing some gas-exchange functions.

  相似文献   

11.
Rebello, Celso M., Machiko Ikegami, M. Gore Ervin, Daniel H. Polk, and Alan H. Jobe. Postnatal lung function and protein permeability after fetal or maternal corticosteroids in preterm lambs.J. Appl. Physiol. 83(1): 213-218, 1997.We evaluated postnatal lung function andintravascular albumin loss to tissues of 123-days-gestation pretermsurfactant-treated and ventilated lambs 15 h after direct fetal(n = 8) or maternal(n = 9) betamethasone treatment orsaline placebo (n = 9). Thebetamethasone-treated groups had similar increases in dynamiccompliances, ventilatory efficiency indexes, and lung volumes relativeto controls (P < 0.05). The lossesof 125I-labeled albumin fromblood, a marker of intravascular integrity, and the recoveries of125I-albumin in muscle and brainwere similar for control and betamethasone-exposed lambs.Betamethasone-treated lambs had lower recoveries of125I-albumin in lung tissues andin alveolar washes than did controls (P < 0.01). Although blood pressureswere higher for the treated groups (P < 0.05), all groups had similar blood volumes, cardiac outputs, andorgan blood flows. Maternal or fetal treatment with betamethasone 15 hbefore preterm delivery equivalently improved postnatal lung function,reduced albumin recoveries in lungs, and increased blood pressures.However, prenatal betamethasone had no effects on the systemicintravascular losses of albumin or did not change blood volumes.

  相似文献   

12.
Bigard, Xavier A., Chantal Janmot, Danièle Merino,Françoise Lienhard, Yannick C. Guezennec, and Anne D'Albis.Endurance training affects myosin heavy chain phenotype inregenerating fast-twitch muscle. J. Appl.Physiol. 81(6): 2658-2665, 1996.The aim of thisstudy was to analyze the effects of treadmill training (2 h/day, 5 days/wk, 30 m/min, 7% grade for 5 wk) on the expression of myosinheavy chain (MHC) isoforms during and after regeneration of afast-twitch white muscle [extensor digitorum longus (EDL)]. Male Wistar rats were randomly assigned to a sedentary(n = 10) or an endurance-trained (ET;n = 10) group. EDL muscle degeneration and regeneration were induced by two subcutaneous injections of a snaketoxin. Five days after induction of muscle injury, animals were trainedover a 5-wk period. It was verified that ~40 days after venomtreatment, central nuclei were present in the treated EDL muscles fromsedentary and ET rats. The changes in the expression of MHCs in EDLmuscles were detected by using a combination of biochemical andimmunocytochemical approaches. Compared with contralateral nondegenerated muscles, relative concentrations of types I, IIa, andIIx MHC isoforms in ET rats were greater in regenerated EDL muscles(146%, P < 0.05; 76%,P < 0.01; 87%,P < 0.01, respectively). Their elevation corresponded to a decreasein the relative concentration of type IIb MHC (36%,P < 0.01). Although type I accountedfor only 3.2% of total myosin in regenerated muscles from the ETgroup, the cytochemical analysis showed that the proportion of positive staining with the slow MHC antibody was markedly greater in regenerated muscles than in contralateral ones. Collectively, these results demonstrate that the regenerated EDL muscle is sensitive to endurance training and suggest that the training-induced shift in MHC isoforms observed in these muscles resulted from an additive effect of regeneration and repeated exercise.

  相似文献   

13.
Nakatani, Akira, Dong-Ho Han, Polly A. Hansen, Lorraine A. Nolte, Helen H. Host, Robert C. Hickner, and John O. Holloszy. Effect of endurance exercise training on muscle glycogensupercompensation in rats. J. Appl.Physiol. 82(2): 711-715, 1997.The purpose of this study was to test the hypothesis that the rate and extent ofglycogen supercompensation in skeletal muscle are increased byendurance exercise training. Rats were trained by using a 5-wk-long swimming program in which the duration of swimming was gradually increased to 6 h/day over 3 wk and then maintained at 6 h/day for anadditional 2 wk. Glycogen repletion was measured in trained anduntrained rats after a glycogen-depleting bout of exercise. The ratswere given a rodent chow diet plus 5% sucrose in their drinking waterad libitum during the recovery period. There were remarkabledifferences in both the rates of glycogen accumulation and the glycogenconcentrations attained in the two groups. The concentration ofglycogen in epitrochlearis muscle averaged 13.1 ± 0.9 mg/g wet wtin the untrained group and 31.7 ± 2.7 mg/g in the trained group(P < 0.001) 24 h after the exercise.This difference could not be explained by a training effect on glycogensynthase. The training induced ~50% increases in muscle GLUT-4glucose transporter protein and in hexokinase activity inepitrochlearis muscles. We conclude that endurance exercise trainingresults in increases in both the rate and magnitude of muscle glycogensupercompensation in rats.

  相似文献   

14.
Mateika, J. H., and R. F. Fregosi. Long-termfacilitation of upper airway muscle activities in vagotomized andvagally intact cats. J. Appl. Physiol.82(2): 419-425, 1997.The primary purpose of the presentinvestigation was to determine whether long-term facilitation (LTF) ofupper airway muscle activities occurs in vagotomized and vagally intactcats. Tidal volume and diaphragm, genioglossus, and nasal dilatormuscle activities were recorded before, during, and after one carotidsinus nerve was stimulated five times with 2-min trains of constantcurrent. Sixty minutes after stimulation, nasal dilator andgenioglossus muscle activities were significantly greater than controlin the vagotomized cats but not in the vagally intact cats. Tidalvolume recorded from the vagotomized and vagally intact cats wassignificantly greater than control during the poststimulation period.In contrast, diaphragm activities were not significantly elevated inthe poststimulation period in either group of animals. We conclude that1) LTF of genioglossus and nasaldilator muscle activities can be evoked in vagotomized cats;2) vagal mechanisms inhibit LTF inupper airway muscles; and 3) LTF canbe evoked in accessory inspiratory muscles because LTF of inspiredtidal volume was greater than LTF of diaphragm activity.

  相似文献   

15.
Nissen, S., R. Sharp, M. Ray, J. A. Rathmacher, D. Rice, J. C. Fuller, Jr., A. S. Connelly, and N. Abumrad. Effect of leucinemetabolite -hydroxy--methylbutyrate on muscle metabolism duringresistance-exercise training. J. Appl.Physiol. 81(5): 2095-2104, 1996.The effects ofdietary supplementation with the leucine metabolite-hydroxy--methylbutyrate (HMB) were studied in two experiments.In study 1, subjects(n = 41) were randomized among threelevels of HMB supplementation (0, 1.5 or 3.0 g HMB/day) and two proteinlevels (normal, 117 g/day, or high, 175 g/day) and weight lifted for1.5 h 3 days/wk for 3 wk. In study 2,subjects (n = 28) were fed either 0 or3.0 g HMB/day and weight lifted for 2-3 h 6 days/wk for 7 wk. Instudy 1, HMB significantly decreased the exercise-induced rise in muscle proteolysis as measured by urine3-methylhistidine during the first 2 wk of exercise (linear decrease,P < 0.04). Plasma creatinephosphokinase was also decreased with HMB supplementation(week 3, linear decrease,P < 0.05). Weight lifted wasincreased by HMB supplementation when compared with the unsupplementedsubjects during each week of the study (linear increase,P < 0.02). In study2, fat-free mass was significantly increased inHMB-supplemented subjects compared with the unsupplemented group at 2 and 4-6 wk of the study (P < 0.05). In conclusion, supplementation with either 1.5 or 3 g HMB/daycan partly prevent exercise-induced proteolysis and/or muscledamage and result in larger gains in muscle function associated withresistance training.

  相似文献   

16.
Lower limb skeletal muscle function after 6wk of bed rest   总被引:7,自引:0,他引:7  
Berg, H. E., L. Larsson, and P. A. Tesch. Lower limbskeletal muscle function after 6 wk of bed rest. J. Appl. Physiol. 82(1): 182-188, 1997.Force,electromyographic (EMG) activity, muscle mass, and fibercharacteristics were studied in seven healthy men before and after 6 wkof bed rest. Maximum voluntary isometric and concentric knee extensortorque decreased (P < 0.05)uniformly across angular velocities by 25-30% after bed rest.Maximum quadricep rectified EMG decreased by 19 ± 23%, whereassubmaximum (100-Nm isometric action) EMG increased by 44 ± 28%.Knee extensor muscle cross-sectional area (CSA), assessed by usingmagnetic resonance imaging, decreased by 14 ± 4%. Maximum torqueper knee extensor CSA decreased by 13 ± 9%. Vastus lateralis fiberCSA decreased 18 ± 14%. Neither type I, IIA, and IIB fiberpercentages nor their relative proportions of myosin heavy chain (MHC)isoforms were altered after bed rest. Because the decline in strengthcould not be entirely accounted for by decreased muscle CSA, it issuggested that the strength loss is also due to factors resulting indecreased neural input to muscle and/or reduced specifictension of muscle, as evidenced by a decreased torque/EMG ratio.Additionally, it is concluded that muscle unloading in humans does notinduce important changes in fiber type or MHC composition or in vivomuscle contractile properties.

  相似文献   

17.
Effect of vitamin E deprivation and exercise training on induction of HSP70   总被引:3,自引:0,他引:3  
Kelly, D. A., P. M. Tiidus, M. E. Houston, and E. G. Noble.Effect of vitamin E deprivation and exercise training on inductionof HSP70. J. Appl. Physiol. 81(6):2379-2385, 1996.To investigate the effects of dietary vitamin Edeprivation and chronic exercise on the relative content of selectedisoforms of the heat-shock protein 70 (HSP70) family in rat hindlimbmuscle, vitamin E was withheld for 16 wk from female rats thatunderwent treadmill run training during the final 8 wk. As indicated byincreased (P < 0.05) content of thestress-inducible isoform (HSP72), training did stress the exercisingmuscles. However, vitamin E deficiency did not alter HSP72 content innontrained rats and was associated with a lesser induction(P < 0.01) in some muscles oftrained animals. The constitutive isoform, which exhibited similarlevels in muscles of varying fiber types, was demonstrated to belargely refractory to exercise, with an equivocal response to vitamin Edeprivation. HSP72 content was correlated to type I myosin heavy chain(MHC-I) content but only in muscles of sedentary normal-diet rats.After training, HSP72 content in a muscle essentially devoid of MHC-I(superficial vastus lateralis) reached levels comparable to those in amuscle high in MHC-I (soleus).

  相似文献   

18.
EMG monitoring in functional electrostimulation]   总被引:1,自引:0,他引:1  
When using functional electrical stimulation (FES), correct adjustment of stimulation parameters, and monitoring of the stimulated muscle is mandatory if tissue damage is to be avoided. Although several FES systems are already in regular use, a method for direct muscle monitoring is still lacking. This paper investigates the suitability of the electromyogram (EMG) for such a purpose. In six sheep, the right latissimus dorsi muscle (LDM) and the associated thoracodorsal nerve were exposed. Stimulation was effected via electrodes placed on the nerve. Three electrodes were placed in the LDM for EMG recording, and the tendon was connected to a force transducer for isometric force measurement. Stimulation was applied for one second (burst), followed by a three-second pause. The stimulation current was increased in 0.2 mA steps, starting at 0 mA and ending at 4 mA. Throughout the investigation, the EMG signal was monitored with an oscilloscope. In addition, the EMG signal and the force transducer signal were recorded for subsequent analysis. An analysis of the data of all six sheep revealed an almost linear relationship between muscle force and m-wave amplitude (magnitude of r = 0.95, p < 0.001). M-wave monitoring during EMG recording with three intramuscular electrodes is a reliable method of monitoring FES-induced muscle activity, but the absolute force cannot be measured.  相似文献   

19.
Verbitsky, O., J. Mizrahi, M. Levin, and E. Isakov.Effect of ingested sodium bicarbonate on muscle force, fatigue, and recovery. J. Appl. Physiol. 83(2):333-337, 1997.The influence of acute ingestion ofNaHCO3 on fatigue and recovery ofthe quadriceps femoris muscle after exercise was studied in six healthymale subjects. A bicycle ergometer was used for exercising under three loading conditions: test A, loadcorresponding to maximal oxygen consumption; testB, load in test A + 17%; test C, load intest B but performed 1 h after acuteingestion of NaHCO3.Functional electrical stimulation (FES) was applied to provokeisometric contraction of the quadriceps femoris. The resulting kneetorque was monitored during fatigue (2-min chronic FES) and recovery (10-s FES every 10 min, for 40 min). Quadriceps torques were higher inthe presence of NaHCO3(P < 0.05): withNaHCO3 the peak, residual, andrecovery (after 40 min) normalized torques were, respectively, 0.68 ± 0.05 (SD), 0.58 ± 0.05, and 0.73 ± 0.05; withoutNaHCO3 the values were 0.45 ± 0.04, 0.30 ± 0.06, and 0.63 ± 0.06. The increasedtorques obtained after acute ingestion ofNaHCO3 indicate the possibleexistence of improved nonoxidative glycolysis in isometric contraction,resulting in reduced fatigue and enhanced recovery.

  相似文献   

20.
Harridge, S. D. R., R. Bottinelli, M. Canepari, M. Pellegrino, C. Reggiani, M. Esbjörnsson, P. D. Balsom, and B. Saltin. Sprint training, in vitro and in vivo muscle function, and myosin heavy chain expression. J. Appl.Physiol. 84(2): 442-449, 1998.Sprint trainingrepresents the condition in which increases in muscle shortening speed,as well as in strength, might play a significant role in improvingpower generation. This study therefore aimed to determine the effectsof sprint training on 1) thecoupling between myosin heavy chain (MHC) isoform expression andfunction in single fibers, 2) thedistribution of MHC isoforms across a whole muscle, and3) in vivo muscle function. Sevenyoung male subjects completed 6 wk of training (3-s sprints) on a cycleergometer. Training was without effect on maximum shortening velocityin single fibers or in the relative distribution of MHC isoforms ineither the soleus or the vastus lateralis muscles. Electrically evokedand voluntary isometric torque generation increased(P < 0.05) after training in boththe plantar flexors (+8% at 50 Hz and +16% maximal voluntarycontraction) and knee extensors (+8% at 50 Hz and +7% maximalvoluntary contraction). With the shortening potential of the musclesapparently unchanged, the increased strength of the major lower limbmuscles is likely to have contributed to the 7% increase(P < 0.05) in peak pedal frequency during cycling.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号