首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synopsis The distribution of catalase, amino acid oxidase, -hydroxy acid oxidase, urate oxidase and alcohol oxidase was studied cytochemically in rat hepatocytes. The presence of catalase was demonstrated with the conventional diaminobenzidine technique. Oxidase activities were visualized with methods based on the enzymatic or chemical trapping of the hydrogen peroxide produced by these enzymes during aerobic incubations.All enzymes investigated were found to be present in peroxisomes. Catalase activity was found in the peroxisomal matrix, but also associated with the nucleoid. After staining for oxidase activities the stain deposits occurred invariably in the peroxisomal matrix as well as in the nucleoids. In all experiments the activity of both catalase and the oxidases was confined to the peroxisomes. The presence of a hydrogen peroxide-producing alcohol oxidase was demonstrated for the first time in peroxisomes in liver cells.The results imply that the enzyme activity of the nucleoids of rat liver peroxisomes is not exclusively due to urate oxidase. The nucleoids obviously contain a variety of other enzymes that may be more or less loosely associated with the insoluble components of these structures.  相似文献   

2.
The localization of methanol oxidase activity in cells of methanol-limited chemostat cultures of the yeast Hansenula polymorpha has been studied with different cytochemical staining techniques. The methods were based on enzymatic or chemical trapping of the hydrogen peroxide produced by the enzyme during aerobic incubations of whole cells in methanol-containing media. The results showed that methanol-dependent hydrogen peroxide production in either fixed or unfixed cells exclusively occurred in peroxisomes, which characteristically develop during growth of this yeast on methanol. Apart from methanol oxidase and catalase, the typical peroxisomal enzymes d-aminoacid oxidase and l--hydroxyacid oxidase were also found to be located in the peroxisomes. Urate oxidase was not detected in these organelles. Phase-contrast microscopy of living cells revealed the occurrence of peroxisomes which were cubic of form. This unusual shape was also observed in thin sections examined by electron microscopy. The contents of the peroxisomes showed, after various fixation procedures, a completely crystalline or striated substructure. It is suggested that this substructure might represent the in vivo organization structure of the peroxisomal enzymes.  相似文献   

3.
After administration of a hypolipidemic drug, MLM-160, to male rats, liver peroxisomes were studied by biochemical, cytochemical, and immunocytochemical methods. The activities of D-amino acid oxidase, glycolate oxidase, and urate oxidase increased 2 to 3-fold by the treatment. The increase of the oxidases was confirmed by immunoblotting analysis. By light microscopy, immunoreaction for catalase was present in the cytoplasmic granules of hepatocytes. The stained granules formed some clusters and overlapped each other after MLM-160 treatment. However, immunostaining for D-amino acid oxidase and urate oxidase was present in discrete fine granules which did not overlap each other. By electron microscopy, many peroxisomes showed ring-like extensions and cavitation of the matrix, often giving the appearance of a peroxisome-within-a-peroxisome. In many cases, these unusual peroxisomes seemed to be interconnected with each other. Within the peroxisomes, the catalase was localized in the matrix. Urate oxidase was associated with the crystalloid cores. D-amino acid oxidase was localized focally in a small part of the matrix where the catalase was mostly negative. In conclusion, the administration of MLM-160 to male rats induces some peroxisomal oxidases, accompanying the appearance of unusual peroxisomes. The precise localization of peroxisomal enzymes suggested that there are subcompartments within the liver peroxisomes as shown in rat kidney peroxisomes.  相似文献   

4.
Summary d-Amino acid oxidase activity was demonstrated in peroxisomes of rat liver using unfixed cryostat sections and a histochemical technique using cerium ions as capture reagent for hydrogen peroxide and diaminobenzidine, cobalt ions and exogenous hydrogen peroxide to visualize the final reaction product for light microscopical analysis. Cytophotometric analysis of liver sections revealed similar zero-order reaction velocities of d-amino acid oxidase with activity twice as high in periportal areas as in pericentral areas of liver lobuli when using either d-proline or d,l-thiazolidine-2-carboxylic acid as substrates. On the other hand, a 4–5 times higher K M value was found for d-proline than for d,l-thiazolidine-2-carboxylic acid. The K M values in periportal and pericentral areas were similar for each substrate. These findings support the suggestion that the physiological substrate for d-amino acid oxidase may be d,l-thiazolidine-2-carboxylic acid, the adduct of cysteamine and glyoxylic acid. d-Amino acid oxidase may play a role in vivo in the production of oxalate which may participate in metabolic control processes as an intracellular messenger molecule.  相似文献   

5.
RMI 14, 514 ([5-tetradecycloxy]-2-furancarboxylic acid) represents a new class of hypolipidemic agents which cause unusual ultrastructural changes in liver of male rats and in selected peroxisomal enzymes in liver and kidney of both sexes. Among the principal ultrastructural changes in peroxisomes of male rat liver were (a) cavitation and compartmentalization of the matrix, often giving the appearance of a peroxisome-within-a-peroxisome, and (b) narrow, dense extensions of canaliculi or cisterns from the periphery of the peroxisome, forming partial circlets or surrounding irregular areas of cytoplasm. The unusual enzyme responses were (a) elevation of catalase activity in liver and kidney in female rats, (b) increased activity of three hydrogen peroxide-producing oxidases (urate oxidase, L-alpha-hydroxy acid oxidase, and D-amino acid oxidase) in the liver of both sexes, and (c) elevation of activity of the last two oxidases in male kidney. The peculiar ultrastructural changes in liver peroxisomes combined with the responses of selected peroxisomal enzymes represent unusual modulations or adaptations of these organelles to a hypolipidemic agent, the effects of which have not been reported extensively.  相似文献   

6.
Peroxisomes were purified from the nervous tissue of 14-day-old rats by means of a Nycodenz gradient. Peroxisomal enzymes exhibited different sedimentation patterns: dihydroxyacetone phosphate acyl-transferase equilibrates at 1.142 g/ml together with the first peak of catalase; palmitoyl-CoA oxidase and d-amino acid oxidase activities are mainly recovered at 1.154 g/ml; the second peak of catalase is found at 1.175 g/ml. Morphological and semi-quantitative analyses of immunogold-labelled peroxisomes reveal profound heterogeneity of the particles. Very small (=0.2 μm diameter), electron dense vesicles containing catalase or thiolase, but devoid of other tested enzymes, are preferentially found in the light region, together with larger (>0.2 <0.3 μm) and less electron dense palmitoyl-CoA oxidase-positive peroxisomes. At intermediate density (1.154 g/ml) peroxisomes of more uniform size (0.25–0.27 μm), containing palmitoyl-CoA oxidase or thiolase with or without catalase are preferentially found. This population extends toward the densest region of the gradient, where very large d-amino acid oxidase-containing peroxisomes are also found. In this region, smaller peroxisomes, often polymorphic, which are catalase- and thiolase-positive and d-amino acid oxidase/palmitoyl-CoA oxidase-negative, are also observed. The possibility that the heterogeneity of neural peroxisomes may reflect both cellular heterogeneity and ongoing peroxisomal biogenesis is discussed.  相似文献   

7.
Catalase activity was detected histochemically within membrane-bound cell organelles in epithelial cells of rat preputial gland and bovine adrenal cortex. These particles are oval to worm-like in rat preputial gland, 0.08 – 0.15 μm thick and up to 1.0 μm long. In bovine adrenal cortex the shape of catalase-positive particles is rather spherical (diameter 0.1 to 0.3 μm). Particles of both organs lack crystalline or dense cores.Biochemical examination of cell fractions prepared from tissue homogenates by differential centrifugation revealed the presence of two typical peroxisomal oxidases, viz. α-hydroxy acid and -amino acid oxidase, with maximal relative specific activities in the ‘microsomal’ fraction (preputial gland) and in the ‘lysosomal’ fraction (adrenal cortex), respectively. Urate oxidase is absent in both tissues.The concomitant occurrence of catalase and hydrogen peroxide producing oxidases in the particles described characterizes them as true peroxisomal systems (‘microperoxisomes’).  相似文献   

8.
Summary The validity of the histochemical procedure for demonstrating catalase activity in cryostat sections of rat liver at the light-and electron-microscopical level was studied cytophotometrically. Incubations in the presence of 5 mm diaminobenzidine, 44 mm hydrogen peroxide and 2% polyvinyl alcohol performed on fixed cryostat sections resulted in the highest amounts of final reaction product precipitated in a fine granular form which was specific for catalase activity. Serial sections processed for electron microscopy indicated that the osmiophilic final reaction product was exclusively localized in the matrix and core of peroxisomes. The relationship between incubation time and the amounts of final reaction product generated by catalase activity as measured at 460 nm in mid-zonal areas of liver lobules showed non-linearity for the test-minus-control reaction because first-order inactivation of the enzyme occurred during incubation. Linearity of the test-minus-control reaction and section thickness was observed up to 8 m. Catalase in rat liver showed a Km value of 2.0 mm for its substrate hydrogen peroxide when the diaminobenzidine concentration was 5 mm. It is concluded that the procedure for demonstrating catalase activity in serial cryostat sections of rat liver at the light- and electron-microscopical level is specific and can be applied to quantitative purposes. This approach may be useful in pathology, when only small biopsies are available, when the tissue is heterogeneous, and when other histochemical markers also need to be studied in the same material.  相似文献   

9.
Sulfite oxidizing activities are known since years in animals, microorganisms, and also plants. Among plants, the only enzyme well characterized on molecular and biochemical level is the molybdoenzyme sulfite oxidase (SO). It oxidizes sulfite using molecular oxygen as electron acceptor, leading to the production of sulfate and hydrogen peroxide. The latter reaction product seems to be the reason why plant SO is localized in peroxisomes, because peroxisomal catalase is able to decompose hydrogen peroxide. On the other hand, we have indications for an additional reaction taking place in peroxisomes: sulfite can be nonenzymatically oxidized by hydrogen peroxide. This will promote the detoxification of hydrogen peroxide especially in the case of high amounts of sulfite. Hence we assume that SO could possibly serve as "safety valve" for detoxifying excess amounts of sulfite and protecting the cell from sulfitolysis. Supportive evidence for this assumption comes from experiments where we fumigated transgenic poplar plants overexpressing ARABIDOPSIS SO with SO(2) gas. In this paper, we try to explain sulfite oxidation in its co-regulation with sulfate assimilation and summarize other sulfite oxidizing activities described in plants. Finally we discuss the importance of sulfite detoxification in plants.  相似文献   

10.
Summary By electron microscopy, the parenchymal cells of the perianal glands of dogs contain granules which have the morphological features of microbodies (peroxisomes) including marginal plates and, occasionally, dense nucleoids. Like microbodies, they are occasionally attached to the endoplasmic reticulum. Histochemical evidence is presented suggesting that they contain at least one of the peroxisomal enzymes, L--hydroxy acid oxidase. The granules of a perianal gland adenoma showed abnormal morphologic variations.Mrs. Murtie Still, Mrs. Bertha McClure and Mr. Bob White gave valuable technical assistance.  相似文献   

11.
D-amino acid oxidase, a peroxisomal enzyme, and D-aspartate oxidase, a potential peroxisomal enzyme, share biochemical attributes. Both produce hydrogen peroxide in flavin-requiring oxidative reactions. Such similarities suggest that D-aspartate oxidase may also be localized to peroxisomes. Definitive identification of D-aspartate oxidase as a peroxisomal enzyme depends, however, on visualization at the electron microscopic level. Using incubation conditions shown to be specific for the enzyme in biochemical studies, this report extends the cytochemical localization of D-amino acid oxidase to bovine renal peroxisomes, and shows that D-aspartate can be oxidized by rat and bovine renal peroxisomes. An unexpected finding was the sensitivity of both D-amino acid oxidase activity (proline specific) and D-aspartate oxidase activity to inhibition by agents used in biochemical studies to discriminate between the two enzyme activities. Therefore, it is possible that, in the cytochemical system used in this study, (a) either D-proline and D-aspartate are substrates for only one enzyme or (b) the two enzymes have additional overlapping biochemical properties.  相似文献   

12.
Peroxisome proliferation has been induced with 2-methyl-2-(p-[1,2,3,4-tetrahydro-1-naphthyl]-phenoxy)-propionic acid (Su-13437). DNA, protein, cytochrome oxidase, glucose-6-phosphatase, and acid phosphatase concentrations remain almost constant. Peroxisomal enzyme activities change to approximately 165%, 50%, 30%, and 0% of the controls for catalase, urate oxidase, L-alpha-hydroxy acid oxidase, and D-amino acid oxidase, respectively. For catalase the change results from a decrease in particle-bound activity and a fivefold increase in soluble activity. The average diameter of peroxisome sections is 0.58 +/- 0.15 mum in controls and 0.73 +/- 0.25 mum after treatment. Therefore, the measured peroxisomal enzymes are highly diluted in proliferated particles. After tissue fractionation, approximately one-half of the normal peroxisomes and all proliferated peroxisomes show matric extraction with ghost formation, but no change in size. In homogenates submitted to mechanical stress, proliferated peroxisomes do not reveal increased fragility; unexpectedly, Su-13437 stabilizes lysosomes. Our results suggest that matrix extraction and increased soluble enzyme activities result from transmembrane passage of peroxisomal proteins. The changes in concentration of peroxisomal oxidases and soluble catalase after Su-13437 allow the calculation of their half-lives. These are the same as those found for total catalase, in normal and treated rats, after allyl isopropyl acetamide: about 1.3 days, a result compatible with peroxisome degradation by autophagy. A sequential increase in liver RNA concentration, [14C]leucine incorporation into DOC-soluble proteins and into immunoprecipitable catalase, and an increase in liver size and peroxisomal volume per gram liver, characterize the trophic effect of the drug used. In males, Su-13437 is more active than CPIB, another peroxisome proliferation-inducing drug; in females, only Su-13437 is active.  相似文献   

13.
Summary In pig lung tissue catalase positive particles (CPs) are abundant especially in type II pneumocytes and in Clara cells.In both cell types they occur circular, oval or elongated membrane profiles surrounding a moderately electron dense matrix lacking a crystalline core. In Clara cells and in part of type II pneumocytes they are located as individual particles without any evident morphological relation to other cell organelles. In part, of type II pneumocytes 5–8 particles are forming a group and their close relation to agranular endoplasmic reticulum cisterns is evident. The particles can be purified from lung homogenates by fractionated pelleting and subsequent rate sedimentation in a sucrose gradient using a zonal rotor. The catalase rich fraction bands in the middle of the gradient whereas cytochrome oxidase and part of the acid phosphatase sediments at its heavy end. A second part of acid phosphatase stays at the light end of the gradient and — according to morphological control — seems to correspond to lamellar bodies of the type II pneumocytes. The purified catalase positive particles do not contain hydroxyacid and d-aminoacid oxidases thought to be characteristic H2O2 producing enzymes of peroxisomal systems. The buoyant density of the particles (d=1.195 g/cm3) is lower than that of liver peroxisomes.Cytochemical controls of the peroxisomal pellets exhibit the particles partly uniformly filled with reaction product, partly irregularly stained.  相似文献   

14.
D-Aspartate oxidase (EC 1.4.3.1) was assayed in subcellular fractions and in highly purified peroxisomes from rat, bovine and sheep kidney cortex as well as from rat liver. During all steps of subcellular-fractionation procedures, D-aspartate oxidase co-fractionated with peroxisomal marker enzymes. In highly purified preparations of peroxisomes, the enrichment of D-aspartate oxidase activity over the homogenate is about 32-fold, being comparable with that of the peroxisomal marker enzymes catalase and D-amino acid oxidase. Disruption of the peroxisomes by freezing and thawing released more than 90% of the enzyme activity, which is typical for soluble peroxisomal-matrix proteins. Our findings provide strong evidence that in these tissues D-aspartate oxidase is a peroxisomal-matrix protein and should be added as an additional flavoprotein oxidase to the known set of peroxisomal oxidases.  相似文献   

15.
A. P. Kausch  H. T. Horner 《Planta》1985,164(1):35-43
Three peroxisomal enzymes, glycolate oxidase, urate oxidase and catalase were localized cytochemically in Psychotria punctata (Rubiaceae) leaves and Yucca torreyi (Agavaceae) seedling root tips, both of which contain developing and mature calcium-oxalate raphide crystal idioblasts. Glycolate-oxidase (EC 1.1.3.1) and catalase (EC 1.11.1.6) activities were present within leaftype peroxisomes in nonidioblastic mesophyll cells in Psychotria leaves, while urate-oxidase (EC 1.7.3.3) activity could not be conclusively demonstrated in these organelles. Unspecialized peroxisomes in cortical parenchyma of Yucca roots exhibited activities of all three enzymes. Reactionproduct deposits attributable to glycolate-oxidase activity were never observed in peroxisomes of any developing or mature crystal idioblasts of Psychotria or Yucca. Catalase localization indicates that idioblast microbodies are functional peroxisomes. The apparent absence of glycolate oxidase in crystal idioblasts of Psychotria and Yucca casts serious doubt that pathways involving this enzyme are operational in the synthesis of the oxalic acid precipitated as calcium-oxalate crystals in these cells.Abbreviations AMPD 2-amino-2-methyl-1,3-propandiol - CTEM conventional transmission electron microscopy - DAB 3,3-diaminobenzidine tetrahydrochloride - HVEM high-voltage electron microscopy  相似文献   

16.
Treatment with peroxisome proliferators induces increased numbers and alterations in the shape of peroxisomes in liver. It ultimately leads to hepatocellular carcinomas induced by the persistent production of high amounts of H2O2 as a result of a dramatical increase in acyl-CoA oxidase activity. The effects of peroxisome proliferators on other peroxisomal oxidase activities are less well documented. In the present study, the distribution patterns of the activity of SdD-amino acid oxidase, SlD-alpha-hydroxy acid oxidase, polyamine oxidase, urate oxidase and catalase activities were investigated in unfixed cryostat sections of liver, kidney and duodenum of rats treated with either clofibrate or bis(2-ethylhexyl)phthalate. The activities of xanthine oxidoreductase, which produces urate, a potent anti-oxidant, and xanthine oxidase, which produces oxygen radicals, were studied as well. The liver was the only organ that was affected by treatment. The number of peroxisomes increased considerably. SdD-Amino acid oxidase and polyamine oxidase activities were completely abolished by the treatment, whereas SlD-alpha-hydroxy acid oxidase activity decreased and urate oxidase activity increased periportally and decreased pericentrally. Total catalase activity increased because of the larger numbers of peroxisomes, but it decreased per individual peroxisome. Xanthine oxidoreductase activity decreased, whereas the percentage of xanthine oxidase remained constant. We conclude that oxidases in rat liver are affected differentially, indicating that the expression of activity of each oxidase is regulated individually. © 1998 Chapman & Hall  相似文献   

17.
Abstract. The development of peroxisomes and expression of their enzymes were investigated in differentiating intestinal epithelial cells during their migration along the crypt-villus axis. Sequential cell populations harvested by a low-temperature method were identified by microscopy, determination of alkaline phosphatase and sucrase activities and incorporation of [3H]-thymidine into DNA. Ultrastructural cytochemistry after staining for catalase activity, revealed the presence of peroxisomes in undifferentiated stem cells located in the crypt region. Morphometry indicated that the number of these organelles increased as intestinal epithelial cells differentiate. Catalase activity was higher in the crypt cells than in the mature enterocytes harvested from villus tips. On the other hand, an increasing gradient of activity was observed from crypts to villus tips for peroxisomal oxidases, i.e. fatty acyl coA oxidase, D-amino acid oxidase and polyamine oxidase. These findings indicate that biogenesis of peroxisomes occurs during migration of intestinal epithelial cells along the crypt-villus axis and that peroxisomal oxidases contribute substantially to the biochemical maturation of enterocytes.  相似文献   

18.
Abstract. The development of peroxisomes and expression of their enzymes were investigated in differentiating intestinal epithelial cells during their migration along the crypt-villus axis. Sequential cell populations harvested by a low-temperature method were identified by microscopy, determination of alkaline phosphatase and sucrase activities and incorporation of [3H]-thymidine into DNA. Ultrastructural cytochemistry after staining for catalase activity, revealed the presence of peroxisomes in undifferentiated stem cells located in the crypt region. Morphometry indicated that the number of these organelles increased as intestinal epithelial cells differentiate. Catalase activity was higher in the crypt cells than in the mature enterocytes harvested from villus tips. On the other hand, an increasing gradient of activity was observed from crypts to villus tips for peroxisomal oxidases, i.e. fatty acyl coA oxidase, D-amino acid oxidase and polyamine oxidase. These findings indicate that biogenesis of peroxisomes occurs during migration of intestinal epithelial cells along the crypt-villus axis and that peroxisomal oxidases contribute substantially to the biochemical maturation of enterocytes.  相似文献   

19.
L-Pipecolic acid oxidase activity is deficient in patients with peroxisome biogenesis disorders (PBDs). Because its role, if any, in these disorders is unknown, the authors cloned the human gene to order to further study its functions. BLAST search of the translated sequence showed greatest homology to Bacillus sp. NS-129 monomeric sarcosine oxidase. The purified enzyme could use either L-pipecolic acid or sarcosine as a substrate. No homology was found to the peroxisomal D-amino acid oxidases. A further comparison of L-pipecolic acid oxidase to the two D-amino acid oxidases in peroxisomes showed that the proteins differed in many ways. First, both D-amino acid oxidase and L-pipecolic acid oxidase showed no enzyme activity in liver from Zell-weger syndrome patients; D-aspartate oxidase activity was unchanged from control levels. Although all were targeted to peroxisomes, their targeting signals differed. No L-pipecolic acid oxidase was found in brain or other tissues outside of liver and kidney. The D-amino acid oxidases were similarly and more widely distributed. Finally, although D-amino acid degradation is limited to peroxisomes in mammals, L-pipecolic acid can be oxidized in either mitochondria or peroxisomes, or both.  相似文献   

20.
Effects of vitamin E deficiency and its restoration on biochemical characteristics of hepatic peroxisomes were studied. Rats were maintained on the vitamin E-deficient diet for 25 weeks and then on a diet supplemented with vitamin E for 5 weeks. Blood hemolysis by hydrogen peroxide and lipid peroxidation in the liver increased markedly in vitamin E-deficient rats. The former returned to the control level after the resupplying of vitamin E, but the latter did not. Of liver peroxisomal enzymes, the activities of catalase, D-amino-acid oxidase and urate oxidase decreased in vitamin E-deficient rats. On the other hand, activities of fatty acyl-CoA oxidase and carnitine acetyltransferase increased significantly in vitamin E-deficient rats. All activities of these peroxisomal enzymes were restored to the control levels in vitamin E-supplemented rats. The activities of the mitochondrial, lysosomal and microsomal enzymes tested showed no apparent change except that the change of mitochondrial palmitoyltransferase was shown to be similar to that of peroxisomal fatty acid oxidation. These results were also supported by cell fractionation techniques. Following the methods of aqueous polymer two-phase systems, the characteristics of peroxisomal surface membranes altered in respect of their hydrophobicity, but not in respect of the surface charge of peroxisomal membranes. These results indicate that peroxisomal functions, especially those of the fatty acid oxidation system, change their activities more sensitively than other intracellular organelles in response to the condition of vitamin E deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号