首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cloning of the gene for Escherichia coli glutamyl-tRNA synthetase   总被引:1,自引:0,他引:1  
H Sanfa?on  S Levasseur  P H Roy  J Lapointe 《Gene》1983,22(2-3):175-180
The structural gene for the glutamyl-tRNA synthetase of Escherichia coli has been cloned in E. coli strain JP1449, a thermosensitive mutant altered in this enzyme. Ampicillin-resistant and tetracycline-sensitive thermoresistant colonies were selected following the transformation of JP1449 by a bank of hybrid plasmids containing fragments from a partial Sau3A digest of chromosomal DNA inserted into the BamHI site of pBR322. One of the selected clones, HS7611, has a level of glutamyl-tRNA synthetase activity more than 20 times higher than that of a wild-type strain. The overproduced enzyme has the same molecular weight and is as thermostable as that of a wild-type strain, indicating that the complete structural gene is present in the insert. These characteristics were lost by curing this clone of its plasmid with acridine orange, and were transferred with high efficiency to the mutant strain JP1449 by transformation with the purified plasmid. A physical map of the plasmid, which contains an insert of about 2.7 kb in length, is presented.  相似文献   

2.
In the first step of tetrapyrrole biosynthesis in Escherichia coli, glutamyl-tRNA reductase (GluTR, encoded by hemA) catalyzes the NADPH-dependent reduction of glutamyl-tRNA to glutamate-1-semialdehyde. Soluble homodimeric E. coli GluTR was made by co-expressing the hemA gene and the chaperone genes dnaJK and grpE. During Mg(2+)-stimulated catalysis, the reactive sulfhydryl group of Cys-50 in the E. coli enzyme attacks the alpha-carbonyl group of the tRNA-bound glutamate. The resulting thioester intermediate was trapped and detected by autoradiography. In the presence of NADPH, the end product, glutamate-1-semialdehyde, is formed. In the absence of NADPH, E. coli GluTR exhibited substrate esterase activity. The in vitro synthesized unmodified glutamyl-tRNA was an acceptable substrate for E. coli GluTR. Eight 5-aminolevulinic acid auxotrophic E. coli hemA mutants were genetically selected, and the corresponding mutations were determined. Most of the recombinant purified mutant GluTR enzymes lacked detectable activity. Based on the Methanopyrus kandleri GluTR structure, the positions of the amino acid exchanges are close to the catalytic domain (G7D, E114K, R314C, S22L/S164F, G44C/S105N/A326T, G106N, S145F). Only GluTR G191D (affected in NADPH binding) revealed esterase but no reductase activity.  相似文献   

3.
An investigation of the subunit structure of glutamyl-tRNA synthetase (EC 6.1.1.17) from Escherichia coli indicates that this enzyme is a monomer. The enzyme purified to apparent homogeneity is a single polypeptide chain with a molecular weight of 62,000 ± 3,000 and KGlum ? 50 μM in the aminoacylation reaction. Analytical gel electrophoretic procedures were used to determine the molecular weight of species exhibiting glutamyl-tRNA synthetase activity in freshly prepared extracts of several strains of E. coli, which had been grown under various nutritional conditions and harvested at different stages of growth. In all cases, glutamyl-tRNA synthetase activity was associated with a protein having about the same molecular weight and KGlum as the purified enzyme. Thus, no evidence of an oligomeric form of glutamyl-tRNA synthetase with a greater affinity for l-glutamate was obtained, in contrast to a previous report of J. Lapointe and D. Söll (J. Biol. Chem.247, 4966–4974, 1972).  相似文献   

4.
The glutamyl-tRNA synthetase has been purified to homogeneity from Escherichia coli with a yield of about 50%. It is a monomer with a molecular weight of 56,000 and has the same kinetic properties as those of the alpha chain of the dimeric alphabeta-glutamyl-tRNA synthetase described previously (Lapointe, J., and S?ll, D. (1972) J. Biol. Chem. 247, 4966-4974). It is the smallest amino-acyl-tRNA synthetase purified from E. coli and contains no important sequence repetition. It is also the only monomeric aminoacyl-tRNA synthetase reported so far to contain no major sequence duplication. Considering its structural and mechanistic similarities with the glutaminyl- and the arginyl-tRNA synthetases of E. coli, we propose the existence of a relation between the true monomeric character of the glutamyl-tRNA synthetase (as opposed to monomers with sequence duplications) and its requirement for tRNA in the activation of glutamate. A single sulfhydryl group of the native enzyme reacts with 5,5'-dithiobis(2-nitrobenzoic acid) causing no loss of enzymatic activity, whereas four such groups per enzyme react in the presence of 4 M guanidine HCl.  相似文献   

5.
The transition between the native and denatured states of the tetrameric succinyl-CoA synthetase from Escherichia coli has been investigated by circular dichroism, fluorescence spectroscopy, cross-linking by glutaraldehyde and activity measurements. At pH 7.4 and 25 degrees C, both denaturation of succinyl-CoA synthetase by guanidine hydrochloride and refolding of the denatured enzyme have been characterized as reversible reactions. In the presence of its substrate ATP, the denatured enzyme could be successfully reconstituted into the active enzyme with a yield of 71-100%. Kinetically, reacquisition of secondary structure by the denatured enzyme was rapid and occurred within 1 min after refolding was initiated. On the other hand, its reactivation was a slow process which continued up to 25 min before 90% of the native activity could be restored. Both secondary and quaternary structures of the enzyme, reconstituted in the absence of ATP, were indistinguishable from those of the native enzyme but the renatured protein was catalytically inactive. This observation indicates the presence of catalytically inactive tetramer as an intermediate in the reconstitution process. The reconstituted protein could be reactivated by ATP even 10 min after the reacquisition of the native secondary structure by the refolding protein. However, reactivation of the protein by ATP 60 min after the regain of secondary structure was significantly less, suggesting that rapid refolding and reassociation of the monomers into a native-like tetramer and reactivation of the tetramer are sequential events; the latter involving slow and small conformational rearrangements in the refolded enzyme that are likely to be associated with phosphorylation.  相似文献   

6.
The charging of glutamate on tRNA(Glu) is catalyzed by glutamyl-tRNA synthetase, a monomer of 53.8 kilodaltons in Escherichia coli. To obtain the large amounts of enzyme necessary for the identification of structural domains, we have inserted the structural gene gltX in the conditional runaway-replication plasmid pOU61, which led to a 350-fold overproduction of glutamyl-tRNA synthetase. Partial proteolysis of this enzyme revealed the existence of preferential sites of attack that, according to their N-terminal sequences, delimit regions of 12.9, 2.3, 12.1, and 26.5 kilodaltons from the N- to C-terminal of the enzyme. Their sizes suggest that the 2.3-kilodalton fragment is a hinge structure, and that those of 12.9, 12.1, and 26.5 kilodaltons are domain structures. The 12.9-kilodalton domain of the glutamyl-tRNA synthetase of E. coli is the only long region of this enzyme displaying a good amino acid sequence similarity with the glutaminyl-tRNA synthetase of Escherichia coli.  相似文献   

7.
The substrates-induced protection against the heat-inactivation of the glutamyl-tRNA synthetase has been investigated. tRNAGlu and ATP protect efficiently the enzyme, whereas glutamate does not. In the presence of tRNAGlu, glutamate induces an additional protection to that given by the tRNAGlu alone. A weak synergism was observed between ATP and tRNAGlu, whereas no synergism was detected between ATP and glutamate. These results suggest that tRNAGlu and ATP, but not glutamate are able to bind to the free enzyme form; glutamate binds only to the Enzyme.tRNAGlu and to the Enzyme.tRNAGlu.ATP complexes. The presence of the three substrates induces a higher stabilization of the enzyme than that expected from the protection observed for the various other substrates combinations, suggesting the existence of a marked synergism between the three substrates against the heat-inactivation of the enzyme. The protection constants determined from this study are similar to the dissociation constants determined by direct binding experiments and to the Km values determined kinetically.  相似文献   

8.
Selenophosphate synthetase (SPS) catalyzes the synthesis of selenophosphate, the selenium donor for the biosynthesis of selenocysteine and 2-selenouridine residues in seleno-tRNA. Selenocysteine, known as the 21st amino acid, is then incorporated into proteins during translation to form selenoproteins which serve a variety of cellular processes. SPS activity is dependent on both Mg(2+) and K(+) and uses ATP, selenide, and water to catalyze the formation of AMP, orthophosphate, and selenophosphate. In this reaction, the gamma phosphate of ATP is transferred to the selenide to form selenophosphate, while ADP is hydrolyzed to form orthophosphate and AMP. Most of what is known about the function of SPS has derived from studies investigating Escherichia coli SPS (EcSPS) as a model system. Here we report the crystal structure of the C17S mutant of SPS from E. coli (EcSPS(C17S)) in apo form (without ATP bound). EcSPS(C17S) crystallizes as a homodimer, which was further characterized by analytical ultracentrifugation experiments. The glycine-rich N-terminal region (residues 1 through 47) was found in the open conformation and was mostly ordered in both structures, with a magnesium cofactor bound at the active site of each monomer involving conserved aspartate residues. Mutating these conserved residues (D51, D68, D91, and D227) along with N87, also found at the active site, to alanine completely abolished AMP production in our activity assays, highlighting their essential role for catalysis in EcSPS. Based on the structural and biochemical analysis of EcSPS reported here and using information obtained from similar studies done with SPS orthologs from Aquifex aeolicus and humans, we propose a catalytic mechanism for EcSPS-mediated selenophosphate synthesis.  相似文献   

9.
We previously elucidated the major determinant set for Escherichia coli tRNAGlu identity (U34, U35, C36, A37, G1*C72, U2*A71, U11*A24, U13*G22**Alpha46, and Delta47) and showed that the set is sufficient to switch the identity of tRNAGln to Glu [Sekine, S., Nureki, O., Sakamoto, K., Niimi, T., Tateno, M., Go, M., Kohno, T., Brisson, A., Lapointe, J. & Yokoyama, S. (1996) J. Mol. Biol. 256, 685-700]. In the present study, we attempted to switch the identity of tRNAAsp, which has a sequence similar to that of tRNAGlu, and consequently possesses many nucleotide residues corresponding to the Glu identity determinants (U35, C36, A37, G1*C72, and U11*A24). A simple transplantation of the rest of the major determinants (U34, U2*A71, U13*G22**Alpha46, and Delta47) to the framework of tRNAAsp did not result in a sufficient switch of the tRNAAsp identity to Glu. To confer an optimal glutamate accepting activity to tRNAAsp, two other elements, C4*G69 in the middle of the acceptor stem and C12*G23**C9 in the augmented D helix, were required. Consistently, the two base pairs, C4*G69 and C12*G23, in tRNAGlu had been shown to exist in the interface with glutamyl-tRNA synthetase (GluRS) by phosphate-group footprinting. We also found the two elements in the framework of tRNAGln, and determined that their contributions successfully changed the identity of tRNAGln to Glu in the previous study. By the identity-determinant set (C4*G69 and C12*G23**C9 in addition to U34, U35, C36, A37, G1*C72, U2*A71, U11*A24, U13*G22**Alpha46, and Delta47) the activity of GluRS was optimized and efficient discrimination from the noncognate tRNAs was achieved.  相似文献   

10.
A difference in isoleucine acceptance between normal and sulfur-deficient tRNA from Escherichia coli C6 (rel-, met-, cys-) was eliminated when more isoleucyl-tRNA synthetase was added at the reaction plateau. Enzymatic deacylation was similar for both tRNAs. These results suggest that enzyme inactivation caused a premature reaction plateau which was not predicted by the rates of acylation and deacylation.  相似文献   

11.
12.
Escherichia coli leucyl-tRNA synthetase (LeuRS) has a large connecting polypeptide (CP1) inserted into its active site. It was demonstrated that the peptide bond between E292–A293 was crucial for the aminoacylation activity of E. coli LeuRS. To investigate the effect of E292 on the function of Escherichia coli LeuRS, E292 was mutated to K, F, S, D, Q and A. These mutations at 292 did not change the specific activity of the amino acid activation reaction. Though the conformational change of these mutants was not detected in CD, their aminoacylation activities were impaired to varying extents. The mutation of E to K decreased the aminoacylation activity to the largest extent. Analysis of the Km values of these mutants for the three substrates showed that the E292 was not involved in the binding of leucine and that all mutants had stronger binding with ATP.  相似文献   

13.
The glutamyl-tRNA synthetase (EC 6.1.1.17) of Escherichia coli was purified to homogeneity from the overproducing strain DH5 alpha(pLQ7612) by a two-step procedure that takes only about 6 h and yields 10 mg of enzyme per gram of wet cells. The process consists of a two-phase polyethylene glycol-dextran partition, the top phase of which is diluted and directly applied to an anion-exchange FPLC MonoQ column. The purified enzyme has a specific activity about twice that of the same enzyme purified to homogeneity by the lengthy conventional procedure from either a normal strain or this overproducing strain. This difference is discussed in relation to the generation of microheterogeneity in proteins during their purification.  相似文献   

14.
L Kong  M Fromant  S Blanquet  P Plateau 《Gene》1991,108(1):163-164
The amino acid sequence deduced from the nucleotide sequence of an open reading frame adjacent to the frdA gene of Escherichia coli shows 30.5% identity with the C terminus of Escherichia coli lysyl-tRNA synthetases. The three motifs characteristic of aminoacyl-tRNA synthetases of class 2 are recognizable within this sequence.  相似文献   

15.
The kinetic mechanism of Escherichia coli carbamoyl-phosphate synthetase has been determined at pH 7.5, 25 degrees C. With ammonia as the nitrogen source, the initial velocity and product inhibition patterns are consistent with the ordered addition of MgATP, HCO3-, and NH3. Phosphate is then released and the second MgATP adds to the enzyme, which is followed by the ordered release of MgADP, carbamoyl phosphate, and MgADP. With glutamine as the ammonia donor, the patterns are consistent with a two-site mechanism in which glutamine binds randomly to the small molecular weight subunit producing glutamate and ammonia. Glutamate is released and the ammonia is transferred to the larger subunit. Carbamoyl-phosphate synthetase has also been shown to require a free divalent cation for full activity.  相似文献   

16.
Based on molecular modelling study, we propose that the reaction between L-aspartate an carbamoylphosphate, catalyzed by E. coli aspartate carbamoyltransferase, may proceed via a tetrahedral intermediate and that the breakdown of the intermediate is facilitated by an intramolecular proton transfer between the amino group of L-aspartate and a terminal phosphate oxygen of carbamoylphosphate.  相似文献   

17.
The mechanism of the recognition of methionine by Escherichia coli methionyl-tRNA synthetase was examined by a kinetic study of the recognition of methionine analogues in the ATP-PPi exchange reaction and the tRNA-aminoacylation reaction. The results show that the recognition mechanism consists of three parts: (1) the recognition of the size, shape and chemical nature of the amino acid side chain at the methionine-binding stage of the reaction; (2) the recognition of the length of the side chain at the stage of aminoacyl-adenylate complex-formation; (3) the recognition of the sulphur atom in the side chain at the stage of methionyl-tRNA formation. It is proposed that the sulphur atom interacts with the enzyme to induce a conformational change. A model of the active site incorporating the mechanism of methionine recognition is presented.  相似文献   

18.
19.
The rate of aminoacylation of tRNA catalyzed by the isoleucyl-tRNA synthetase form Escherichia coli has been measured. A steady-state kinetic analysis of the rate as a function of the concentration of ATP gave nonlinear Hanes plots. ATP behaves as an activator of the reaction. The activation is observed at a low magnesium ion concentration and in the presence of spermidine. The presence of inorganic pyrophosphate or AMP enhances the activation. The results are consistent with a mechanism in which the binding of a second molecule of ATP increases the rate of dissociation of Ile-tRNA from the enzyme.  相似文献   

20.
It is shown from a combination of rapid quenching and steady-state kinetics that the phenylalanyl-tRNA synthetase from yeast catalyses the formation of phenylalanyl-tRNA by the amino-acyladenylate pathway at pH 7.8 and 25 degrees C. The rate-determining step at saturating reagent concentrations is not the dissociation of the charged tRNA from the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号