首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Exposure of porcine renal brush-border membrane vesicles to 1.2% cholate and subsequent detergent removal by dialysis reorients almost all N-ethylmaleimide (NEM)-sensitive ATPases from the vesicle inside to the outside. ATP addition to cholate-pretreated, but not to intact, vesicles causes H+ uptake as visualized by the pH indicator, acridine organge. The reoriented H+-pump is electrogenic because permeant extravesicular anions or intravesicular K+ plus valinomycin enhance H+ transport. ATP stimulates H+ uptake with an apparentK m of 93 m. Support of H+ uptake andP i liberation by ATP>GTPITP> UTP indicates a preference for ATP and utilization of other nucleotides at lower efficiency. ADP is a potent, competitive inhibitor of ATP-driven H+ uptake,(K i , 24 m). Mg2+ and Mn2– support ATP-driven H+ uptake, but Ca2+, Ba2+ and Zn2+ do not. Imm Zn2+ inhibits MgATP-driven H+ transport completely. NEM-sensitiveP i liberation is stimulated by Mg2+ and Mg2– and, unlike H+ uptake, also by Ca2+ suggesting Ca2+-dependent ATP hydrolysis unrelated to H+ transport. The inside-out oriented H+-pump is relatively insensitive toward oligomycin, azide, N,N-dicyclohexylcarbodiimide (DCCD) and vanadate, but efficiently inhibited by NEM (apparentK i , 0.77 m), and 4-chloro-7-nitro-benzoxa-1,3-diazole (NBD-Cl; apparentK i , 0.39 m). Taken together, the H+-ATPase of proximal tubular brush-border membranes exhibits characteristics very similar to those of vacuolar type (V-type) H+-ATPases. Hence,V-type H+-ATPases occur not only in intracellular organelles but also in specialized plasma membrane areas.  相似文献   

2.
Summary The inhibitory effect of various stilbene disulfonates was examined on the swelling-activated Cl-dependent K transport (K-Cl cotransport) in low K sheep erythrocytes. Both diisothiocy-anatostilbenes H2DIDS and DIDS were found to be potent inhibitors. The DIDS concentration yielding 50% inhibition (IC50) of KCl cotransport was 60 m in the absence of external K and 3 m at physiological K concentration. Other stilbene derivatives, such as SITS (4-acetamido-4 isothiocyanatostilbene-2,2-disulfonic acid), were only effective in the presence of external K, whereas DNDS (4,4-dinitrostilbene-2,2-disulfonic acid) and ISA (4-sulfophenyl isothiocyanate) had only slight effects at a concentration of 1 mm. The augmenting effect of external K is due to a second K site, distinguishable from the K transport site by its much higher affinity. No inhibition occurred in the absence of external Cl, whether or not external Rb(K) was present. Additionally, DIDS inhibited K-Cl cotransport activated by thiol alkylation with N-ethylmaleimide (NEM) as well as by Mg depletion in the presence of A23187 and a chelator. We conclude that allosteric sites affect the stilbene binding. When these sites are saturated, changes in external K or Cl concentration do not affect the affinity for DIDS (noncompetitive inhibition).This work was supported by grants in aid from the American Heart Association.  相似文献   

3.
D1-selective dopamine receptor agonists inhibit secretagogue-stimulated catecholamine secretion from bovine adrenal chromaffin cells. The purpose of the studies reported here was to use the radiolabeled D1-selective dopamine receptor antagonist, SCH23390, to characterize putative D1-like dopamine receptors responsible for this effect. Characterization of SCH23390 binding sites demonstrated an unusual pharmacological profile inconsistent with classical D1-like receptors. [125I]SCH23390 bound to adrenal medullary membranes was competed for by non-radioactive iodo-SCH23390 (Kd = 490 ± 50 nM), but not by (+)butaclamol. Other classical D1 antagonists had little, if any, effect. Competition with dopamine receptor agonists demonstrated a relative rank order of potency profile characteristic of D1-like dopamine receptors, however, Kis were higher than those found in other tissues. The Kis for competition of [125I]SCH23390 binding by C1-APB and SKF38393 (16 and 118 M, respectively) are nearly identical to the IC50s previously observed for inhibition of secretion (9 and 100 M, respectively). Combined these data suggest that adrenal medullary membranes contain a novel SCH23390 binding site involved in the inhibition of secretion by D1-selective agonists.  相似文献   

4.
Toxicities of binary mixtures of Cu2+, Cd2+, benzo(a)pyrene [B(a)P] andN-ethylmaleimide (NEM) were screened using thein vitro neutral red (NR) assay to test the hypothesis that combined toxicity is more than or less than additive relative to the influence of each mixture constituent on toxicant uptake and brown cell lysosomal membrane stability. Significant cytotoxicity was observed at 25 mol/L Cu2+, 500 mol/L Cd2+ and 25 mol/L NEM. B(a)P at 12 mol/L exerted no toxicity under the conditions of the assay. Interactions between Cu2+ and NEM, between Cd2+ and NEM, and between Cd2+ and B(a)P significantly influenced brown cell survival. Comparison of observed joint toxicity with estimates made using a model of independent joint action indicates that interactive effects are less than additive in character. The 3-way interaction involving Cu2+, B(a)P, and NEM also affected brown cell survival to a statistically significant degree. However, the interactive cytotoxicity of this mixture is attributable mainly to the combined effect of Cu2+ and NEM. Results also indicate that new. hypotheses and additional experimentation are needed to understand the interactive toxicity of mixture constituents.Abbreviations PAH polyaromatic hydrocarbon - NEM N-ethylmaleimide - NR neutral red - B(a)P benzo(a)pyrene  相似文献   

5.
A rapid, reliable filtration method for [3H]oxotremorine binding to membranes of the cerebral cortex that allows the direct study of regulation by guanine nucleotides of muscarinic receptors was developed. [3H]Oxotremorine binds to cerebral cortex membranes with high affinity (K D, 1.9 nM) and low capacity (B max, 187 pmol/g protein). These sites, which represent only about 18% of those labeled with [3H]quinuclidinyl benzilate, constitute a population of GTP-sensitive binding sites. Association and dissociation binding experiments revealed a similar value ofK D (2.3 nM). Displacement studies with 1–4000 nM oxotremorine showed the existence of a second binding site of low affinity (K D, 1.2 M) and large capacity (B max, 1904 pmol/g protein). Gpp(NH)p, added in vitro, produced a striking inhibition of [3H]oxotremorine binding with an IC 50 of 0.3 M. Saturation assays, in the presence of 0.5 M Gpp(NH)p, revealed a non-competitive inhibition of the binding with little change in affinity. These results are discussed from the viewpoint of conflicting reports in the literature about guanine nucleotide regulation of muscarinic receptors in reconstituted systems and membranes from different tissues.  相似文献   

6.
1. The bark of the root and stem of various Magnolia species has been used in Traditional Chinese Medicine to treat a variety of disorders including anxiety and nervous disturbances. The biphenolic compounds honokiol (H) and magnolol (M), the main components of the Chinese medicinal plant Magnolia officinalis, interact with GABAA receptors in rat brain in vitro. We compared the effects of H and M on [3H]muscimol (MUS) and [3H]flunitrazepam (FNM) binding using EDTA/water dialyzed rat brain membranes in a buffer containing 150 mM NaCl plus 5 mM Tris-HCl, pH 7.5 as well as [35S]t-butylbicyclophosphorothionate (TBPS) in 200 mM KBr plus 5 mM Tris-HCl, pH 7.5. H and M had similar enhancing effects on [3H]MUS as well as on [3H]FNM binding to rat brain membrane preparations, but H was 2.5 to 5.2 times more potent than M. 2. [ 3 H]FNM binding. GABA alone almost doubled [3H]FNM binding with EC50 = 450 nM and 200 nM using forebrain and cerebellar membranes, respectively. In the presence of 5 M H or M the EC50 values for GABA were decreased to 79 and 89 nM, respectively, using forebrain, and 39 and 78 nM, using cerebellar membranes. H and M potently enhanced the potentiating effect of 200 nM GABA on [3H]FNM binding with EC50 values of 0.61 M and 1.6 M using forebrain membranes, with maximal enhancements of 33 and 47%, respectively. Using cerebellar membranes, the corresponding values were 0.25 and 1.1 M, and 22 and 34%. 3. [ 3 H]MUS binding. H and M increased [3H]MUS binding to whole forebrain membranes about 3-fold with EC50 values of 6.0 and 15 M. Using cerebellar membranes, H and M increased [3H]MUS binding ~68% with EC50 values of 2.3 and 12 M, respectively. Scatchard analysis revealed that the enhancements of [3H]MUS binding were due primarily to increases in the number of binding sites (Bmax values) with no effect on the high affinity binding constants (Kd values). The enhancing effect of H and M were not additive. 4. [ 35 S]TBPS binding. H and M displaced [35S]TBPS binding from sites on whole rat forebrain membranes with IC50 values of 7.8 and 6.0 M, respectively. Using cerebellar membranes, the corresponding IC50 values were 5.3 and 4.8 M. These inhibitory effects were reversed by the potent GABAA receptor blocker R5135 (10 nM), suggesting that H and M allosterically increase the affinity of GABAA receptors for GABA and MUS by binding to sites in GABAA receptor complexes. 5. Two monophenols, the anesthetic propofol (2,6-diisopropylphenol, P) and the anti-inflammatory diflunisal (2,4-difluoro-4-hydroxy-3-biphenyl carboxylic acid, D) also enhanced [3H]MUS binding, decreased the EC50 values for GABA in enhancing [3H]FNM binding and potentiated the enhancing effect of 200 nM GABA on [3H]FNM binding, although enhancements of [3H]MUS binding for these monophenols were smaller than those for H and M, using forebrain and cerebellar membranes. The enhancing effect of P and D on [3H]MUS binding were almost completely additive. 2,2-biphenol was inactive on [3H]MUS and [3H]FNM binding. These, and other preliminary experiments, suggest that appropriate ortho (C2) and para (C4) substitution increases the GABA-potentiating activity of phenols. 6. The potentiation of GABAergic neurotransmission by H and M is probably involved in their previously reported anxiolytic and central depressant effects.  相似文献   

7.
Several manipulations that affect G protein/receptor coupling also alter the binding of [125I]iodocyanopindolol ([125I]ICYP)±cyanopindolol (±CYP) to rat brain 5-HT1B binding sites in radiologand binding assays. Inclusion of 5 mM MgSO4 in these assays results in a small but significant increase in the affinity of [125I]ICYP (fromK D=0.046 nM toK D=0.037 nM). In contrast, 100 M Gpp(NH)p, GTP, or GDP reduce [125I]ICYP affinity (K D=0.056 nM with GTP) while ATP and GMP are less effective.±CYP affinity for 5-HT1B sites labeled by [3H]dihydroergotamine ([3H]DE) also displays a small but significant reduction (from Ki=1.4 nM to Ki=3.5nM) by the inclusion of 100 M GTP. Pre-treatment of the brain membranes with N-ethylmaleimide (NEM) in concentrations known to inactivate many G proteins reduces 5-HT1B specific binding of [125I]ICYP. The NEM induced reduction in [125I]ICYP binding can be reversed by reconstitution with purified exogenous G proteins (Go and Gi), demonstrating directly that high affinity binding of [125I]ICYP to 5-HT1B sites is dependent on G proteins. The effects of Mg2+ ion, guanine nucleotides, NEM and G protein reconstitution on [125I]ICYP and ±CYP binding are all hallmarks of agonist binding to G protein linked receptors. The effect of GTP, however, is quantitatively much less for the binding of these pindolol derivatives than for the binding of 5-HT, a presumed full agonist at 5-HT1B sites. The relatively slight stabilization of [125I]ICYP and ±CYP binding conferred by G protein/5-HT1B receptor interaction may reflect the molecular events underlying previous observations that these compounds are partial 5-HT1B agoinists.  相似文献   

8.
Extraneuronal catecholamine uptake was investigated in isolated quiescent rat myocardial cells. By administration of (3H-)(–)noradrenaline concentration of 22 nmol/l up to 1000 mol/l the following data were obtained: (1) The KM of the uptake process amounted to 260 mol/l, the Vmax to 4.24 nmol/(10 min × mg Protein) corresponding to 179 nmol/(min × gWWt)(WWT = Wet Weight). (2) The uptake was largely inhibited by the uptake2-inhibitors corticosterone (100 mol/l), isoprenaline (IC so = 30.6 mol/l), and O-methylisoprenaline (IC50 = 2.1 pmol/l), but not by the uptake1-inhibitors cocaine (100 mol/l) and desipramine (10 mol/l). (3) The affinity-values KM and IC50 closely agreed with those already known, but the Vmax-value was higher than those obtained in whole rat hearts by a factor of at least 1.79. This is caused presumably by the voltage dependence of the uptake mechanism and the resulting inhibition of uptake 2 during the periods of depolarisation in beating hearts of other studies.  相似文献   

9.
Summary A study has been made of the mineral requirements ofBacillus thuringiensis subsp.israelensis for production of the mosquitocide delta endotoxin. The optimum concentrations of K2HOP4, MgSO4.7H2O and CaCO3 for toxin production are 1g/l, 0.3g/l and 1g/l respectively while the elements Fe, Mn, Cu are required at levels of 2 g/ml, 5 g/ml and 0.25 g/ml respectively.  相似文献   

10.
Binding sites for thyrotropin-releasing hormone (TRH) were labelled with [3H](2-Me-His3)TRH ([3H]MeTRH) on membranes from rat brain regions at 0°C for 5 h. Amygdaloid membranes bound [3H]MeTRH with high-affinity (K d=3.1±0.5 nM (n=4)). Five TRH analogs competed for this binding with the same rank order and with affinities that matched the pharmacological specificity of pituitary TRH receptors. Substance P (SP) and its C-terminal fragments reduced amygdaloid TRH receptor binding in a concentration dependent manner (IC50 for SP=65 M). The rank order of potency of SP analogs at inhibiting TRH receptor binding was: SP>nonapeptide (3–11)>hexapeptide (6–11)>heptapeptide (5–11)>pentapeptide (7–11). However, other tachykinins were inactive in this system. SP was a potent inhibitor of [3H]MeTRH binding in hippocampus> spinal cord>retina>n. accumbens>hypothalamus>amygdaloid>olfactory bulb pituitary>pons/medulla in parallel assays. In amygdaloid membranes SP (50 M) reduced the apparent maximum receptor density by 39% (p<0.01) without altering the binding affinity, and 100 M SP induced a biphasic dissociation of [3H]MeTRH with kinetics faster than those induced by both TRH (10 M) and serotonin (100 M). In contrast, other neuropeptides such as neurotensin, proctolin, angiotensin II, bombesin and luteinizing hormone releasing hormone did not significantly inhibit [3H]MeTRH binding to amydaloid membranes. Thus, the SP site with low affinity in the rat brain is not like any of the previously described tachykinin/neurokinin binding sites but resembles the site found on neuroblastoma cells (108CC15) and on adrenal chromaffin cells that modulate cation permeability and nicotinic receptors respectively. The physiological role of these atypical SP sites in the rat brain remains to be determined.A preliminary account of these studies has been presented to the British Pharmacological Society (9).  相似文献   

11.
The microsomal fraction isolated from dog mesenteric nerve fibres was found to contain ATPase activity stimulated by micromolar concentrations of Ca ions. Such a high-affinity Ca2+-ATPase (hereafter referred to as HA Ca-ATPase) followed a Michaelis-Menten kinetics with Km for Ca ions of 0.4 M and Vmax=12.5±2.4 mol Pi.mg–1h–1. The examination of the subcellular origin of HA Ca-ATPase revealed that this enzyme is associated with axonal plasma membranes as documented by its co-purification with several plasma membrane marker enzymes and with tetrodotoxin-sensitive3H-saxitoxin binding. The addition of exogenous magnesium ions (Mg) resulted in a non-competitive inhibition of HA Ca-ATPase with Ki=0.5 mM. The reaction velocity of HA Ca-ATPase was also inhibited by other divalent ions with the order of potency Mg>Mn >ZnCo>Ni. In contrast to low affinity (high Km) Mg- and Ca-ATPase, the HA Ca-ATPase was insensitive to the inhibition by sodium azide (10 mM) and sodium fluoride (10 mM). Similarly, the specific activity of HA Ca-ATPase was unaffected by vanadate (100 M) and N-ethylmaleinimide (100 M). It is concluded that axonal plasma membranes of dog mesenteric nerves contain HA Ca-ATPase which seems to be unrelated to calcium-transporting Mg-dependent, Ca-stimulated ATPase.Abbreviations used BSA bovine serum albumin - HA Ca-ATPase high-affinity Ca2+-ATPase - K-pNPPase onabain-sensitive, K+-stimulated p-nitrophenyl phosphatase - NEM N-ethylmaleinimide - SIM 250 mM sucrose, 10 mM imidazole-HCl pH 7.4 - TRIS tris (hydroxymethyl) aminomethane  相似文献   

12.
Deenergized cells of Desulfovibrio desulfuricans strain Essex 6 formed trithionate and thiosulfate during reduction of sulfite with H2 or formate. The required conditions were pretreatment with the uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP), low concentration of the electron donor H2 or formate (25–200 M) and the presence of sulfite in excess (>250 M). The cells formed up to 20 M thiosulfate, and variable amounts of trithionate (0–9 M) and sulfide (0–62 M). Tetrathionate was not produced. Sulfate could not replace sulfite in these experiments, as deenergized cells cannot activate sulfate. However, up to 5 M thiosulfate was produced by cells growing with H2 and excess sulfate in a chemostat. Micromolar concentrations of trithionate were incompletely reduced to thiosulfate and sulfide by washed cells in the presence of CCCP. Millimolar trithionate concentrations blocked the formation of sulfide, even in the absence of CCCP, and caused thiosulfate accumulation; sulfide formation from sulfate, sulfite or thiosulfate was stopped, too. Trithionate reduction with H2 in the presence of thiocyanate was coupled to respiration-driven proton translocation (extrapolated H+/H2 ratios of 1.5±0.6). Up to 150 M trithionate was formed by washed cells during oxidation of sulfite plus thiosulfate with ferricyanide as electron acceptor (reversed trithionate reductase activity). Cell breakage resulted in drastic decrease of sulfide formation. Cell-free extract reduced sulfite incompletely to trithionate, thiosulfate, and sulfide. Thiosulfate was reduced stoichiometrically to sulfite and sulfide (thiosulfate reductase activity). The formation of sulfide from sulfite, thiosulfate or trithionate by cell-free extract was blocked by methyl viologen, leading to increased production of thiosulfate plus trithionate from sulfite, or increased thiosulfate formation from trithionate. Our study demonstrates for the first time the formation of intermediates during sulfite reduction with whole cells of a sulfate-reducing bacterium oxidizing physiological electron donors. All results are in accordance with the trithionate pathway of sulfite reduction.With gratitude dedicated to Prof. Dr. Norbert Pfennig on occasion of his 65th birthday  相似文献   

13.
Endogenous and xenobiotic sulphur-containing convulsant and non-convulsant compounds containing structural moieties of, or bearing a structural resemblance to, GABA and homocysteine were tested in binding studies for their potency in displacing the GABA-mimetic [3H]muscimol from specific, high-affinity sites (K d=3.6 nM;B max=3.94 pmol/mg protein) on freeze-thawed, Triton-treated calf-brain synaptic membranes. The xenobiotic convulsants, 4-mercaptobutyric acid (MBA), 3-mercaptopropionic acid (3-MPA) and 2-mercaptopropionic acid (2-MPA) were found to be two-site competitive inhibitors exhibiting apparent inhibition affinity constants (K i app ) of 5000 M, 3750 M, and 4800 M, respectively; while homocysteic acid (K i app =4800 M) was shown to be a one-site partial competitive inhibitor. Intermediary metabolites of methionine: S-adenosyl-l-homocysteine,l-cysteine, the convulsantl-homocysteine, and its non-convulsant disulphide oxidation product, homocystine, were found to be one-site partial competitive inhibitors exhibitingK i app values of 5750 M, 8350 M, 5000 M, and 510 M, respectively. The endogenous anticonvulsant neuroeffector, taurine, and the tripeptide, reduced glutathione (GSH) were shown to be, respectively, one-site (K i=20 M) and two-site (K i app =4300 M) competitive inhibitors of [3H]muscimol binding. These findings are discussed with regard to a previously proposed mechanism for the convulsant action of homocysteine.  相似文献   

14.
We have shown that diazepam (ED50 2.4 M), flunitrazepam (ED50 10.2 M) and Ro5-4864 (ED50 5 M) are able to enhance both total and specific [3H]phenytoin binding. Picrotoxin (IC50 1.43 M) and chloride, either NaCl or KCl (IC50 42.4 M) inhibit both the increase in total and specific binding of [3H]phenytoin, Ro 15-1788 does not. The optimum time for this enhancement was 3–4 hours. While the ED50's for the benzodiazepines are high their order of potency suggests that an involvement of both the peripheral type benzodiazepine receptor and the GABA-chloride ionophore complex is likely. Clonazepam (IC50 23 M), oxazepam (IC50 12 M) chlordiazepoxide (IC50 35 M) and Ro8682-10, a convulsant benzodiazepine (IC50 16 M) all inhibit both total and specific [3H]phenytoin binding. These effects were not blocked by chloride ions, picrotoxin or Ro 15-1788, and reached equilibrium within 45 minutes. This order of potency also parallels that for the peripheral benzodiazepine receptor in rat brain. These data suggest the presence of a micromolar benzodiazepine receptor site which may play a role in the control of CNS excitability. Nitrazepam, medazepam, bromazepam and the tetralobenzodiazepines U38335, U42794, U43434, and U37834 had no effect on total or specific [3H]phenytoin binding nor on the actions of the other benzodiazepines described in concentrations up to 50 M.  相似文献   

15.
Muscarinic responses of gastric parietal cells   总被引:4,自引:0,他引:4  
Summary Isolated rabbit gastric glands were used to study the nature of the muscarinic cholinergic responses of parietal cells. Carbachol (CCh, 100 m) stimulation of acid secretion, as measured by the accumulation of aminopyrine, was inhibited by the M1 antagonist, pirenzepine, with an IC50 of 13 m; by the M2 antagonist, 11,2-(diethylamino)methyl-1 piperidinyl acetyl-5,11-dihydro-6H-pyrido 2,3-b 1,4 benzodiazepin-6-one (AF-DX 116), with an IC50 of 110 m; and by the M1/M3 antagonist, diphenylacetoxy-4-methylpiperidinemethiodide (4-DAMP), with an IC50 of 35nm. The three antagonists displayed equivalent IC50 values for the inhibition of carbachol-stimulated production of14CO2 from radiolabeled glucose, which is a measure of the turnover of the H,K-ATPase, the final step of acid secretion. Intracellular calcium levels were measured in gastric glands loaded with FURA 2. Carbachol was shown to both release calcium from an intracellular pool and to promote calcium entry across the plasma membrane. The calcium entry was inhibitable by 20 m La3+. The relative potency of the three muscarinic antagonists for inhibition of calcium entry was essentially the same as for inhibition of acid secretion or pump related glucose oxidation. Image analysis of the glands showed the effects of carbachol, and of the antagonists, on intracellular calcium were occurring largely in the parietal cell. The rise in cell calcium due to release of calcium from intracellular stores was inhibited by 4-DAMP with an IC50 of 1,7nm, suggesting that the release pathway was regulated by a low affinity M3 muscarinic receptor or state; Ca entry and acid secretion are regulated by a high affinity M3 muscarinic receptor or state, inhibited by higher 4-DAMP concentrations (>30nm), suggesting that it is the steady-state elevation of Ca that is related to parietal cell function rather than the [Ca] i transient. Displacement of3H N-methyl scopolamine (NMS) binding to purified parietal cells by CCh showed the presence of two affinities for CCh, but only a single affinity for 4-DAMP and lower affinity for pirenzepine and AFDX 116, providing further evidence for the parietal cell location of the [Ca] i response. Elevation of steady-state [Ca] i levels with either ionomycin or arachidonic acid did not replicate M3 stimulation of acid secretion or glucose oxidation, hence elevation of [Ca] i is necessary but not sufficient for acid secretion.  相似文献   

16.
The increasing effect of regucalcin, isolated from rat liver cytosol, on neutral proteolytic activity in the hepatic cytosol was characterized. The proteolytic activity was markedly elevated by the addition of regucalcin (0.1–0.5 M) in the absence of Ca2+. This increase was not significantly altered by the presence of diisopropylfluorophsophate (DPF;2.5 mM)—although DFP caused a significant decrease in the proteolytic activity. Regucalcin (0.25 M) additively enhanced the dithiothreitol (DTT; 1.0 mM)—increased proteolytic activity, while the regucalcin or DTT effect was completely abolished by NEM (5 mM), indicating that regucalcin may act on the SH group in proteases. Also, regucalcin (0.25 M) enhanced the effect of Ca2+ (10 M) increasing liver proteolytic activity, suggesting that regucalcin does not influence on the active sites for Ca2+ in proteases. Moreover, the proteolytic activity of regucalcin (0.25 M) was significantly decreased by the presence of calpastatin (24 g/ml), an inhibitor of Ca2+-activated neutral protease (calpain). Now, regucalcin (0.25 M) increased about 7-fold the activity ofm-calpain isolated from rabbit skeletal muscle. These observations demonstrate that regucalcin directly activates cysteinyl-proteases. Regucalcin may have a role as a potent proteolytic activator in the cytoplasm of liver cells.  相似文献   

17.
The interactions of eight piperidine derivatives with nicotinic receptor complexes fromTorpedo californica electric organ were studied using [125I]alpha-bungarotoxin ([125I]BGT) as a probe for the acetylcholine binding site and [3H]perhydrohistrionicotoxin ([3H]H12-HTX) as a probe for a site associated with the receptor-gated ion channel.Cis- andtrans-2-methyl-6-n-undecanyl piperidines (MUP), major constituents of fire ant venom, had a high-affinity for [3H]H12-HTX binding sites (Ki=0.08–0.24 M), but had no affect on receptor binding. MUP affinity for [3H]H12-HTX binding sites was approximately doubled in the presence of 1 M carbamylcholine. Introduction of a 2-hydroxyl group to the undecanyl side channel had little effect on activity of the alkaloid. The analog 2,6- (but not 3,5-) dimethylpiperidine was a moderately active inhibitor of [3H]H12-HTX binding (K i-8.8 M). 2-Methylpiperidine was considerably less active (K i=600 M), although it was more potent than either 3- or 4-methylpiperidine. The affinities of 2,6-dimethylpiperidine and 2-methylpiperidine for [3H]H12-HTX binding sites were decreased in the presence of 1 M carbamylcholine. Carbamylcholine affinity for the receptor was increased by up to 7 fold in the presence of 10 and 32 M MUP, but was decreased in the presence of 2,6-dimethylpiperidine and 2-methylpiperidine. Thecis- andtrans-isomers of MUP were equipotent in producing each of its effects. In these actions, MUP resembles a variety of other compounds derived from 2,6-disubstituted piperidines, including histrionicotoxins, gephyrotoxins and pumiliotoxins. These studies establish the importance of alkyl substitutions in theortho position of the piperidine ring in conferring ion channel specificity, and the importance of substantial alkyl side chains in conferring the ability of channel blockers to stabilize the nicotinic receptor complex in high affinity, desensitized conformations.  相似文献   

18.
Saturable specific binding of glycine to synaptosomal membranes from plexiform layers of the retina has been described, which seems to correspond to the modulatory site on NMDA-receptors (26). Spermine inhibited specific [3H]glycine binding to membranes from synaptosomal fractions from the outer (P1) and the inner (P2) plexiform layers of 1–3 day-old chick retinas in a dose-dependent manner with an IC50 = 35 M for the P1 fraction and 32 M for the P2 fraction. Kinetic experiments and non-linear regression analysis of [3H]glycine-specific binding showed a Kd ~ 100–150 nM in both fractions, and a higher Bmax (4.11 ± 0.47 pmol/mg protein) for the inner plexiform layer compared to the outer plexiform layer (Bmax = 2.76 ± 0.25 pmol/mg protein). Strychnine-insensitive [3H]glycine binding was inhibited by 100 M spermine, due to a reduction in Bmax (P1 = 0.84 ± 0.16 pmol/mg protein; P2 = 0.81 ± 0.16 pmol/mg protein) without affecting the Kd. Association and dissociation constants in the absence and presence of 50 M spermine remained unchanged. Results demonstrate the presence of a single modulatory site for spermine on NMDA receptors, in both synaptic layers of the chick retina.  相似文献   

19.
A series of eight histrionicotoxins and two synthetic analogs inhibit binding of [3H]batrachotoxinin B to sites on voltage dependent sodium channels in brain membranes. Perhydrohistrionicotoxin (IC50 0.33 M) and octahydrohistrionicotoxin (IC50 1.2 M) are comparable in activities to potent local anesthetics. Histrionicotoxin (IC50 17 M) and the other histrionicotoxins are much less potent. The histrionicotoxins also inhibit binding of [3H]phencyclidine to putative potassium channels in brain membranes. Histrionicotoxin (IC50 15 M) and the other histrionicotoxins are much more potent than perhydrohistrionicotoxin (IC50 200 M), but are at least 200-fold less potent than phencyclidine. The histrionicotoxins enhance binding of [3H]nitrendipine to sites on calcium channels in brain membranes, with the exception of perhydrohistrionicotoxin, which inhibits binding. Structure activity relationships at these channel sites and at the sites for noncompetitive blockers on the nicotinic acetylcholine receptor channel (AChR) complex differ. The histrionicotoxins are more potent at the sites on the AChR complex than at sites on other channels with the exception of perhydrohistrionicotoxin, which has comparable potency at the AChR complex and sodium channels.  相似文献   

20.
Summary The inactivation of the rabbit parotid Na/K/Cl cotransporter by the irreversible sulfhydryl reagent N-ethylmaleimide (NEM) is studied by monitoring its effect on high affinity bumetanide binding to the carrier. NEM reduces the number of bumetanide binding sites with no significant change in the affinity of those remaining. NEM also reduces KCl-dependent22Na flux via the cotransporter by the same factor as the reduction in bumetanide binding sites. Both bumetanide and its analogue furosemide can protect against the effect of NEM. The concentration range over which this protection occurs is in good agreement with affinities of these two compounds for the high affinity bumetanide binding site (2.6 and 85 m, respectively), indicating an association of this site with the site of action of NEM. Also consistent with this hypothesis are the observations that (i) sodium and potassium, both of which are required for high affinity bumetanide binding, increase the rate of inactivation of binding by NEM and (ii) chloride, at concentrations previously shown to competitively inhibit bumetanide binding, protects the cotransporter against NEM. The effects of NEM on bumetanide binding are mimicked by another highly specific sulfhydryl reagent, methyl methanethiolsulfonate. The apparent rate constant for inactivation of high affinity bumetanide binding by NEM is a hyperbolic function of NEM concentration consistent with a model in which the inactivation reaction is first order in [NEM] and proceeds through an intermediate adsorptive complex. The data indicate that the presence of a reduced sulfhydryl group at or closely related to the bumetanide binding site is essential for the operation of the parotid Na/K/Cl cotransporter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号