首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arachnomelia in Brown Swiss cattle is a monogenic autosomal recessive inherited congenital disorder of the skeletal system giving affected calves a spidery look (OMIA ID 000059). Over a period of 20 years 15 cases were sampled in the Swiss and Italian Brown cattle population. Pedigree data revealed that all affected individuals trace back to a single acknowledged carrier founder sire. A genome scan using 240 microsatellites spanning the 29 bovine autosomes showed homozygosity at three adjacent microsatellite markers on bovine Chr 5 in all cases. Linkage analysis confirmed the localization of the arachnomelia mutation in the region of the marker ETH10. Fine-mapping and haplotype analysis using a total of 34 markers in this region refined the critical region of the arachnomelia locus to a 7.19-Mb interval on bovine Chr 5. The disease-associated IBD haplotype was shared by 36 proven carrier animals and allows marker-assisted selection. As the corresponding human and mouse chromosome segments do not contain any clear functional candidate genes for this disorder, the mutation causing arachnomelia in the Brown Swiss cattle might help to identify an unknown gene in bone development. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Bovine arachnomelia is an inherited congenital disorder with malformation mainly of the limbs, the vertebral column and the skull, following a monogenic autosomal recessive heredity. Despite almost identical pathological findings, arachnomelia has previously been mapped to bovine chromosome 23 and 5 in Fleckvieh and Braunvieh respectively. Therefore, this disorder may be an example of locus heterogeneity in cattle. This study aimed to refine the candidate region to allow positional cloning and sequence analyses of candidate genes in Fleckvieh cattle. For that purpose, a case-control association mapping design was set up with a case group of 16 pre-selected affected individuals and a control group of 50 unrelated animals. The subset of affected animals was selected from a total of 129 pathologically confirmed cases due to the occurrence of recombination(s) within a 14.5 cM candidate interval previously mapped to chromosome 23. Six linked microsatellites currently used for indirect gene testing in Fleckvieh were analysed for this purpose. In all selected cases, a genome-wide scan using 44 473 informative SNPs revealed shared segments of homozygosity at 15 adjacent SNPs on chromosome 23. Additional haplotype analysis of 37 carrier bulls confirmed the localization of the arachnomelia locus to a region of 927 kb (13.622-14.549 Mb) containing molybdenum cofactor biosynthesis protein 1 gene, the most likely candidate gene for arachnomelia in Fleckvieh. The number of recombinant haplotypes observed in cases was more than doubled compared with the number of expected recombinations. This remarkably increased mapping resolution and thus illustrates the benefit of pre-selection in association studies.  相似文献   

3.
Segregation analyses with Gibbs sampling were applied to investigate the mode of inheritance and to estimate the genetic parameters of milk flow of Swiss dairy cattle. The data consisted of 204 397, 655 989 and 40 242 lactation records of milk flow in Brown Swiss, Simmental and Holstein cattle, respectively (4 to 22 years). Separate genetic analyses of first and multiple lactations were carried out for each breed. The results show that genetic parameters especially polygenic variance and heritability of milk flow in the first lactation were very similar under both mixed inheritance (polygenes + major gene) and polygenic models. Segregation analyses yielded very low major gene variances which favour the polygenic determinism of milk flow. Heritabilities and repeatabilities of milk flow in both Brown Swiss and Simmental were high (0.44 to 0.48 and 0.54 to 0.59, respectively). The heritability of milk flow based on scores of milking ability in Holstein was intermediate (0.25). Variance components and heritabilities in the first lactation were slightly larger than those estimates for multiple lactations. The results suggest that milk flow (the quantity of milk per minute of milking) is a relevant measurement to characterise the cows milking ability which is a good candidate trait to be evaluated for a possible inclusion in the selection objectives in dairy cattle.  相似文献   

4.
Jiao SH  Wang YC  Zhang Y 《遗传》2011,33(1):36-39
牛蜘蛛腿综合征(Arachnomelia syndrome, AS)是主要在欧洲瑞士褐牛和德系西门塔尔牛群体中出现的一种以骨骼畸形为病理特征的先天致死性遗传病, 呈孟德尔隐性遗传。文章通过对AS的发现历史、病理特点、遗传规律以及AS在欧洲瑞士褐牛和德系西门塔尔牛两个品种中分子机理研究进展进行综述, 并从骨骼发育、比较基因组学两方面对西门塔尔牛AS的定位区段进行候选基因的预测, 为以后筛查影响该病的基因及其突变以及建立检测方法提供一定的依据。  相似文献   

5.
A total of 627 cattle representing seven breeds from south central Nebraska, USA were tested for 37 BoLA antigens which behave as products of 37 distinct alleles of the class I BoLA-A locus. Four antigens were absent from all breeds tested. The other antigens showed marked and statistically significant differences in breed distribution. There was no evidence for blank (null) alleles. The number of alleles in each breed ranged from 10 to 20. The Hereford and Simmental populations tested were less polymorphic than the Angus, Brown Swiss, Charolais, Gelbvieh and Limousin populations.  相似文献   

6.
The white belt pattern of Brown Swiss cattle is characterized by a lack of melanocytes in a stretch of skin around the midsection. This pattern is of variable width and sometimes the belt does not fully circle the body. To identify the gene responsible for this colour variation, we performed linkage mapping of the belted locus using six segregating half-sib families including 104 informative meioses for the belted character. The pedigree confirmed a monogenic autosomal dominant inheritance of the belted phenotype in Brown Swiss cattle. We performed a genome scan using 186 microsatellite markers in a subset of 88 animals of the six families. Linkage with the belt phenotype was detected at the telomeric region of BTA3. Fine-mapping and haplotype analysis using 19 additional markers in this region refined the critical region of the belted locus to a 922-kb interval on BTA3. As the corresponding human and mouse chromosome segments contain no obvious candidate gene for this coat colour trait, the mutation causing the belt pattern in the Brown Swiss cattle might help to identify an unknown gene influencing skin pigmentation.  相似文献   

7.
The genetic diversity among Canadienne, Brown Swiss, Holstein, and Jersey cattle was estimated from relationships determined by genotyping 20 distantly related animals in each breed for 15 microsatellites located on separate chromosomes. The Canadienne, Holstein, and Jersey cattle had an average of six alleles per loci compared with five alleles for Brown Swiss. Furthermore, a number of potentially breed-specific alleles were identified. The allele size variance among breeds was similar, but varied considerably among loci. All of the loci studied were equally heterozygous, as were Brown Swiss, Canadienne, and Holstein cattle (0.68-0.69) whereas Jersey cattle showed lower heterozygosity (0.59). The within-breed estimates of genetic distance were greater than zero and significant. The genetic distance between Canadienne and Holstein (0.156), Brown Swiss (0.243), and Jersey (0.235) was negligible, suggesting close relationship. Concurrently, Brown Swiss and Holstein (0.211) cattle also demonstrated close relationship. In contrast, the Jersey breed was genetically distant from the Brown Swiss and Holstein cattle (0.427 and 0.320, respectively). The characterization of Canadienne cattle, as part of the genetic resource conservation effort currently underway in Canada, underscores the difficulty in scientifically establishing unique breeds. Therefore, the need to consider all relevant morphological characteristics and production performance in combination with available cultural, historical, pedigree, and molecular information becomes relevant when identifying breeds for conservation.  相似文献   

8.
Endogenous prion proteins (PrP) play the central role in the pathogenesis of transmissible spongiform encephalopathies. The carbohydrate N -acetylgalactosamine 4-O sulfotransferase 8 (CHST8) promotes the conversion of the cellular PrPC into the pathogenic PrPd. Six sequence variants within the CHST8 gene were identified by comparative sequencing and genotyped for a sample of 623 animals comprising bovine spongiform encephalopathy (BSE)-affected and healthy control cows representing German Fleckvieh (German Simmental), German Holstein (Holstein-Friesian) and Brown Swiss. Significant differences in the allele, genotype and haplotype frequencies between BSE-affected and healthy cows indicate an association of sequence variant g.37254017G>T with the development of the disease in Brown Swiss cattle.  相似文献   

9.
A hereditary chondrodysplastic dwarfism caused by an autosomal recessive gene has been reported in a population of Japanese Brown cattle. Affected calves show an insufficiency of endochondral ossification at the long bones of the limbs. In the present study, we mapped the locus responsible for the disease (bcd) by linkage analysis, using microsatellite markers and a single paternal half-sib pedigree obtained from commercial herds. Linkage analysis revealed a significant linkage between the bcd locus and marker loci on the distal region of bovine Chromosome (Chr) 6. The bcd locus was mapped in the interval between microsatellite markers BM9257 and BP7 or BMS511 with a recombination fraction of 0.05 and 0.06, and a lod score of 8.6 and 10.1, respectively. A comparison of genetic maps between bovine Chr 6 and human Chr 4 or mouse Chr 5 indicates possible candidate genes including FGFR3 and BMP3 genes, which are responsible for human chondrodysplasias and associated with bone morphogenesis, respectively. Received: 24 November 1998 / Accepted: 2 February 1999  相似文献   

10.
In the present study, a sample of 88 animals belonging to four local (Modicana, Sarda, Sardo‐Bruna and Sardo‐Modicana) and one cosmopolitan (Italian Brown Swiss) cattle breeds were genotyped with a medium density SNP beadchip and compared to investigate their genetic diversity and the existence of selection signatures. A total of 43 012 SNPs distributed across all 29 autosomal chromosomes were retained after data quality control. Basic population statistics, Wright fixation index and runs of homozygosity (ROH) analyses confirmed that the Italian Brown Swiss genome was shaped mainly by selection, as underlined by the low values of heterozygosity and minor allele frequency. As expected, local cattle exhibited a large within‐breed genetic heterogeneity. The FST comparison revealing the largest number of significant SNPs was Sardo‐Bruna vs. Sardo‐Modicana, whereas the smallest was observed for Italian Brown Swiss vs. Sardo‐Modicana. Modicana exhibited the largest number of detected ROHs, whereas the smallest was observed for Sardo‐Modicana. Signatures of selection were detected in genomic regions that harbor genes involved in milk production traits for Italian Brown Swiss and fitness traits for local breeds. According to the results of multi‐dimensional scaling and the admixture analysis the Sardo‐Bruna is more similar to the Sarda than to the Italian Brown Swiss breed. Moreover, the Sardo‐Modicana is genetically closer to the Modicana than to the Sarda breed. Results of the present work confirm the usefulness of single nucleotide polymorphisms in deciphering the genetic architecture of livestock breeds.  相似文献   

11.
DNA fingerprinting in cattle using the probe pV47   总被引:1,自引:0,他引:1  
The multilocus probe pV47 detected an average of nine bands in cattle between 23 kb and 4 kb. Band sharing was estimated for three groups of unrelated animals. The first group comprised 20 individuals of 12 different breeds, the second group 10 individuals of the Swiss Simmental population and the third group 11 individuals of the Swiss Brown Swiss population. The band sharing probabilities were 33%, 42% and 58% respectively. The DNA fingerprints of 38 offspring with a total of 277 bands revealed no bands that could not be traced to the parents.  相似文献   

12.
Bovine Progressive Degenerative Myeloencephalopathy (Weaver Syndrome) is a recessive neurological disease that has been observed in the Brown Swiss cattle breed since the 1970’s in North America and Europe. Bilateral hind leg weakness and ataxia appear in afflicted animals at 6 to 18 months of age, and slowly progresses to total loss of hind limb control by 3 to 4 years of age. While Weaver has previously been mapped to Bos taurus autosome (BTA) 4∶46–56 Mb and a diagnostic test based on the 6 microsatellite (MS) markers is commercially available, neither the causative gene nor mutation has been identified; therefore misdiagnosis can occur due to recombination between the diagnostic MS markers and the causative mutation. Analysis of 34,980 BTA 4 SNPs genotypes derived from the Illumina BovineHD assay for 20 Brown Swiss Weaver carriers and 49 homozygous normal bulls refined the Weaver locus to 48–53 Mb. Genotyping of 153 SNPs, identified from whole genome sequencing of 10 normal and 10 carrier animals, across a validation set of 841 animals resulted in the identification of 41 diagnostic SNPs that were concordant with the disease. Except for one intergenic SNP all are associated with genes expressed in nervous tissues: 37 distal to NRCAM, one non-synonymous (serine to asparagine) in PNPLA8, one synonymous and one non-synonymous (lysine to glutamic acid) in CTTNBP2. Haplotype and imputation analyses of 7,458 Brown Swiss animals with Illumina BovineSNP50 data and the 41 diagnostic SNPs resulted in the identification of only one haplotype concordant with the Weaver phenotype. Use of this haplotype and the diagnostic SNPs more accurately identifies Weaver carriers in both Brown Swiss purebred and influenced herds.  相似文献   

13.
14.
Bilateral convergent strabismus with exophthalmus (BCSE) is a widespread inherited eye defect in several cattle populations. Its progressive condition often leads to blindness in affected cattle and decreases their usability. Furthermore, the German animal welfare laws prevent breeding with animals whose progeny are expected to be affected by genetic defects. Identifying genes involved in the heredity of BCSE should lead to insights into the molecular pathogenesis of this eye disease and permit the establishment of a genetic test for this disease. A whole-genome scan for 10 families containing a total of 159 genotyped individuals identified two BCSE loci. One BCSE locus mapped to the centromeric region on bovine chromosome (BTA) 5 and the other BCSE locus mapped to the telomeric region of BTA18. Thus, it is possible that two genes are involved in the development of BCSE. Alternatively, one of these loci could be the cause for the development of BCSE and the other locus could affect the progression and severity of the defect.  相似文献   

15.
Tyrosinase related protein 1 (TYRP1), which is involved in the coat colour pathway, was mapped to BTA8 between microsatellites BL1080 and BM4006, using a microsatellite in intron 5 of TYRP1. The complete coding sequence of bovine TYRP1 was determined from cDNA derived from skin biopsies of cattle with various colours. Sequence data from exons 2-8 from cattle with diluted phenotypes was compared with that from non-diluted phenotypes. In addition, full-sib families of beef cattle generated by embryo transfer and half-sib families from traditional matings in which coat colour was segregating were used to correlate TYRP1 sequence variants with dilute coat colours. Two non-conservative amino acid changes were detected in Simmental, Charolais and Galloway cattle but these polymorphisms were not associated with diluted shades of black or red, nor with the dun coat colour of Galloway cattle or the taupe brown colour of Braunvieh and Brown Swiss cattle. However, in Dexter cattle all 25 cattle with a dun brown coat colour were homozygous for a H424Y change. One Dexter that was also homozygous Y434 was red because of an "E+/E+" genotype at MC1R which lead to the production of only phaeomelanin. None of the 70 remaining black or red Dexter cattle were homozygous for Y434. This tyrosine mutation was not found in any of the 121 cattle of other breeds that were examined.  相似文献   

16.
Chediak-Higashi syndrome in Japanese black cattle is a hereditary disease with prolonged bleeding time and partial albinism. In the present study, we mapped the locus responsible for the disease (CHS) by linkage analysis using microsatellite genotypes of paternal half-sib pedigrees obtained from commercial herds. Analysis revealed significant linkage between the CHS locus and marker loci on the proximal end of bovine chromosome 28. The CHS locus was mapped on the region incorporating the microsatellite markers BMC6020, BM2892, and RM016 with recombination fraction 0 and lod score 4.9-11.2. We also assigned the bovine CHS1/LYST, the homologue of the gene responsible for human Chediak-Higashi syndrome, to bovine chromosome 28 using a bovine/murine somatic cell hybrid panel. These findings suggest that a mutation in the CHS1/LYST gene is likely to be responsible for Chediak-Higashi syndrome in Japanese black cattle.  相似文献   

17.
Arachnomelia is a monogenic recessive defect of skeletal development in cattle. The causative mutation was previously mapped to a ∼7 Mb interval on chromosome 5. Here we show that array-based sequence capture and massively parallel sequencing technology, combined with the typical family structure in livestock populations, facilitates the identification of the causative mutation. We re-sequenced the entire critical interval in a healthy partially inbred cow carrying one copy of the critical chromosome segment in its ancestral state and one copy of the same segment with the arachnomelia mutation, and we detected a single heterozygous position. The genetic makeup of several partially inbred cattle provides extremely strong support for the causality of this mutation. The mutation represents a single base insertion leading to a premature stop codon in the coding sequence of the SUOX gene and is perfectly associated with the arachnomelia phenotype. Our findings suggest an important role for sulfite oxidase in bone development.  相似文献   

18.
Direct gestation length influences economically important traits in dairy cattle that are related to birth and peri-natal survival of the calf. The objective of this study was to identify single nucleotide polymorphisms (SNPs) that are significantly associated with direct gestation length through a genome-wide association study. Data used in the analysis included 7,308,194 cow gestation lengths from daughters of 4743 United States Holstein sires in the Cooperative Dairy DNA Repository population and 580,157 gestation lengths from 749 sires in the Italian Brown population. Association analysis included 36,768 and 35,082 SNPs spanning all autosomes for Holstein and Brown Swiss, respectively. Multiple shrinkage Bayesian was employed. Estimates of heritability for both populations were moderate, with values of 0.32 (±0.03) and 0.29 (±0.02) for Holstein and Brown Swiss, respectively. A panel of SNPs was identified, which included SNPs that have significant effects on direct gestation length, of which the strongest candidate region is located on chromosome 18. Two regions not previously linked to direct calving ease and calf survival were identified on chromosome 7 and 28, corresponding to regions that contain genes related to embryonic development and foetal development. SNPs were also identified in regions that have been previously mapped for calving difficulty and longevity. This study identifies target regions for the investigation of direct foetal effects, which are a significant factor in determining the ease of calving.  相似文献   

19.
The concentration of the cytosolic glucocorticoid receptor (GR) was determined in skeletal muscles of calves in order to study possible differences in individual muscles from different parts of the body as well as the influence of sex and breed. In male and female Simmental calves the topographical distribution of GR was similar: the lowest concentrations were seen in abdominal muscle, whereas in neck, shoulder and hindleg the GR concentrations were higher; this difference was more pronounced in male than in female calves. In general, female calves had about 2-fold higher GR concentrations than males. The cytosolic cortisol concentrations were differing neither between individual muscles nor between sexes. The cortisol secretion during a 24-h sampling period 1 week prior to slaughter showed no sex difference. GR concentrations in neck muscle of female calves of four different German cattle breeds (Holstein Friesian, Brown Swiss, Simmental and German Gelbvieh) were rather similar; however, when Brown Swiss with the highest GR levels were compared to Holstein Friesian calves with the lowest concentrations, a significant difference was evident (P < 0.05).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号