首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isolates of the symbiotic nitrogen-fixing species Sinorhizobium meliloti usually contain a chromosome and two large megaplasmids encoding functions that are absolutely required for the specific interaction of the microsymbiont with corresponding host plants leading to an effective symbiosis. The complete genome sequence, including the megaplasmids pSmeSM11c (related to pSymA) and pSmeSM11d (related to pSymB), was established for the dominant, indigenous S. meliloti strain SM11 that had been isolated during a long-term field release experiment with genetically modified S. meliloti strains. The chromosome, the largest replicon of S. meliloti SM11, is 3,908,022 bp in size and codes for 3785 predicted protein coding sequences. The size of megaplasmid pSmeSM11c is 1,633,319 bp and it contains 1760 predicted protein coding sequences whereas megaplasmid pSmeSM11d is 1,632,395 bp in size and comprises 1548 predicted coding sequences. The gene content of the SM11 chromosome is quite similar to that of the reference strain S. meliloti Rm1021. Comparison of pSmeSM11c to pSymA of the reference strain revealed that many gene regions of these replicons are variable, supporting the assessment that pSymA is a major hot-spot for intra-specific differentiation. Plasmids pSymA and pSmeSM11c both encode unique genes. Large gene regions of pSmeSM11c are closely related to corresponding parts of Sinorhizobium medicae WSM419 plasmids. Moreover, pSmeSM11c encodes further novel gene regions, e.g. additional plasmid survival genes (partition, mobilisation and conjugative transfer genes), acdS encoding 1-aminocyclopropane-1-carboxylate deaminase involved in modulation of the phytohormone ethylene level and genes having predicted functions in degradative capabilities, stress response, amino acid metabolism and associated pathways. In contrast to Rm1021 pSymA and pSmeSM11c, megaplasmid pSymB of strain Rm1021 and pSmeSM11d are highly conserved showing extensive synteny with only few rearrangements. Most remarkably, pSmeSM11b contains a new gene cluster predicted to be involved in polysaccharide biosynthesis. Compilation of the S. meliloti SM11 genome sequence contributes to an extension of the S. meliloti pan-genome.  相似文献   

2.
The genome of Sinorhizobium meliloti type strain Rm1021 consists of three replicons: the chromosome and two megaplasmids, pSymA and pSymB. Additionally, many indigenous S. meliloti strains possess one or more smaller plasmids, which represent the accessory genome of this species. Here we describe the complete nucleotide sequence of an accessory plasmid, designated pSmeSM11a, that was isolated from a dominant indigenous S. meliloti subpopulation in the context of a long-term field release experiment with genetically modified S. meliloti strains. Sequence analysis of plasmid pSmeSM11a revealed that it is 144,170 bp long and has a mean G+C content of 59.5 mol%. Annotation of the sequence resulted in a total of 160 coding sequences. Functional predictions could be made for 43% of the genes, whereas 57% of the genes encode hypothetical or unknown gene products. Two plasmid replication modules, one belonging to the repABC replicon family and the other belonging to the plasmid type A replicator region family, were identified. Plasmid pSmeSM11a contains a mobilization (mob) module composed of the type IV secretion system-related genes traG and traA and a putative mobC gene. A large continuous region that is about 42 kb long is very similar to a corresponding region located on S. meliloti Rm1021 megaplasmid pSymA. Single-base-pair deletions in the homologous regions are responsible for frameshifts that result in nonparalogous coding sequences. Plasmid pSmeSM11a carries additional copies of the nodulation genes nodP and nodQ that are responsible for Nod factor sulfation. Furthermore, a tauD gene encoding a putative taurine dioxygenase was identified on pSmeSM11a. An acdS gene located on pSmeSM11a is the first example of such a gene in S. meliloti. The deduced acdS gene product is able to deaminate 1-aminocyclopropane-1-carboxylate and is proposed to be involved in reducing the phytohormone ethylene, thus influencing nodulation events. The presence of numerous insertion sequences suggests that these elements mediated acquisition of accessory plasmid modules.  相似文献   

3.
Plasmid pSmeSM11a, residing in the indigenous Sinorhizobium meliloti strain SM11 originating from a field in Strassmoos (Bavaria, Germany), was analysed previously at the genomic level. Thirty-seven indigenous S. meliloti strains, originating from two different locations in Germany, were screened for genes identified previously on pSmeSM11a. Seven of these strains harbour accessory plasmids that are very similar to pSmeSM11a. The identified pSmeSM11a-like plasmids are c. 130-150 kb in size and possess nearly identical restriction profiles. Up to 30 genes identified previously on pSmeSM11a could be detected on these plasmids by hybridisation experiments, e.g., the nodulation genes nodP and nodQ, the ethylene level modulation gene acdS and the taurine metabolism gene tauD. A few pSmeSM11a genes were also detected on other plasmids. The reference plasmid pSmeSM11a contains a region that is similar to a segment of S. meliloti strain Rm1021 pSymA. Regions with similarity to pSymA were also detected on the aforementioned seven pSmeSM11a-like plasmids. The specifications of these regions are nearly identical to the one on pSmeSM11a and differ from Rm1021 pSymA as determined by nucleotide sequence analysis. Two further plasmids similar to pSmeSM11a completely lack the pSymA-region. Those strains carrying accessory plasmids that contain the acdS gene encoding 1-aminocyclopropane-1-carboxylate deaminase are able to grow on 1-aminocyclopropane-1-carboxylate as the sole source of nitrogen, demonstrating functionality of the acdS gene product. About 36% of the analysed plasmids, including three pSmeSM11a-like plasmids, could be transferred to another S. meliloti recipient strain, allowing for their dissemination in S. meliloti populations.  相似文献   

4.
Sinorhizobium meliloti strain 1021 and its closely related strain Rm2011 inhibit rice seedling (Oryza sativa L. cv. Pelde) growth and development under certain rice-growing conditions. Experiments showed that inoculation of seedlings with approximately less than 10 cells of 1021 was sufficient to cause this inhibition. By using a series of plasmid-cured and plasmid-deleted derivatives of Rm2011, it was found that interactions between genes encoded on pSymA, and possibly pSymB, of Rm2011, affected rice growth and development by affecting both/either the plant and/or the bacteria. Further studies found that genes potentially related to indole-3-acetic acid (IAA) synthesis and nitrate metabolism, encoded on pSymA, were involved in rice growth inhibition in Sm1021- and Sm2011-treated rice seedlings. We conclude that the rice growth inhibition by S. meliloti Sm1021 is pSymA-associated and is induced by environmental nitrate.  相似文献   

5.
The genome of Sinorhizobium meliloti type strain Rm1021 consists of three replicons: the chromosome and two megaplasmids, pSymA and pSymB. Additionally, many indigenous S. meliloti strains possess one or more smaller plasmids, which represent the accessory genome of this species. Here we describe the complete nucleotide sequence of an accessory plasmid, designated pSmeSM11a, that was isolated from a dominant indigenous S. meliloti subpopulation in the context of a long-term field release experiment with genetically modified S. meliloti strains. Sequence analysis of plasmid pSmeSM11a revealed that it is 144,170 bp long and has a mean G+C content of 59.5 mol%. Annotation of the sequence resulted in a total of 160 coding sequences. Functional predictions could be made for 43% of the genes, whereas 57% of the genes encode hypothetical or unknown gene products. Two plasmid replication modules, one belonging to the repABC replicon family and the other belonging to the plasmid type A replicator region family, were identified. Plasmid pSmeSM11a contains a mobilization (mob) module composed of the type IV secretion system-related genes traG and traA and a putative mobC gene. A large continuous region that is about 42 kb long is very similar to a corresponding region located on S. meliloti Rm1021 megaplasmid pSymA. Single-base-pair deletions in the homologous regions are responsible for frameshifts that result in nonparalogous coding sequences. Plasmid pSmeSM11a carries additional copies of the nodulation genes nodP and nodQ that are responsible for Nod factor sulfation. Furthermore, a tauD gene encoding a putative taurine dioxygenase was identified on pSmeSM11a. An acdS gene located on pSmeSM11a is the first example of such a gene in S. meliloti. The deduced acdS gene product is able to deaminate 1-aminocyclopropane-1-carboxylate and is proposed to be involved in reducing the phytohormone ethylene, thus influencing nodulation events. The presence of numerous insertion sequences suggests that these elements mediated acquisition of accessory plasmid modules.  相似文献   

6.
The 181 251 bp accessory plasmid pSmeSM11b of Sinorhizobium meliloti strain SM11, belonging to a dominant indigenous S. meliloti subpopulation identified during a long-term field release experiment, was sequenced. This plasmid has 166 coding sequences (CDSs), 42% of which encode proteins with homology to proteins of known function. Plasmid pSmeSM11b is a member of the repABC replicon family and contains a large gene region coding for a conjugation system similar to that of other self-transmissible plasmids in Rhizobium and Agrobacterium. Another pSmeSM11b gene region, possibly involved in sugar metabolism and polysaccharide catabolism, resembled a region of S. meliloti 1021 megaplasmid pSymB and in the genome of Sinorhizobium medicae WSM419. Another module of plasmid pSmeSM11b encodes proteins similar to those of the nitrogen-fixing actinomycete Frankia CcI3, and which are likely to be involved in the synthesis of a secondary metabolite. Several ORFs of pSmeSM11b were predicted to play a role in nonribosomal peptide synthesis. Plasmid pSmeSM11b has many mobile genetic elements, which contribute to the mosaic composition of the plasmid.  相似文献   

7.
8.
A considerable share of bacterial species maintains multipartite genomes. Precise coordination of genome replication and segregation with cell growth and division is vital for proliferation of these bacteria. The α‐proteobacterium Sinorhizobium meliloti possesses a tripartite genome composed of one chromosome and the megaplasmids pSymA and pSymB. Here, we investigated the spatiotemporal pattern of segregation of these S. meliloti replicons at single cell level. Duplication of chromosomal and megaplasmid origins of replication occurred spatially and temporally separated, and only once per cell cycle. Tracking of FROS (fluorescent repressor operator system)‐labelled origins revealed a strict temporal order of segregation events commencing with the chromosome followed by pSymA and then by pSymB. The repA2B2C2 region derived from pSymA was sufficient to confer the spatiotemporal behaviour of this megaplasmid to a small plasmid. Altering activity of the ubiquitous prokaryotic replication initiator DnaA, either positively or negatively, resulted in an increase in replication initiation events or G1 arrest of the chromosome only. This suggests that interference with DnaA activity does not affect replication initiation control of the megaplasmids.  相似文献   

9.
Variation in genome size and content is common among bacterial strains. Identifying these naturally occurring differences can accelerate our understanding of bacterial attributes, such as ecological specialization and genome evolution. In this study, we used representational difference analysis to identify potentially novel sequences not present in the sequenced laboratory strain Rm1021 of the nitrogen-fixing bacterium Sinorhizobium meliloti. Using strain Rm1021 as the driver and the type strain of S. meliloti ATCC 9930, which has a genome size approximately 370 kilobases bigger than that of strain Rm1021, as the tester, we identified several groups of sequences in the ATCC 9930 genome not present in strain Rm1021. Among the 85 novel DNA fragments examined, 55 showed no obvious homologs anywhere in the public databases. Of the remaining 30 sequences, 24 contained homologs to the Rm1021 genome as well as unique segments not found in Rm1021, 3 contained sequences homologous to those published for another S. meliloti strain but absent in Rm1021, 2 contained sequences homologous to other symbiotic nitrogen-fixing bacteria (Rhizobium etli and Bradyrhizobium japonicum), and 1 contained a sequence homologous to a gene in a non-nitrogen-fixing species, Pseudomonas sp. NK87. Using PCR, we assayed the distribution of 12 of the above 85 novel sequences in a collection of 59 natural S. meliloti strains. The distribution varied widely among the 12 novel DNA fragments, from 1.7% to 72.9%. No apparent correlation was found between the distribution of these novel DNA sequences and their genotypes obtained using multilocus enzyme electrophoresis. Our results suggest potentially high rates of gene gain and loss in S. meliloti genomes.  相似文献   

10.
Resources from the Sinorhizobium meliloti Rm1021 open reading frame (ORF) plasmid libraries were used in a medium-throughput method to construct a set of 50 overlapping deletion mutants covering all of the Rm1021 pSymA megaplasmid except the replicon region. Each resulting pSymA derivative carried a defined deletion of approximately 25 ORFs. Various phenotypes, including cytochrome c respiration activity, the ability of the mutants to grow on various carbon and nitrogen sources, and the symbiotic effectiveness of the mutants with alfalfa, were analyzed. This approach allowed us to systematically evaluate the potential impact of regions of Rm1021 pSymA for their free-living and symbiotic phenotypes.  相似文献   

11.
It was found that S. meliloti strain SmA818, which is cured of pSymA, could not grow on defined medium containing only formate and bicarbonate as carbon sources. Growth experiments showed that Rm1021 was capable of formate/bicarbonate-dependent growth, suggesting that it was capable of autotrophic-type growth. The annotated genome of S. meliloti Rm1021 contains three formate dehydrogenase genes. A systematic disruption of each of the three formate dehydrogenase genes, as well as the genes encoding determinants of the Calvin-Benson-Bassham, cycle was carried out to determine which of these determinants played a role in growth on this defined medium. The results showed that S. meliloti is capable of formate-dependent autotrophic growth. Formate-dependent autotrophic growth is dependent on the presence of the chromosomally located fdsABCDG operon, as well as the cbb operon carried by pSymB. Growth was also dependent on the presence of either of the two triose-phosphate isomerase genes (tpiA or tpiB) that are found in the genome. In addition, it was found that fdoGHI carried by pSymA encodes a formate dehydrogenase that allows Rm1021 to carry out formate-dependent respiration. Taken together, the data allow us to present a model of how S. meliloti can grow on defined medium containing only formate and bicarbonate as carbon sources.  相似文献   

12.
Many bacteria carry two or more chromosome-like replicons. This occurs in pathogens such as Vibrio cholerea and Brucella abortis as well as in many N2-fixing plant symbionts including all isolates of the alfalfa root-nodule bacteria Sinorhizobium meliloti. Understanding the evolution and role of this multipartite genome organization will provide significant insight into these important organisms; yet this knowledge remains incomplete, in part, because technical challenges of large-scale genome manipulations have limited experimental analyses. The distinct evolutionary histories and characteristics of the three replicons that constitute the S. meliloti genome (the chromosome (3.65 Mb), pSymA megaplasmid (1.35 Mb), and pSymB chromid (1.68 Mb)) makes this a good model to examine this topic. We transferred essential genes from pSymB into the chromosome, and constructed strains that lack pSymB as well as both pSymA and pSymB. This is the largest reduction (45.4%, 3.04 megabases, 2866 genes) of a prokaryotic genome to date and the first removal of an essential chromid. Strikingly, strains lacking pSymA and pSymB (ΔpSymAB) lost the ability to utilize 55 of 74 carbon sources and various sources of nitrogen, phosphorous and sulfur, yet the ΔpSymAB strain grew well in minimal salts media and in sterile soil. This suggests that the core chromosome is sufficient for growth in a bulk soil environment and that the pSymA and pSymB replicons carry genes with more specialized functions such as growth in the rhizosphere and interaction with the plant. These experimental data support a generalized evolutionary model, in which non-chromosomal replicons primarily carry genes with more specialized functions. These large secondary replicons increase the organism''s niche range, which offsets their metabolic burden on the cell (e.g. pSymA). Subsequent co-evolution with the chromosome then leads to the formation of a chromid through the acquisition of functions core to all niches (e.g. pSymB).  相似文献   

13.
The symbiotic N2-fixing α-proteobacterium Sinorhizobium meliloti has three replicons: a circular chromosome (3.7 Mb) and two smaller replicons, pSymA (1.4 Mb) and pSymB (1.7 Mb). Sequence analysis has revealed that an essential gene is carried on pSymB, which brings into question whether pSymB should be considered a chromosome or a plasmid. Based on the criterion that essential genes define a chromosome, several species have been shown to have multiple chromosomes. Many of these species are part of the α subdivision of the Proteobacteria family. Here, additional justification is presented for designating the pSymB replicon as a chromosome. It is shown that chromosomes within a species share a more similar dinucleotide composition, or genome signature, than plasmids do with the host chromosome(s). Dinucleotide signatures were determined for each of the S. meliloti replicons, and, consistent with the suggestion that pSymB is a chromosome, it is shown that the pSymB signature more closely resembles that of the S. meliloti chromosome, while the pSymA signature is typical of other α-proteobacterial plasmids. Electronic Publication  相似文献   

14.
Sinorhizobium meliloti strain 1021, a nitrogen-fixing, root-nodulating bacterial microsymbiont of alfalfa, has a 3.5 Mbp circular chromosome and two megaplasmids including 1.3 Mbp pSymA carrying nonessential 'accessory' genes for nitrogen fixation (nif), nodulation and host specificity (nod). A related bacterium, psyllid-vectored 'Ca. Liberibacter asiaticus,' is an obligate phytopathogen with a reduced genome that was previously analyzed for genes orthologous to genes on the S. meliloti circular chromosome. In general, proteins encoded by pSymA genes are more similar in sequence alignment to those encoded by S. meliloti chromosomal orthologs than to orthologous proteins encoded by genes carried on the 'Ca. Liberibacter asiaticus' genome. Only two 'Ca. Liberibacter asiaticus' proteins were identified as having orthologous proteins encoded on pSymA but not also encoded on the chromosome of S. meliloti. These two orthologous gene pairs encode a Na(+)/K+ antiporter (shared with intracellular pathogens of the family Bartonellacea) and a Co++, Zn++ and Cd++ cation efflux protein that is shared with the phytopathogen Agrobacterium. Another shared protein, a redox-regulated K+ efflux pump may regulate cytoplasmic pH and homeostasis. The pSymA and 'Ca. Liberibacter asiaticus' orthologs of the latter protein are more highly similar in amino acid alignment compared with the alignment of the pSymA-encoded protein with its S. meliloti chromosomal homolog. About 182 pSymA encoded proteins have sequence similarity (≤ E-10) with 'Ca. Liberibacter asiaticus' proteins, often present as multiple orthologs of single 'Ca. Liberibacter asiaticus' proteins. These proteins are involved with amino acid uptake, cell surface structure, chaperonins, electron transport, export of bioactive molecules, cellular homeostasis, regulation of gene expression, signal transduction and synthesis of amino acids and metabolic cofactors. The presence of multiple orthologs defies mutational analysis and is consistent with the hypothesis that these proteins may be of particular importance in host/microbe interaction and their duplication likely facilitates their ongoing evolution.  相似文献   

15.
16.
The purpose of this study was to identify strains of Sinorhizobium meliloti that formed either an effective or completely ineffective symbiosis with Medicago truncatula L. 'Jemalong A17' and, subsequently, to determine whether differences existed between their exoH genes. Sinorhizobium meliloti TII7 and A5 formed an effective and ineffective symbiosis with M. truncatula 'Jemalong A17', respectively. Using a multilocus sequence typing method, both strains were shown to have chromosomes identical with S. meliloti Rm1021 and RCR2011. The 2260-bp segments of DNA stretching from the 3' end of exoI through open reading frames of hypothetical proteins SM_b20952 and SM_b20953 through exoH into the 5' end of exoK in strains TII7 and Rm1021 differed by a single nucleotide at base 127 of the hypothetical protein SM_b20953. However, the derived amino acid sequences of the exoH genes of effective TII7, ineffective A5, and strain Rm1021 were shown to be identical with each other. Therefore, it would seem unlikely that the gene product of exoH is directly involved with the low efficiency of a symbiosis of strain Rm1021 with M. truncatula 'Jemalong A17'. Complementation or complete genome sequence analyses involving strains TII7 and A5 might be useful approaches to investigate the molecular bases for the differential symbiotic response with M. truncatula 'Jemalong A17'.  相似文献   

17.
18.
19.
20.
Large extrachromosomal replicons in many members of the alpha-proteobacteria encode genes that are required for plant or animal pathogenesis or symbiosis. Most of these replicons encode repABC genes that control their replication and faithful segregation during cell division. In addition to its chromosome, the plant endosymbiont Sinorhizobium meliloti also maintains the 1.4 Mb pSymA and 1.7 Mb pSymB symbiotic megaplasmids both of which are repABC-type replicons. In all repABC loci that have been characterized, an apparently untranslated intergenic region between the repB and repC genes encodes a strong incompatibility determinant (referred to as incalpha). Here we report the isolation of mutations within the incalpha regions of pSymA and pSymB that eliminate incompatibility. These mutations map to and inactivate a promoter in the intergenic region that drives the expression of an approximately 56 nucleotide untranslated RNA molecule that mediates incompatibility. This gene, that we have named incA, is transcribed antisense to the repABC genes. Our analysis suggests that the incA gene is conserved in repABC loci from a diverse spectrum of bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号