首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In an in vivo dialysis experiment, the intra-medial frontal cortex infusion of a system A and Asc-1 transporter inhibitor, S-methyl-l-cysteine, caused a concentration-dependent increase in the dialysate contents of an endogenous coagonist for the N-methyl-d-aspartate (NMDA) type glutamate receptor, d-serine, in the cortical portion. These results suggest that these neutral amino acid transporters could control the extracellular d-serine signaling in the brain and be a target for the development of a novel threapy for neuropsychiatric disorders with an NMDA receptor dysfunction.  相似文献   

2.
d-Amino acids are stereoisomers of l-amino acids. They are often called unnatural amino acids, but several d-amino acids have been found in mammalian brains. Among them, d-serine is abundant in the forebrain and functions as a co-agonist of NMDA receptors to enhance neurotransmission. d-Amino-acid oxidase (DAO), which degrades neutral and basic d-amino acids, is mainly present in the hindbrain. DAO catabolizes d-serine and, therefore, modulates neurotransmission. In the brains of mutant mice and rats lacking DAO activity, the amounts of d-serine and other d-amino acids are markedly increased. Mutant mice manifested behavioral changes characteristic of altered NMDA receptor activity, likely due to increased levels of d-serine. d-Serine and DAO have been demonstrated to play important roles in cerebellar development and synaptic plasticity. They have also implicated in amyotrophic lateral sclerosis and pain response. There have also been several lines of evidence correlating DAO with schizophrenia. Taken together, the experiments indicate that d-amino acids and DAO have pivotal functions in the central nervous system.  相似文献   

3.
The present study evaluated the antidepressant-like effect of the quercetin-rich vegetable, onion, by using the rat behavioral model of depression, the forced swimming test (FST). Daily administration of onion powder at a dosage of 50 mg/kg of body weight/day for 14 days significantly reduced the immobility time in FST without changing the motor dysfunction, indicating that the daily consumption of onion exerted antidepressant-like activity. The plasma corticosterone level was elevated after an FST trial, and pretreatment with onion powder did not modulate this elevation. Although the FST trial tended to increase the dopaminergic activity in the rat hypothalamus, the administration of onion powder (50 mg/kg) suppressed the increase in the turnover of this neurotransmitter. However, the same prevention was also observed with a higher dosage of onion, in which no significant antidepressant effect was apparent. The results of the present study suggest that onion exerted antidepressant-like activity in a behavioral model that acted independently of the hypothalamic-pituitary-adrenal axis.  相似文献   

4.
Since d-amino acids were identified in mammals, d-serine has been one of the most extensively studied “unnatural amino acids”. This brain-enriched transmitter-like molecule plays a pivotal role in the human central nervous system by modulating the activity of NMDA receptors. Physiological levels of d-serine are required for normal brain development and function; thus, any alterations in neuromodulator concentrations might result in NMDA receptor dysfunction, which is known to be involved in several pathological conditions, including neurodegeneration(s), epilepsy, schizophrenia, and bipolar disorder. In the brain, the concentration of d-serine stored in cells is defined by the activity of two enzymes: serine racemase (responsible for both the synthesis and degradation) and d-amino acid oxidase (which catalyzes d-serine degradation). Both enzymes emerged recently as new potential therapeutic targets for NMDA receptor-related diseases. In this review we have focused on human d-amino acid oxidase and provide an extensive overview of the biochemical and structural properties of this flavoprotein and their functional significance. Furthermore, we discuss the mechanisms involved in modulating enzyme activity and stability with the aim to substantiate the pivotal role of d-amino acid oxidase in brain d-serine metabolism in physiological and pathological conditions and to highlight its great significance for novel drug design/development.  相似文献   

5.
Glutamate, the major excitatory neurotransmitter in the vertebrate brain, is a potent neurotoxin therefore its extracellular levels have to be tightly regulated by means of sodium-dependent glutamate uptake systems of the slc1A family. The glial glutamate/aspartate transporter (GLAST/EAAT1) and the glutamate transporter 1 carry most of the uptake activity in cerebellum and in the forebrain, respectively. In the cerebellar cortex, GLAST is profusely expressed in Bergmann glia cells, which completely enwrap the parallel fiber-Purkinje cells synapses. Glutamate exposure in these cells, down regulates the activity as well as the expression levels of this transporter. In order to characterize the persistence of a single glutamate exposure, we followed the [3H]-d-aspartate uptake activity as a function of time after the removal of the glutamatergic stimulus. We were able to demonstrate that a single 30 min exposure to glutamate reduces the uptake activity for up to 3 h. This effect is dose-dependent and it is not reproduced neither by ionotropic nor metabotropic glutamate receptors agonists. In contrast, transporter specific ligands such as d-aspartate or l-(?)-threo-3-Hydroxyaspartic acid fully reproduce the glutamate effect. Equilibrium binding experiments revealed a decrease in [3H]-d-aspartate Bmax without a significant change in affinity, clearly suggesting that a reduction in the availability of plasma membrane glutamate transporters is the molecular basis of this effect. Interestingly, neither Glast mRNA nor its protein levels were significantly reduced upon the single glutamate exposure. Taken together, these results favor the notion of a transporter-mediated tight control of the uptake process.  相似文献   

6.
The mortality of individuals suffering from depression has been increasing, especially post-menopausal women; therefore, their care and treatment are important to maintain a high quality of life. In the present study, we evaluated the antidepressant-like effects of a major isoflavonoid, genistein (4',5,7-trihydroxyisoflavone), using a behavioral model of depression, the forced swimming test (FST), in ovariectomized rats. Daily administration of genistein to ovariectomized rats at a dosage of 10 mg/kg of body weight/d for 14 d significantly reduced the immobility time during the FST without changing motor dysfunction. On the other hand, a higher dosage, 100 mg/kg/d, did not have any effects on the immobility time compared with the vehicle control. Repeated administration of genistein at 10 mg/kg of body weight did not affect serotonergic activities in the hippocampus compared to the vehicle control in ovariectomized rats. A 5-min FST trial stimulated these activities. On the other hand, repeated pretreatment with genistein protected against changes in activity during the FST trial. These results suggest that daily consumption of genistein 10 mg/kg/d might have antidepressant-like effect on ovariectomized rats by regulating changes in serotonergic metabolism in the hippocampus under stressful conditions.  相似文献   

7.
The present study investigates the modulation of the ventral tegmental area (VTA)-ventral pallidum (VP) dopaminergic system by glutamate agonists in rats. The glutamate receptor agonists N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) were infused via reversed microdialysis into the VTA, and dopamine (DA), glutamate, and aspartate levels in the VTA and ipsilateral VP were monitored together with motor behavior screened in an open field. NMDA (750 microM) infusion, as well as AMPA (50 microM) infusion, induced an increase of DA and glutamate levels in the VTA, followed by an increase of DA levels in the ipsilateral VP and by enhanced locomotor activity. The increase of DA in the VP was similar after administration of these two glutamate agonists, although motor activity was more pronounced and showed an earlier onset after NMDA infusion. Glutamate levels in the VP were not increased by the stimulation of DA release. It is concluded that DA is released from mesencephalic DA neurons projecting to the VP and that these neurons are controlled by glutamatergic systems, via NMDA and AMPA receptors. Thus, DA in the VP has to be considered as a substantial modulator. Dysregulation of the mesopallidal DA neurons, as well as their glutamatergic control, may play an additional or distinct role in disorders like schizophrenia and drug addiction.  相似文献   

8.
Xiao  Dong  Liu  Li  Li  Yuanjie  Ruan  Jie  Wang  Hanqing 《Neurochemical research》2019,44(9):2044-2056

Depression is a highly debilitating and life-threatening psychiatric disorder. The classical antidepressants are still not adequate due to undesirable side effects. Therefore, the development of new drugs for depression treatment is an urgent strategic to achieving clinical needs. Licorisoflavan A is a bioactive ingredient isolated from Glycyrrhizae Radix and has been recently reported for neuroprotective effects. In this study, the antidepressant-like effect and neural mechanism of licorisoflavan A were explored. In the mice behavioral despair test, we observed that licorisoflavan A exhibited powerful antidepressant-like effect in forced swimming test (FST), tail suspension test (TST), without affecting locomotor activity in open field test (OFT). Additionally, licorisoflavan A administration significantly restored Chronic mild stress (CMS)-induced changes in sucrose preference test (SPT), FST, and TST, without altering the locomotion in OFT. In chronical-stimulated mice, the licorisoflavan A treatment effectively attenuated the expressions of Brain-derived neurotrophic factor (BDNF), tyrosine kinase B (TrkB), the phosphorylations of cAMP response element binding protein (CREB), extracellular signal-regulated kinase (ERK)-1/2, eukaryotic elongation factor 2 (eEF2), mammalian target of rapamycin (mTOR), initiation factor 4E-binding protein 1 (4E-BP-1), and p70 ribosomal protein S6 kinase (p70S6K) in hippocampus of CMS-induced mice. Additionally, licorisoflavan A could reverse the decreases in synaptic proteins post-synaptic density protein 95 (PSD-95) and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor subunit glutamate receptor 1 (GluR1) caused by CMS, and its antidepressant-like effect was blocked by the AMPA receptor antagonist NBQX. These findings served as preclinical evidence that licorisoflavan A exerted potent antidepressant-like effects involving BDNF-TrkB pathway and AMPA receptors. Licorisoflavan A might be used as a potential medicine against depression-like disorder.

  相似文献   

9.
Free d-aspartate (d-Asp) occurs in substantial amounts in the brain at the embryonic phase and in the first few postnatal days, and strongly decreases in adulthood. Temporal reduction of d-Asp levels depends on the postnatal onset of d-aspartate oxidase (DDO) activity, the only enzyme able to selectively degrade this d-amino acid. Several results indicate that d-Asp binds and activates N-methyl-d-aspartate receptors (NMDARs). Accordingly, recent studies have demonstrated that deregulated, higher levels of d-Asp, in knockout mice for Ddo gene and in d-Asp-treated mice, modulate hippocampal NMDAR-dependent long-term potentiation (LTP) and spatial memory. Moreover, similarly to d-serine, administration of d-Asp to old mice is able to rescue the physiological age-related decay of hippocampal LTP. In agreement with a neuromodulatory action of d-Asp on NMDARs, increased levels of this d-amino acid completely suppress long-term depression at corticostriatal synapses and attenuate the prepulse inhibition deficits produced in mice by the psychotomimetic drugs, amphetamine and MK-801. Based on the evidence which points to the ability of d-Asp to act as an endogenous agonist on NMDARs and considering the abundance of d-Asp during prenatal and early life, future studies will be crucial to address the effect of this molecule in the developmental processes of the brain controlled by the activation of NMDARs.  相似文献   

10.
Five derivatives of 2-amino-adipic acid bearing a tetrazole-substituted in C5 position were synthesized. These compounds displayed selective antagonism towards N-methyl-d-aspartate (NMDA) receptors compared with AMPA receptors, and they were devoid of any neurotoxicity. Among these five analogues, one exhibited a higher affinity for synaptic NMDA responses than the other four. Therefore, C5 tetrazole-substituted of 2-amino-adipic acid represent an interesting series of new NMDA receptor antagonists. This approach may be considered as a new strategy to develop ligands specifically targeted to synaptic or extra-synaptic NMDA receptors.  相似文献   

11.
Summary. Numerous pharmacological data indicate involvement of glutamate, the major excitatory neurotransmitter in the brain, in the pathophysiology of several neuropsychiatric disorders. It was shown in the preclinical studies that compounds which can reduce the excess of glutamate release (for example group III metabotropic receptors agonists) possess potential therapeutic properties. Thus we focused our interests on (−)-N-phenyl-7-(hydroxyimino) cyclopropa[b]chromen-1a-carboxamide (PHCCC), which is a positive allosteric modulator of mGlu4 receptor. We examined the potential antidepressant-like activity of PHCCC after injection into the brain ventricles alone, or together with (1S,3R,4S)-1-aminocyclo-pentane-1,3,4-tricarboxylic acid (ACPT-I), a nonselective group III mGlu receptor agonist, using the forced swimming test (FST) in rats. We found that ACPT-I induced a dose dependent antidepressant-like effect in FST, which was blocked by an antagonist of group III mGlu receptors (RS)-alpha-cyclopropyl-4-phosphonophenylglycine (CPPG). PHCCC injected intracerebroventricular was not effective, however when the compound was administered together with non-effective dose of ACPT-I, a profound antidepressant-like activity in FST was demonstrated. This effect was reversed by CPPG, group III mGlu receptors antagonist. Results of our studies indicate that a combined administration positive allosteric modulation of mGlu4 receptor and agonists of group III mGlu receptors may be a promising target in the future treatment of depressive disorder.  相似文献   

12.
The present study describes the chemical synthesis and pharmacological evaluation of a new series of eleven compounds stereoisomers of imidobenzenesulfonylaziridines in the forced-swimming test (FST) in mice. The pharmacological results of these compounds show that six of them, given intraperitoneally, reduced the immobility time of mice evaluated in the FST, an antidepressant-like profile of action similar to imipramine, a well-known standard antidepressant drug used for comparison, without compromising the animals' motor performance. The putative antidepressant-like action demonstrated here indicates their viability for the development of new therapeutic options for the treatment of depression.  相似文献   

13.
Yamane  H.  Tsuneyoshi  Y.  Denbow  D. M.  Furuse  M. 《Amino acids》2009,37(4):767-739
Glutamate, an excitatory amino acid, acts at several glutamate receptor subtypes. Recently, we reported that central administration of glutathione induced hypnosis under stressful conditions in neonatal chicks. Glutathione appears to bind to the N-methyl-d-aspartate (NMDA) receptor. To clarify the involvement of each glutamate receptor subtype during stressful conditions, intracerebroventricular (i.c.v.) injection of several glutamate receptor agonists was given to chicks under social separation stress. Glutamate dose-dependently induced a hypnotic effect. NMDA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and kainate are characterized as ionotropic glutamate receptors (iGluRs). Although NMDA also induced sleep-like behavior or sedative effects, the potency of NMDA was less than that of glutamate. AMPA tended to decrease distress vocalizations induced by acute stress and brought about a sedative effect. Kainate and (S)-3, 5-dehydroxyphenylglycine, which is a metabotropic glutamate receptor agonist, had no influence on chick behavior. Thus, it is suggested that the iGluRs, NMDA and AMPA, are important in inducing hypnosis and sedation under acute stress in chicks.  相似文献   

14.
1. AMPA receptor potentiators (ARPs) exhibit antidepressant-like activity in preclinical tests (for example, the forced swim test) that are highly predictive of efficacy in humans. Unlike most currently used antidepressants, ARPs do not elevate extracellular levels of biogenic amines (e.g., 5HT, NE) in prefrontal cortex at doses that are active in the forced swim test.2. The present series of experiments examined the effects of combining the ARP, LY 392098, with biogenic amine-based antidepressants in the forced swim test. Male, NIH Swiss mice were placed in a cylinder of water and observed for attempted escape behaviors and immobility.3. LY 392098 dose-dependently decreased immobility as did a range of classical antidepressants. At doses of LY 392098 below those that decreased immobility, this compound significantly increased the potency with which fluoxetine and citalopram (SSRI antidepressants), imipramine (tricyclic antidepressant), duoxetine (norepinephrine/serotonin uptake blocker), nisoxetine (norepinephrine uptake inhibitor), and rolipram (PDE4 inhibitor) decreased immobility in the forced swim test with potency shifts upward of 5-fold (fluoxetine, imipramine, and rolipram). Likewise, ineffective doses of the traditional antidepressants potentiated the effects LY 392098 with shifts in the dose-effect functions that were 10-fold or more for citalopram, fluoxetine, imipramine, and duloxetine.4. Combined with other evidence for a role of AMPA receptors in the efficacy of antidepressants, the current data suggest that the addition of an ARP may augment the activity and perhaps the onset of the therapeutic effects of biogenic amine and second messenger-based antidepressants.  相似文献   

15.
Glutamate, an excitatory amino acid, acts at several glutamate receptor subtypes. Recently, we reported that central administration of glutathione induced hypnosis under stressful conditions in neonatal chicks. Glutathione appears to bind to the N-methyl-d-aspartate (NMDA) receptor. To clarify the involvement of each glutamate receptor subtype during stressful conditions, intracerebroventricular (i.c.v.) injection of several glutamate receptor agonists was given to chicks under social separation stress. Glutamate dose-dependently induced a hypnotic effect. NMDA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and kainate are characterized as ionotropic glutamate receptors (iGluRs). Although NMDA also induced sleep-like behavior or sedative effects, the potency of NMDA was less than that of glutamate. AMPA tended to decrease distress vocalizations induced by acute stress and brought about a sedative effect. Kainate and (S)-3, 5-dehydroxyphenylglycine, which is a metabotropic glutamate receptor agonist, had no influence on chick behavior. Thus, it is suggested that the iGluRs, NMDA and AMPA, are important in inducing hypnosis and sedation under acute stress in chicks.  相似文献   

16.
Brown seaweeds exhibit several health benefits in treating and managing wide array of ailments. In this study, the antidepressant-like effect of methaolic extracts from Sargassum swartzii (SS), Stoechospermum marginatum (SM), and Nizamuddinia zanardinii (NZ) was examined in forced swimming test (FST), in rats. Oral administration of SS, SM, and NZ extract (30–60 mg/kg) exhibited antidepressant-like activity in FST by reducing immobility time as compared to control group, without inducing significant change in ambulatory behavior in open field test. In order to evaluate the involvement of monoaminergic system, rats were pretreated with the inhibitor of brain serotonin stores p-chlorophenylalanin (PCPA), dopamine (SCH23390 and sulpiride), and adrenoceptor (prazosin and propranolol) antagonists. Rats receiving treatment for 28 days were decapitated and brains were analyzed for monoamine levels. It may be concluded that the extracts of SS, SM, and NZ produces antidepressant-like activity via modulation of brain monoaminergic system in a rat model.  相似文献   

17.
Free d-aspartate (d-Asp) occurs in substantial amounts in glandular tissues. This paper reviews the existing work on d-Asp in vertebrate exocrine and endocrine glands, with emphasis on functional roles. Endogenous d-Asp was detected in salivary glands. High d-Asp levels in the parotid gland during development suggest an involvement of the amino acid in the regulation of early developmental phases and/or differentiation processes. d-Asp has a prominent role in the Harderian gland, where it elicits exocrine secretion through activation of the ERK1/2 pathway. Interestingly, the increase in NOS activity associated with d-Asp administration in the Harderian gland suggests a potential capability of d-Asp to induce vasodilatation. In mammals, an increase in local concentrations of d-Asp facilitates the secretion of anterior pituitary hormones, i.e., PRL, LH and GH, whereas it inhibits the secretion of POMC/α-MSH from the intermediate pituitary and of oxytocin from the posterior pituitary. d-Asp also acts as a negative regulator for melatonin synthesis in the pineal gland. Further, d-Asp can stereo-specifically modulate the production of sex steroids, thus taking part in the endocrine control of reproductive activity. Although d-Asp receptors remain to be characterized, gene expression of NR1 and NR2 subunits of NMDAr responds to d-Asp in the testis.  相似文献   

18.
In the present study, we report on the cardiovascular effects caused by the microinjection of l-proline (l-Pro) into the supraoptic nucleus (SON) in unanesthetized rats: the possible involvement of ionotropic glutamate receptors in the SON, as well as the peripheral mechanisms involved in the mediation of its cardiovascular effects. We compared the l-Pro effects with those caused by the injection of l-glutamate (l-Glu) into the SON. Microinjection of increasing doses of l-Pro into the SON caused dose-related cardiovascular responses in unanesthetized rats that were similar to those observed after the injection of l-Glu. Pretreatment of the SON with either a selective non-NMDA (NBQX) or a selective NMDA (LY235959) glutamate receptor antagonist blocked the cardiovascular response to l-Pro. The dose–effect curve for the pretreatment with increasing doses of LY235959 was shifted to the left in relation to the curve for NBQX, showing that LY235959 is more potent than NBQX in inhibiting the cardiovascular response to l-Pro. On the other hand, the cardiovascular response to l-Glu was only significantly reduced by pretreatment with NBQX (2 nmol/100 nL), but not affected by LY235959 (2 nmol/100 nL). The pressor response to l-Pro was not affected by intravenous pretreatment with the ganglion blocker pentolinium, but it was blocked by intravenous pretreatment with the V1-vasopressin receptor antagonist dTyr(CH2)5(Me)AVP. In conclusion, these results suggest that l-Pro has a selective receptor that is sensitive to ionotropic glutamate receptor antagonists. Its activation in the SON results in vasopressin release into the systemic circulation, causing pressor and bradycardiac responses.  相似文献   

19.
Abstract: Synaptosomes prepared from area CA1 of the rat hippocampus were used to determine (a) whether Schaffer collateral-commissural-ipsilateral associational terminals release both aspartate and glutamate in a Ca2+-dependent manner when reuptake of released glutamate is minimal and (b) whether autoreceptor mechanisms described in CA1 or hippocampal slices could reflect direct actions of glutamate receptor ligands on the synaptic terminal. When challenged for 1 min with either 25 m M K+ or 300 µ M 4-aminopyridine, CA1 synaptosomes released both glutamate and aspartate in a Ca2+-dependent manner. The glutamate/aspartate ratio was ∼5:1 in each case. K+-evoked glutamate release was unaffected by ligands active at NMDA or ( RS )-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors. Unlike glutamate release, the release of aspartate was enhanced by NMDA, and this effect was blocked by d -2-amino-5-phosphonovalerate ( d -AP5). Kainate selectively depressed and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) selectively increased the K+-evoked release of aspartate. AMPA enhanced aspartate release, like the antagonist CNQX. When applied in the presence of diazoxide, which blocks the desensitization of AMPA receptors, AMPA and kainate both depressed aspartate release. These findings support the view that Schaffer collateral-commissural-ipsilateral associational terminals release aspartate as well as glutamate and that these two release processes are regulated by different autoreceptor mechanisms.  相似文献   

20.
The crucial role of glutamate receptors of theN-methyl-d-aspartate (NMDA) type in many fundamental cortical functions has been firmly established, as has its involvement in several neuropsychiatric diseases, but until recently, very little was known of the anatomical localization of NMDA receptors in the cerebral cortex of mammals. The recent application of molecular biological techniques to the study of NMDA receptors has allowed the production of specific tools, the use of which has much increased our understanding of the localization of NMDA receptors in the cerebral cortex. In particular, immunocytochemical studies on the distribution of cortical NMDA receptors have:
  1. Demonstrated the preferential localization of NMDA receptors in dendritic spines, in line with previous work;
  2. Disclosed a thus far unknown fraction of presynaptic NMDA receptors on both excitatory and inhibitory axon terminals; and
  3. Shown that cortical astrocytes express NMDA receptors.
These studies indicate that the effects of cortical NMDA receptor activation are not caused exclusively by the opening of NMDA channels on neuronal postsynaptic membranes, as previously assumed, and that the activation of presynaptic and glial NMDA receptors can contribute significantly to these effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号