首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Ben-Nissan G  Cui W  Kim DJ  Yang Y  Yoo BC  Lee JY 《Plant physiology》2008,148(4):1897-1907
Members of the casein kinase 1 (CK1) family are evolutionarily conserved eukaryotic protein kinases that are involved in various cellular, physiological, and developmental processes in yeast and metazoans, but the biological roles of CK1 members in plants are not well understood. Here, we report that an Arabidopsis (Arabidopsis thaliana) CK1 member named casein kinase 1-like 6 (CKL6) associates with cortical microtubules in vivo and phosphorylates tubulins in vitro. The unique C-terminal domain of CKL6 was shown to contain the signal that allows localization of CKL6 to the cortical microtubules. This domain on its own was sufficient to associate with microtubules in vivo and to bind tubulins in vitro. CKL6 was able to phosphorylate soluble tubulins as well as microtubule polymers, and its endogenous activity was found to associate with a tubulin-enriched subcellular fraction. Two major in vitro phosphorylation sites were mapped to serine-413 and serine-420 of tubulin beta. Ectopic expression of wild-type CKL6 or a kinase-inactive mutant form induced alterations in cortical microtubule organization and anisotropic cell expansion. Collectively, these results demonstrate that CKL6 is a protein kinase containing a novel tubulin-binding domain and plays a role in anisotropic cell growth and shape formation in Arabidopsis through the regulation of microtubule organization, possibly through the phosphorylation of tubulins.  相似文献   

2.
Members of casein kinase 1 (CK1) are evolutionarily conserved eukaryotic protein kinases, which play fundamental roles in various cellular, physiological and developmental processes. One of the key mechanisms by which the activity of these multifunctional CK1 members is controlled appears to be their specific spatiotemporal compartmentalization within the cell. Plant genomes encode dozens of CK1 homologs, the function of which are not yet well characterized, however, evolutionary conservation of these genes predicts their fundamental roles in plants. Characterization of Arabidopsis CK1-like 6 (CKL6) that we have recently reported sheds new light on the existence of parallel and unique aspects of the mechanism involved in specific subcellular targeting as well as cellular function of CK1 in plants. In this addendum, I will focus my discussion on the versatility of CKL6 partitioning at different subcellular compartments and propose that this capability likely reflects its multiple functions in modulating an array of cellular targets.Key words: protein phosphorylation, microtubule dynamics/organization, casein kinase 1, microtubule-binding domain, cell expansion, Arabidopsis  相似文献   

3.
Members of the casein kinase 1 (CK1) family are evolutionarily conserved eukaryotic protein kinases involved in various cellular, physiological, and developmental processes in yeast. However, the biological roles of CK1 members in plants are poorly understood. Here, we report that an Arabidopsis CK1 member named casein kinase 1-like 8 (CKL8) was ubiquitously expressed in all plant organs, mainly in the stems of seedlings according to quantitative real-time PCR. Western blotting showed a remarkable expression of the AtCKL8 gene in transgenic plants induced by high salinity. A histochemical assay of AtCKL8 promoter::GUS expression revealed that the AtCKL8 promoter is very active in both seedlings and adult plants subjected to the salinity stress, while no GUS activity was detectable in all the transgenic plants grown under normal conditions. In a subcellular distribution analysis, the AtCKL8-GFP fusion protein was localized mainly in the cell membrane. AtCKL8-overexpressing transgenic plants showed an insensitivity to high salinity and an early flowering phenotype. Overall, these findings suggest that AtCKL8 plays a positive role in NaCl signaling and improves salt stress tolerance in transgenic Arabidopsis.  相似文献   

4.
While a significant amount is known about the biochemical signaling pathways of the Rho family GTPase Cdc42, a better understanding of how these signaling networks are coordinated in cells is required. In particular, the predominant subcellular sites where GTP-bound Cdc42 binds to its effectors, such as p21-activated kinase 1 (PAK1) and N-WASP, a homolog of the Wiskott-Aldritch syndrome protein, are still undetermined. Recent fluorescence resonance energy transfer (FRET) imaging experiments using activity biosensors show inconsistencies between the site of local activity of PAK1 or N-WASP and the formation of specific membrane protrusion structures in the cell periphery. The data presented here demonstrate the localization of interactions by using multiphoton time-domain fluorescence lifetime imaging microscopy (FLIM). Our data here establish that activated Cdc42 interacts with PAK1 in a nucleotide-dependent manner in the cell periphery, leading to Thr-423 phosphorylation of PAK1, particularly along the lengths of cell protrusion structures. In contrast, the majority of GFP-N-WASP undergoing FRET with Cy3-Cdc42 is localized within a transferrin receptor- and Rab11-positive endosomal compartment in breast carcinoma cells. These data reveal for the first time distinct spatial association patterns between Cdc42 and its key effector proteins controlling cytoskeletal remodeling.  相似文献   

5.
We report here detection of novel intracellular clathrin-coated structures revealed by continuous high-speed imaging of cells expressing green fluorescent protein fusion proteins. These structures, which we operationally term 'gyrating clathrin' (G-clathrin), are characterized by localized but extremely rapid movement, leading to the hypothesis that they are coated buds on waving membrane tubules. G-clathrin structures have structurally and functionally distinct features. They lack detectable adaptor proteins AP-1 and AP-2 but contain GGA1 [Golgi-localized, gamma-ear-containing, Arf (ADP-ribosylation factor)-binding protein] as well as the cation-dependent mannose-6-phosphate receptor. While they accumulate internalized transferrin (Tf), they do not contain detectable levels of cargos targeted for the late endosome/lysosome pathway such as EGF and dextran. Pulse-chase studies indicate that Tf appears in G-clathrin structures in the cell periphery after sorting endosomes (SEs), but before filling of the perinuclear endocytic recycling compartment. Furthermore, the inhibitors LY294002 and wortmannin, which inhibit direct recycling of Tf from SEs to the plasma membrane, also block its appearance in G-clathrin. These observations suggest that peripheral G-clathrin contributes to rapid recycling, a kinetically defined compartment that has largely eluded structural identification. More generally, the rapid continuous live cell imaging reported here reveals new aspects of membrane trafficking.  相似文献   

6.
Localization of VP40 in Marburg virus (MBGV)-infected cells was studied by using immunofluorescence and immunoelectron microscopic analysis. VP40 was detected in association with nucleocapsid structures, present in viral inclusions and at sites of virus budding. Additionally, VP40 was identified in the foci of virus-induced membrane proliferation and in intracellular membrane clusters which had the appearance of multivesicular bodies (MVBs). VP40-containing MVBs were free of nucleocapsids. When analyzed by immunogold labeling, the concentration of VP40 in MVBs was six times higher than in nucleocapsid structures. Biochemical studies showed that recombinant VP40 represented a peripheral membrane protein that was stably associated with membranes by hydrophobic interaction. Recombinant VP40 was also found in association with membranes of MVBs and in filopodia- or lamellipodia-like protrusions at the cell surface. Antibodies against marker proteins of various cellular compartments showed that VP40-positive membranes contained Lamp-1 and the transferrin receptor, confirming that they belong to the late endosomal compartment. VP40-positive membranes were also associated with actin. Western blot analysis of purified MBGV structural proteins demonstrated trace amounts of actin, Lamp-1, and Rab11 (markers of recycling endosomes), while markers for other cellular compartments were absent. Our data indicate that MBGV VP40 was able to interact with membranes of late endosomes in the course of viral infection. This capability was independent of other MBGV proteins.  相似文献   

7.
The cellular function of the gilgamesh mutation (89B9-12) of casein kinase gene in Drosophila spermatogenesis was studied. It was demonstrated that the sterility resulting from this mutation is connected with the abnormalities in spermatid individualization. A phylogenetic study of the protein sequences of casein kinases 1 from various organisms was conducted. The Gilgamesh protein was shown to be phylogenetically closer to the cytoplasmic casein kinase family, represented by the YCK3, YCK2, and YCK1 proteins of Saccharomyces cerevisiae and animal gamma-casein kinases. It is known that these yeast casein kinases are involved in vesicular trafficking, which, in turn, is related in its genetic control to the cell membrane remodeling during spermatid individualization. Thus, the data of phylogenetic analysis fit well the results obtained by studying the mutation phenotype.  相似文献   

8.
Lam SK  Cai Y  Hillmer S  Robinson DG  Jiang L 《Plant physiology》2008,147(4):1637-1645
We previously demonstrated that rice (Oryza sativa) SECRETORY CARRIER MEMBRANE PROTEIN1 (OsSCAMP1)-yellow fluorescent protein in transgenic tobacco (Nicotiana tabacum) Bright Yellow-2 cells locates to the plasma membrane and to motile punctate structures, which represent the trans-Golgi network/early endosome and are tubular-vesicular in nature. Here, we now show that SCAMPs are diverted to the cell plate during cytokinesis dividing Bright Yellow-2 cells. As cells progress from metaphase to cytokinesis, punctate OsSCAMP1-labeled structures begin to collect in the future division plane. Together with the internalized endosomal marker FM4-64, they then become incorporated into the cell plate as it forms and expands. This was confirmed by immunogold electron microscopy. We also monitored for the Golgi apparatus and the prevacuolar compartment (PVC)/multivesicular body. Golgi stacks tend to accumulate in the vicinity of the division plane, but the signals are clearly separate to the cell plate. The situation with the PVC (labeled by green fluorescent protein-BP-80) is not so clear. Punctate BP-80 signals are seen at the advancing periphery of the cell plate, which was confirmed by immunogold electron microscopy. Specific but weak labeling was observed in the cell plate, but no evidence for a fusion of the PVC/multivesicular body with the cell plate could be obtained. Our data, therefore, support the notion that cell plate formation is mainly a secretory process involving mass incorporation of domains of the trans-Golgi network/early endosome membrane. We regard the involvement of multivesicular late endosomes in this process to be equivocal.  相似文献   

9.
We have shown recently that isoproterenol affects both the cellular location and the morphology of late endosomes in a pH-dependent manner [Marjom?ki et al., Eur. J. Cell Biol. 65, 1-13 (1994)]. In this study, using fluorescence and quantitative electron microscopy, we wanted to examine further what is the fate of internalized markers during their translocation from early to late endosomes under isoproterenol treatment. Fluorescein dextran internalized for 30 min (10-min pulse followed by a 20-min chase) showed accumulation in the cellular periphery during isoproterenol treatment in contrast to the control cells, which accumulated dextran in the perinuclear region. Quantitative electron microscopy showed that the markers accumulated in the early endosomes and putative carrier vesicles. In addition, different particulate markers that were internalized sequentially accumulated in similar structures due to the isoproterenol treatment, altogether suggesting that isoproterenol retards the translocation of markers to the later structures. Prelabelling of the late endosomes with fluorescent dextran or BSA-coated gold particles showed that isoproterenol causes a reduction of the mean size of the prelabelled late endosomes as well as a shift of these vesicles to the cellular periphery. Isoproterenol had no apparent effect on the morphology nor on the location of lysosomes. Percoll fractionation showed that the changes in late endosomal location and morphology did not change their characteristic density. Furthermore, electron microscopy showed that, in the cellular periphery, these late endosomal elements did not fuse with early endosomal structures, which is in agreement with the results of biochemical in vitro cell-free assays carried out by others. In conclusion, the results show that isoproterenol inhibits transport from early to late endosomes in a manner that may be pH- and/or Ca(2+)-dependent. Simultaneously, isoproterenol causes fragmentation of the late endosomal compartment and the shift of these fragments to the cellular periphery, where they have a restricted ability to fuse with earlier endosomal structures.  相似文献   

10.
A protein's function depends on its localization to the right cellular compartment. A number of proteins require lipidation to associate with membranes. Protein palmitoylation is a reversible lipid modification and has been shown to mediate both membrane localization and control protein function. At the yeast vacuole, several palmitoylated proteins have been identified that are required for vacuole biogenesis, including the fusion factor Vac8, the SNARE Ykt6 and the casein kinase Yck3. Moreover, both the DHHC-CRD acyltransferase Pfa3 and Ykt6 are involved in palmitoylation at the vacuole Here, we present and discuss methods to probe for protein palmitoylation at vacuoles.  相似文献   

11.
Phosphorylation of serine, threonine and tyrosine residues by cellular protein kinases plays an important role in the regulation of various cellular processes. The serine/threonine specific casein kinase 1 and 2 protein kinase families--(CK1 and CK2)--were among the first protein kinases that had been described. In recent years our knowledge of the regulation and function of mammalian CK1 kinase family members has rapidly increased. Extracellular stimuli, the subcellular localization of CK1 isoforms, their interaction with various cellular structures and proteins, as well as autophosphorylation and proteolytic cleavage of their C-terminal regulatory domains influence CK1 kinase activity. Mammalian CK1 isoforms phosphorylate many different substrates among them key regulatory proteins involved in the control of cell differentiation, proliferation, chromosome segregation and circadian rhythms. Deregulation and/or the incidence of mutations in the coding sequence of CK1 isoforms have been linked to neurodegenerative diseases and cancer. This review will summarize our current knowledge about the function and regulation of mammalian CK1 isoforms.  相似文献   

12.
13.
Flotillin-1 is a lipid raft-associated protein that has been implicated in various cellular processes. We examined the subcellular distribution of flotillin-1 in different cell types and found that localization is cell type-specific. Flotillin-1 relocates from a cytoplasmic compartment to the plasma membrane upon the differentiation of 3T3-L1 adipocytes. To delineate the structural determinants necessary for its localization, we generated a series of truncation mutants of flotillin-1. Wild type flotillin-1 has two putative hydrophobic domains and is localized to lipid raft microdomains at the plasma membrane. Flotillin-1 fragments lacking the N-terminal hydrophobic stretch are excluded from the lipid raft compartments but remain at the plasma membrane. On the other hand, mutants with the second hydrophobic region deleted fail to traffic to the plasma membrane but are instead found in intracellular granule-like structures. Flotillin-1 specifically interacts with the adaptor protein CAP, the Src family kinase Fyn, and cortical F-actin in lipid raft microdomains in adipocytes. Furthermore, CAP and Fyn associate with different regions in the N-terminal sequences of flotillin-1. These results furthered our understanding for how flotillin-1 can function as a molecular link between lipid rafts of the plasma membrane and a multimeric signaling complex at the actin cytoskeleton.  相似文献   

14.
ER-derived COPII-coated vesicles are conventionally targeted to the Golgi. However, during cell stress these vesicles also become a membrane source for autophagosomes, distinct organelles that target cellular components for degradation. How the itinerary of COPII vesicles is coordinated on these pathways remains unknown. Phosphorylation of the COPII coat by casein kinase 1 (CK1), Hrr25, contributes to the directional delivery of ER-derived vesicles to the Golgi. CK1 family members are thought to be constitutively active kinases that are regulated through their subcellular localization. Instead, we show here that the Rab GTPase Ypt1/Rab1 binds and activates Hrr25/CK1δ to spatially regulate its kinase activity. Consistent with a role for COPII vesicles and Hrr25 in membrane traffic and autophagosome biogenesis, hrr25 mutants were defective in ER–Golgi traffic and macroautophagy. These studies are likely to serve as a paradigm for how CK1 kinases act in membrane traffic.  相似文献   

15.
The cellular function of the gilgamesh mutation (89B9-12) of casein kinase gene in Drosophila spermatogenesis was studied. It was demonstrated that the sterility resulting from this mutation is connected with the abnormalities in spermatid individualization. A phylogenetic study of the protein sequences of casein kinases 1 from various organisms was conducted. The Gilgamesh protein was shown to be phylogenetically closer to the cytoplasmic casein kinase family, represented by the YCK3, YCK2, and YCK1 proteins of Saccharomyces cerevisiae and animal γ-casein kinases. It is known that these yeast casein kinases are involved in vesicular trafficking, which, in turn, is related in its genetic control to the cell membrane remodeling during spermatid individualization. Thus, the data of phylogenetic analysis fit well the results obtained by studying the mutation phenotype.  相似文献   

16.
We have shown previously that the ADP- ribosylation factor (ARF)-6 GTPase localizes to the plasma membrane and intracellular endosomal compartments. Expression of ARF6 mutants perturbs endosomal trafficking and the morphology of the peripheral membrane system. However, another study on the distribution of ARF6 in subcellular fractions of Chinese hamster ovary (CHO) cells suggested that ARF6 did not localize to endosomes labeled after 10 min of horseradish peroxidase (HRP) uptake, but instead was uniquely localized to the plasma membrane, and that its reported endosomal localization may have been a result of overexpression. Here we demonstrate that at the lowest detectable levels of protein expression by cryoimmunogold electron microscopy, ARF6 localized predominantly to an intracellular compartment at the pericentriolar region of the cell. The ARF6-labeled vesicles were partially accessible to HRP only on prolonged exposure to the endocytic tracer but did not localize to early endocytic structures that labeled with HRP shortly after uptake. Furthermore, we have shown that the ARF6-containing intracellular compartment partially colocalized with transferrin receptors and cellubrevin and morphologically resembled the recycling endocytic compartment previously described in CHO cells. HRP labeling in cells expressing ARF6(Q67L), a GTP-bound mutant of ARF6, was restricted to small peripheral vesicles, whereas the mutant protein was enriched on plasma membrane invaginations. On the other hand, expression of ARF6(T27N), a mutant of ARF6 defective in GDP binding, resulted in an accumulation of perinuclear ARF6-positive vesicles that partially colocalized with HRP on prolonged exposure to the tracer. Taken together, our findings suggest that ARF activation is required for the targeted delivery of ARF6-positive, recycling endosomal vesicles to the plasma membrane.  相似文献   

17.
We examined the role of regulatory myosin light chain (MLC) phosphorylation of myosin II in cell migration of fibroblasts. Myosin light chain kinase (MLCK) inhibition blocked MLC phosphorylation at the cell periphery, but not in the center. MLCK-inhibited cells did not assemble zyxin-containing adhesions at the periphery, but maintained focal adhesions in the center. They generated membrane protrusions all around the cell, turned more frequently, and migrated less effectively. In contrast, Rho-associated kinase (ROCK) inhibition blocked MLC phosphorylation in the center, but not at the periphery. ROCK-inhibited cells assembled zyxin-containing adhesions at the periphery, but not focal adhesions in the center. They moved faster and more straight. On the other hand, inhibition of myosin phosphatase increased MLC phosphorylation and blocked peripheral membrane ruffling, as well as turnover of focal adhesions and cell migration. Our results suggest that myosin II activated by MLCK at the cell periphery controls membrane ruffling, and that the spatial regulation of MLC phosphorylation plays critical roles in controlling cell migration of fibroblasts.  相似文献   

18.
Histone deacetylase inhibitors and casein kinase 2 inhibitors have been shown to induce apoptosis. However, the combined effect of casein kinase 2 inhibition on the apoptotic effect of histone deacetylase inhibitor is unknown. We assessed the effect of casein kinase 2 inhibition on the apoptotic effect of trichostatin A in human epithelial carcinoma cell lines with respect to cell death signaling pathways. At concentrations that did not induce cell death, the casein kinase 2 inhibitor 4,5,6,7-tetrabromobenzotriazole inhibited activation of apoptotic proteins and changes in mitochondrial membrane permeability induced by the histone deacetylase inhibitor trichostatin A. These results suggest that casein kinase 2 inhibition may reduce trichostatin A-induced apoptosis in ovarian carcinoma cell lines by suppressing activation of apoptotic proteins and changes in mitochondrial membrane permeability, which both lead to caspase-3 activation. Casein kinase 2 inhibition, which does not induce a cytotoxic effect, may prevent histone deacetylase inhibitor-mediated apoptosis.  相似文献   

19.
Freshly isolated peripheral blood monocytes lack focal adhesion kinase (p125(FAK)) but activate a second member of this kinase family, calcium-dependent tyrosine kinase (CADTK; also known as Pyk2/CAKbeta/RAFTK/FAK2), upon adhesion or stimulation with chemokines. To study the role of CADTK in monocyte adherence and motility, we performed immunocytochemical localization that showed CADTK at the leading edge and ruffling lamellipodial structures in freshly isolated, adhered human monocytes. We next introduced CADTK/CAKbeta-related non-kinase (CRNK), the C-terminal noncatalytic domain of CADTK, into monocytes by electroporation and showed that it inhibited CADTK autophosphorylation. Introduction of the fusion protein glutathione S-transferase (GST)-CRNK also reduced (i) cell spreading, as reflected in a reduced cell area 30 min after adhesion, (ii) adhesion-induced phosphotyrosine increases and redistribution into lamellipodia, and (iii) adhesion-induced extracellular signal-regulated protein kinase (ERK) activation. In control experiments, introduction of GST or GST-C3 transferase (an inhibitor of RhoA GTPase activity) by electroporation did not affect these parameters. Monocytes adhered in the presence of autologous serum were highly motile even after introduction of GST (83% motile cells). However, only 26% of monocytes with introduced GST-CRNK were motile. In contrast, GST-CRNK-treated monocytes were fully capable of phagocytosis and adhesion-induced cytokine gene induction, suggesting that CADTK is not involved in these cellular activities and that GST-CRNK introduction does not inhibit global monocyte functions. These results suggest that CADTK is crucial for the in vitro monocyte cytoskeletal reorganization necessary for cell motility and is likely to be required in vivo for recruitment to sites of inflammation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号