首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutathione is an important antioxidant and redox buffer in plants. Despite its crucial roles in plant metabolism and defense in the sporophyte, its roles in the gametophyte are largely unexplored. Recently, we demonstrated that glutathione synthesis is essential for pollen germination in vitro. In this study, we extend these results and focus on the subcellular distribution of glutathione in pollen grains and compare it to the situation in the sporophyte. Glutathione was equally distributed within mitochondria, plastids, nuclei and the cytosol in the gametophyte—in contrast to youngest fully developed leaves and root tips of the sporophyte, where glutathione was highest in the mitochondria, followed by nuclei, cytosol, peroxisomes and plastids in decreasing concentration. Glutathione was not detected in vacuoles. We can conclude that glutathione synthesis is essential for pollen germination in vitro and that the subcellular distribution of glutathione in the gametophyte differs significantly from the sporophyte.Key words: arabidopsis, gametophyte, glutathione, pollen, immunogold labeling  相似文献   

2.
Glutathione is an important antioxidant and has many important functions in plant development, growth and defense. Glutathione synthesis and degradation is highly compartment-specific and relies on the subcellular availability of its precursors, cysteine, glutamate, glycine and γ-glutamylcysteine especially in plastids and the cytosol which are considered as the main centers for glutathione synthesis. The availability of glutathione precursors within these cell compartments is therefore of great importance for successful plant development and defense. The aim of this study was to investigate the compartment-specific importance of glutathione precursors in Arabidopsis thaliana. The subcellular distribution was compared between wild type plants (Col-0), plants with impaired glutathione synthesis (glutathione deficient pad2-1 mutant, wild type plants treated with buthionine sulfoximine), and one complemented line (OE3) with restored glutathione synthesis. Immunocytohistochemistry revealed that the inhibition of glutathione synthesis induced the accumulation of the glutathione precursors cysteine, glutamate and glycine in most cell compartments including plastids and the cytosol. A strong decrease could be observed in γ-glutamylcysteine (γ-EC) contents in these cell compartments. These experiments demonstrated that the inhibition of γ-glutamylcysteine synthetase (GSH1) - the first enzyme of glutathione synthesis - causes a reduction of γ-EC levels and an accumulation of all other glutathione precursors within the cells.  相似文献   

3.
Cysteine oxidase activity has been determined in the primary and secondary subfractions of ox retina. About 30% of enzyme activity is found in the soluble fraction while about 70% is associated with particulate components.In the secondary subcellular fractions about 36% of enzyme activity, recovered from crude mitochondria, is present in the synaptosomal fraction.Enzymic activity is stimulated by Fe++ and NAD+. The reason and significance of the cysteine oxidase activity in synaptosomal fraction are briefly discussed in relation with taurine function in retina.  相似文献   

4.
5.
Subcellular distribution of glutathione S-transferase activity was investigated as stimulated form by N-ethylmaleimide in rat liver. The stimulated glutathione S-transferase activity was localized in mitochondrial and lysosomal fractions besides microsomes. Among N-ethylmaleimide-treated submitochondrial fractions, glutathione S-transferase activity was stimulated only in outer mitochondrial membrane fraction. In lysosomal fraction, it was suggested that glutathione S-transferase activity in peroxisomes, which is immunochemically related to microsomal transferase, was also stimulated, but not in lysosomes.  相似文献   

6.
Subcellular localization of glutathione and thermal sensitivity   总被引:1,自引:0,他引:1  
Chinese hamster ovary (CHO) cells were exposed to various concentrations of diethylmaleate (DEM) during a 42 degrees C incubation to determine if glutathione (GSH) compartmentalization was a factor in modification of thermal sensitivity. Cytoplasmic and mitochondrial GSH were isolated from CHO cells immediately after a hyperthermic treatment consisting of 2 h at 42 degrees C. Under these experimental conditions differential GSH depletion between the cytosol and mitochondrial compartments were observed. For example, 12 microM DEM was needed to deplete cytoplasmic GSH by 50% compared to 24 microM DEM needed to deplete mitochondrial GSH to the same level. Further, an ln-ln plot of the relative cytosolic GSH concentration vs the DEM concentration indicated a linear relationship (slope = -1.0). In contrast, the mitochondrial GSH plot exhibited a shoulder followed by a linear removal (slope = -0.90). Essentially the two linear curves were parallel. Analysis of thermal dose-response curves for cells exposed to between 10 and 100 microM DEM indicated that cell survival was unaffected by the addition of DEM until a critical concentration was surpassed. This threshold response was interpreted to mean that mitochondrial GSH depletion was the limiting factor.  相似文献   

7.
Glutathione is an important antioxidant in most prokaryotes and eukaryotes. It detoxifies reactive oxygen species and is also involved in the modulation of gene expression, in redox signaling, and in the regulation of enzymatic activities. In this study, the subcellular distribution of glutathione was studied in Saccharomyces cerevisiae by quantitative immunoelectron microscopy. Highest glutathione contents were detected in mitochondria and subsequently in the cytosol, nuclei, cell walls, and vacuoles. The induction of oxidative stress by hydrogen peroxide (H(2) O(2) ) led to changes in glutathione-specific labeling. Three cell types were identified. Cell types I and II contained more glutathione than control cells. Cell type II differed from cell type I in showing a decrease in glutathione-specific labeling solely in mitochondria. Cell type III contained much less glutathione contents than the control and showed the strongest decrease in mitochondria, suggesting that high and stable levels of glutathione in mitochondria are important for the protection and survival of the cells during oxidative stress. Additionally, large amounts of glutathione were relocated and stored in vacuoles in cell type III, suggesting the importance of the sequestration of glutathione in vacuoles under oxidative stress.  相似文献   

8.
In mid-fifth-instar larvae of the southern armyworm, Spodoptera eridania, the subcellular distribution of four antioxidant enzymes—superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPOX), and glutathione reductase (GR)—were examined. Two-thirds (4.26 units ·mg protein?1) of the SOD activity was found in the cytosol, and one-thirds (2.13 units ·mg protein?1) in the mitochondria. CAT activity was unusually high and not restricted to the microsomal fraction where peroxisomes are usually isolated. The activity was distributed as follows: cytosol (163 units) mitochondria (125 units) and microsomes (119 units). Similar to CAT, the subcellular compartmentalization of both GPOX and GR was unusual. No activity was detected in the cytosol, but in mitochondria and microsomes, GR levels were 5.49 and 3.09 units. Although GPOX activity exhibited 14–16-fold enrichment in mitochondria and microsomes, respectively, over the 850g crude homogenate, the level was negligible (mitochondria = 1.4 × 10?3 units; microsomes = 1.6 × 10?3 units), indicating that this enzyme is absent. The unusual distribution of CAT has apparently evolved as an evolutionary answer to the absence of GR from the cytosol, and the lack of GPOX activity.  相似文献   

9.
Glutathione and cysteine are major antioxidants in blood that are associated with health and longevity. To ensure their measurement, careful attention to avoid auto-oxidation is necessary to stabilize the samples. Since no report of these compounds has been reported in children, our goal was to determine their levels of reduced and oxidized glutathione (GSH and GSSG) and cysteine (Cys and CSSC), To this end, 140 healthy children, ages 2 to 9 years from the Louisville Twin Study were studied. Blood samples were collected and analyzed for GSH, GSSG, Cys, and CSSC by our HPLC dual electrochemical method. The results showed that GSH and total GSH (GSH + GSSG) levels for monozygotic (MZ) twins were significantly higher (P < 0.001) than levels for dizygotic (DZ) twins. However, the opposite occurred for Cys and total Cys (Cys + CSSC) in that the levels were significantly higher for DZ twins than for MZ twins. (P < 0.005-0.013). In spite of this marked difference in zygosity, the within-pair correlations for twin pairs used for estimating heritability suggested that there was a major environmental influence for total GSH and total Cys. Finally. GSH levels were significantly lower for young (2-9 years) children than adults (P < 0.001).  相似文献   

10.
Differential centrifugation and isopycnic equilibration in density gradients were used to localize glutathione (GSH), glutathione peroxidase and glutathione reductase in the subcellular organelles of WI-38 fibroblasts. GSH was present in all the subcellular fractions, whereas the glutathione peroxidase and reductase activities were restrained to the cytoplasm and the mitochondrial fractions. After equilibration in density gradients, the results showed the presence of GSH, glutathione peroxidase and glutathione reductase in both the cytoplasm and mitochondria. GSH was also located in plasma membranes and probably in peroxisomes, endoplasmic reticulum and lysosomal membranes. Evolution of GSH in ageing fibroblasts showed a sudden increase of its concentration just before cell death. The glutathione peroxidase activity already decreases in the early passages, while the decrease of the glutathione reductase activity was constant and reached a drastic low level at the end of the culture. In conclusion, GSH is probably involved in the cell degeneration associated with ageing but because of its multiple functions and its ubiquitous localization, it is difficult to assert to which extent this metabolite is implicated in the ageing process.  相似文献   

11.
12.
Sample processing alters glutathione and cysteine values in blood   总被引:1,自引:0,他引:1  
The accurate assessment of glutathione status of blood is essential for its use as an index of health and aging. A major variable in glutathione analysis is sample processing, and identification of optimal standard conditions is needed. Thus our objective was to evaluate several methods to determine which one yields maximal levels of free and bound glutathione and cyst(e)ine in blood. Reduced glutathione (GSH), glutathione disulfide (GSSG), cysteine (Cys), and cystine were analyzed specifically by an HPLC-dual electrochemical method. The highest GSH levels were found in ultrafiltrates of hemolysates, which were 58% greater than those in acid extracts of whole blood, and accounted for 96% of the free and bound GSH in borohydride-reduced samples; GSSG was undetected. The next highest values were in acid extracts of hemolysates which were 13% greater than in extracts of whole blood; both extracts contained GSH and GSSG. Their GSSG contents expressed in GSH equivalents comprised 7-9% of GSH + GSSG. Cys levels were highest in ultrafiltrates which were 11-fold greater than in acid extracts of whole blood, accounting for 62% of the total cyst(e)ine pool. In summary, the results indicate that ultrafiltration of hemolysates is the blood processing method of choice to obtain maximal values of free and bound GSH and cyst(e)ine.  相似文献   

13.
14.
15.
16.
17.
The compartment specific distribution of ascorbate in plants is of great importance for plant development, growth and defense as this multifunctional metabolite plays important roles in the detoxification of reactive oxygen species (ROS), redox signaling, modulation of gene expression and is important for the regulation of enzymatic activities. Even though changes in ascorbate contents during plant growth and various stress conditions are well documented and the roles of ascorbate in plant defense during abiotic stress conditions are well established, still too little is known about its compartment specific roles during plant development and defense. This mini-review focuses on the subcellular distribution of ascorbate in plants and describes different methods that are currently used to study its compartment specific distribution. Finally, it will also briefly discuss data available on compartment specific changes of ascorbate during some abiotic stress conditions such as high light conditions and exposure to ozone.Key words: ascorbate, mitochondria, chloroplasts, electron microscopy, ozone, high light stress, reactive oxygen speciesAscorbate is one of the most important antioxidants in plants and animals. It detoxifies reactive oxygen species (ROS) either directly or through the glutathione-ascorbate cycle (Fig. 1) and is involved in redox signaling, modulation of gene expression and the regulation of enzymatic activities (extensively reviewed in ref. 1 and 2). Ascorbate occurs in a reduced form (ascorbic acid) and two oxidized forms (mono- and dehydroascorbic acid). The ratio between reduced and oxidized ascorbate is essential for the ability of the plant to fight oxidative stress. During environmental stress situations when ROS are formed inside the cell, large amounts of dehydroascorbic acid can be formed by oxidation of ascorbic acid which shifts the ascorbate pool more towards the oxidative state and diminishes the antioxidative capacity of the plant. Additionally, environmental stress situations can change total ascorbate contents in plants which makes ascorbate an important stress marker during abiotic and biotic stress situations.311 Ascorbate contents are typically measured biochemically in individual plant organs or tissues and the obtained values represent a combination of the ascorbate status of all individual organelles. As many environmental stress conditions induce highly compartment specific stress responses changes of ascorbate contents in individual organelles might not be detected when ascorbate is measured in whole organs or tissues. This is crucial as data obtained about the antioxidative status from individual organs are often used to interpret the stress response of the whole plant to the exposed stress conditions. Thus, in order to gain a deeper insight into the defense response of plants it is essential to measure changes in the subcellular distribution of these components during environmental stress situations.Open in a separate windowFigure 1Ascorbate-glutathione cycle in plants. Hydrogen peroxide (H2O2) within the plant cell can be detoxified by ascorbate peroxidase (APX). In this reaction the reduced form of ascorbate (Asc) is oxidized to monodehydroascorbate (MDHA). MDHA is then either reduced by monodehydroascorbate reductase (MDHAR) to Asc or, since very unstable, reacts to dehydroascorbate (DHA). DHA is reduced by dehydroascorbate reductase (DHAR) to Asc. In this reaction the reduced form of glutathione (GSH) is oxidized to glutathione disulfide (GSSG). GSSG is then reduced by glutathione reductase (GR) to GSH. The electron acceptor NADP is regenerated during the reduction of MDHA and GSSG by the respective enzymes. Asc and GSH are additional able to detoxify reactive oxygen species by direct chemical interaction. Thus, besides the total ascorbate level their redox state (reduced vs. oxidized state) which depends on the activity of the described enzymes (grey boxes) is also very important for successful plant protection.  相似文献   

18.
19.
Subcellular distribution of dolichol phosphate   总被引:4,自引:0,他引:4  
  相似文献   

20.
Cigarette smoking contributes to the development or progression of numerous chronic and age-related disease processes, but detailed mechanisms remain elusive. In the present study, we examined the redox states of the GSH/GSSG and Cys/CySS couples in plasma of smokers and nonsmokers between the ages of 44 and 85 years (n = 78 nonsmokers, n = 43 smokers). The Cys/CySS redox in smokers (−64 ± 16 mV) was more oxidized than nonsmokers (− 76 ± 11 mV; p < .001), with decreased Cys in smokers (9 ± 5 μM) compared to nonsmokers (13 ± 6 μM; p < .001). The GSH/GSSG redox was also more oxidized in smokers (−128 ± 18 mV) than in nonsmokers (−137 ± 17 mV; p = .01) and GSH was lower in smokers (1.8 ± 1.3 μM) than in nonsmokers (2.4 ± 1.0; p < .005). Although the oxidation of GSH/GSSG can be explained by the role of GSH in detoxification of reactive species in smoke, the more extensive oxidation of the Cys pool shows that smoking has additional effects on sulfur amino acid metabolism. Cys availability and Cys/CySS redox are known to affect cell proliferation, immune function, and expression of death receptor systems for apoptosis, suggesting that oxidation of Cys/CySS redox or other perturbations of cysteine metabolism may have a key role in chronic diseases associated with cigarette smoking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号