首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Müller M  Zechmann B  Zellnig G 《Protoplasma》2004,223(2-4):213-219
Summary. Electronmicroscopic immunogold cytochemistry was used to investigate the cellular and subcellular distribution of glutathione in root and leaf cells of Styrian pumpkin (Cucurbita pepo L. subsp. pepo var. styriaca Greb.) plants. Gold particles bound to glutathione were found in various cell structures. Statistical evaluation of the gold particle density was made for different cell compartments including nuclei, mitochondria, plastids, peroxisomes, and the cytosol. In each cell type the highest level of glutathione immunoreactivity occurred in mitochondria, for which the labeling density was found to be higher in mesophyll cells of the youngest fully developed leaves (younger leaves) than in the 5th leaves (older leaves) or in root tip cells. Additionally, a statistically significant increase of gold particles bound to glutathione was observed in nuclei (22%) and the cytosol (14%) of the root cells in comparison with mesophyll cells of older (17% and 9%, respectively) and younger leaves (11% and 6%, respectively). The relevance and specificity of glutathione labeling is discussed with respect to difficulties of immunolocalization of low-molecular-weight compounds.  相似文献   

2.
A rapid method for isolating glandular trichomes   总被引:3,自引:0,他引:3       下载免费PDF全文
A physical method is described for the rapid isolation of plant trichomes, with emphasis on stalked glandular types. The technique involved breaking frozen trichomes with powdered dry ice and collection of glandular heads by sieving from larger tissue fragments. This method was applied to several plants that bear similar stalked trichomes: geranium (Pelargonium), potato (Solanum tuberosum), tomato (Lycopersicon esculentum), squash (Cucurbita pepo), and velvetleaf (Abutilon theophrasti). The tissue preparation was of sufficient quality without further purification for biochemical and molecular studies. The preparation maintained the biochemical integrity of the trichomes for active enzymes and usable nucleic acids. A large quantity of tissue can be harvested; for example, 351 milligrams dry weight of glandular trichomes were harvested from geranium pedicels in 12 hours. The utility of the technique was demonstrated by examining the fatty acid composition of tall glandular trichomes of geraniums, Pelargonium ×hortorum L.H. Bailey. These purified cells contained high concentrations of unusual ω5-unsaturated fatty acids, proportionally 23.4% of total fatty acids in the trichomes. When the trichomes were removed, the supporting tissue contained no ω5-fatty acids, thereby unequivocally localizing ω5-fatty acids to the trichomes. Because ω5-fatty acids are unique precursors for the biosynthesis of ω5-anacardic acids, we conclude that anacardic acid synthesis must occur in the glandular trichomes.  相似文献   

3.
Ma JF  Ueno D  Zhao FJ  McGrath SP 《Planta》2005,220(5):731-736
Thlaspi caerulescens (Ganges ecotype) is able to accumulate large concentrations of cadmium (Cd) and zinc (Zn) in the leaves without showing any toxicity, suggesting a strong internal detoxification. The distribution of Cd and Zn in the leaves was investigated in the present study. Although the Cd and Zn concentrations in the epidermal tissues were 2-fold higher than those of mesophyll tissues, 65–70% of total leaf Cd and Zn were distributed in the mesophyll tissues, suggesting that mesophyll is a major storage site of the two metals in the leaves. To examine the subcellular localisation of Cd and Zn in mesophyll tissues, protoplasts and vacuoles were isolated from plants exposed to 50 M Cd and Zn hydroponically. Pure protoplasts and vacuoles were obtained based on light-microscopic observation and the activities of marker enzymes of cytosol and vacuoles. Of the total Cd and Zn in the mesophyll tissues, 91% and 77%, respectively, were present in the protoplast, and all Cd and 91% Zn in the protoplast were localised in the vacuoles. Furthermore, about 70% and 86% of total Cd and Zn, respectively, in the leaves were extracted in the cell sap, suggesting that most Cd and Zn in the leaves is present in soluble form. These results indicate that internal detoxification of Cd and Zn in Thlaspi caerulescens leaves is achieved by vacuolar compartmentalisation.  相似文献   

4.
Cadmium (Cd) interferes with ascorbate and glutathione metabolism as it induces the production of reactive oxygen species (ROS), binds to glutathione due to its high affinity to thiol groups, and induces the production of phytochelatins (PCs) which use glutathione as a precursor. In this study, changes in the compartment specific distribution of ascorbate and glutathione were monitored over a time period of 14 days in Cd-treated (50 and 100 μM) Arabidopsis Col-0 plants, and two mutant lines deficient in glutathione (pad2-1) and ascorbate (vtc2-1). Both mutants showed higher sensitivity to Cd than Col-0 plants. Strongly reduced compartment specific glutathione, rather than decreased ascorbate contents, could be correlated with the development of symptoms in these mutants suggesting that higher sensitivity to Cd is related to low glutathione contents rather than low ascorbate contents. On the subcellular level it became obvious that long-term treatment of wildtype plants with Cd induced the depletion of glutathione and ascorbate contents in all cell compartments except chloroplasts indicating an important protective role for antioxidants in chloroplasts against Cd. Additionally, we could observe an immediate decrease of glutathione and ascorbate in all cell compartments 12 h after Cd treatment indicating that glutathione and ascorbate are either withdrawn from or not redistributed into other organelles after their production in chloroplasts, cytosol (production centers for glutathione) and mitochondria (production center for ascorbate). The obtained data is discussed in respect to recently proposed stress models involving antioxidants in the protection of plants against environmental stress conditions.  相似文献   

5.
Molecular and cellular mechanisms underlying the sustained metal tolerance of ectomycorrhizal fungi are largely unknown. Some of the main mechanisms involved in metal detoxification appear to involve the chelation of metal ions in the cytosol with thiol-containing compounds, such as glutathione, phytochelatins, or metallothioneins. We used an improved high-performance liquid chromatography method for the simultaneous measurement of thiol-containing compounds from cysteine and its derivatives (γ-glutamylcysteine, glutathione) to higher-molecular-mass compounds (phytochelatins). We found that glutathione and γ-glutamylcysteine contents increased when the ectomycorrhizal fungus Paxillus involutus was exposed to cadmium. An additional compound with a 3-kDa molecular mass, most probably related to a metallothionein, increased drastically in mycelia exposed to cadmium. The relative lack of phytochelatins and the presence of a putative metallothionein suggest that ectomycorrhizal fungi may use a different means to tolerate heavy metals, such as Cd, than do their plant hosts.  相似文献   

6.
In a wild-type strain of Saccharomyces cerevisiae, cadmium induces the activities of both gamma-glutamyl transferase (gamma-GT) and glutathione transferase 2 (Gtt2). However, Gtt2 activity did not increase under gamma-GT or Ycf1 deficiencies, suggesting that the accumulation of glutathione-cadmium in the cytosol inhibits Gtt2. On the other hand, the balance between the cytoplasmic and vacuolar level of glutathione seems to regulate gamma-GT activity, since this enzyme was not activated in a gtt2 strain. Taken together, these results suggest that gamma-GT and Gtt2 work together to remove cadmium from the cytoplasm, a crucial mechanism for metal detoxification that is dependent on glutathione.  相似文献   

7.
Küpper H  Lombi E  Zhao FJ  McGrath SP 《Planta》2000,212(1):75-84
The cellular compartmentation of elements was analysed in the Zn hyperaccumulator Arabidopsis halleri (L.) O'Kane & Al-Shehbaz (=Cardaminopsis halleri) using energy-dispersive X-ray microanalysis of frozen-hydrated tissues. Quantitative data were obtained using oxygen as an internal standard in the analyses of vacuoles, whereas a peak/background ratio method was used for quantification of elements in pollen and dehydrated trichomes. Arabidopsis halleri was found to hyperaccumulate not only Zn but also Cd in the shoot biomass. While large concentrations of Zn and Cd were found in the leaves and roots, flowers contained very little. In roots grown hydroponically, Zn and Cd accumulated in the cell wall of the rhizodermis (root epidermis), mainly due to precipitation of Zn/Cd phosphates. In leaves, the trichomes had by far the largest concentrations of Zn and Cd. Inside the trichomes there was a striking sub-cellular compartmentation, with almost all the Zn and Cd being accumulated in a narrow ring in the trichome base. This distribution pattern was very different from that for Ca and P. The epidermal cells other than trichomes were very small and contained lower concentrations of Zn and Cd than mesophyll cells. In particular, the concentrations of Cd and Zn in the mesophyll cells increased markedly in response to increasing Zn and Cd concentrations in the nutrient solution. This indicates that the mesophyll cells in the leaves of A. halleri are the major storage site for Zn and Cd, and play an important role in their hyperaccumulation. Received: 4 April 2000 / Accepted: 16 May 2000  相似文献   

8.
This study aims to determine the spatial characteristics and real-time kinetics of cadmium transport in hyperaccumulator (HE) and non hyperaccumulator (NHE) ecotypes of Sedum alfredii using a non-invasive Cd-selective microelectrode. Compared with the NHE S. alfredii, the HE S. alfredii showed a higher Cd influx in the root apical region and root hair cells, as well as a significantly higher Cd efflux in the leaf petiole after root pre-treatment with cadmium chloride (CdCl2). Thus, HE S. alfredii has a higher capability for the translocation of absorbed Cd to the shoot. Moreover, the mesophyll tissues, isolated mesophyll protoplasts, and intact vacuoles from HE S. alfredii exhibited an instantaneous influx of Cd in response to CdCl2 treatment with mean rates that are markedly higher than those from NHE S. alfredii. Therefore, the hyper-accumulating trait of HE S. alfredii is characterized by the rapid Cd uptake in specific root regions, including the apical region and root hair cells, as well as by the rapid root-to-shoot translocation and the highly efficient Cd-permeable transport system in the plasma membrane and mesophyll cell tonoplast. We suggest that the non-invasive Cd-selective microelectrode is an excellent method with a high degree of spatial resolution for the study of Cd transport at the tissue, cellular, and sub-cellular levels in plants.  相似文献   

9.
Cd-induced system of defence in the garlic root meristematic cells   总被引:1,自引:0,他引:1  
Studies on cadmium effects in the root meristematic cells of Allium sativum L. were carried out using electron microscopy in order to explain the possible mechanisms of garlic seedlings’ tolerance to Cd stress. Seedlings were treated with 0.01, 0.10 and 1.00 mM CdCl2 solutions for 0.5, 1, 2, 4, 8, 10, 12, 24 and 48 h, respectively. The results indicated that cell walls, plasma membrane and main organelles actively participated in Cd detoxification and tolerance at low Cd concentrations. Once excessive Cd ions entered the cytosol, a defence mechanism becomes activated, protecting the cells against cadmium toxicity. However, under high Cd content in cells, the cell structure was damaged, even leading to cells death.  相似文献   

10.
木香薷腺毛形态结构发生发育规律的研究   总被引:1,自引:0,他引:1  
采用常规石蜡切片法及扫描电镜技术对木香薷(Elsholtzia stauntoni Benth)腺毛发生发育及其规律进行了研究。结果表明:木香薷表皮上主要有两种表皮毛:无分泌细胞的表皮毛与有分泌细胞的腺毛。前者包括单细胞乳头状毛、2~3细胞管状毛、分枝状毛及多细胞管状毛;后者包括头状腺毛与盾状腺毛。成熟头状腺毛头部由1、2或4个分泌细胞构成,头部呈圆球形或半圆球形;成熟盾状腺毛头部由8~12个分泌细胞构成,分泌细胞横向扩展形成盾状头部。木香薷腺毛主要在茎端幼叶处大量发生,从茎端第一对幼叶处开始产生;从幼叶期到成熟期均有腺毛发生,大部分腺毛在幼叶期发生发育,只有极少部分在叶的成熟期进行发生发育。  相似文献   

11.
The cadmium hyperaccumulator Thlaspi praecox Wulfen (Brassicaceae) can accumulate unusually high amounts of Cd (>1,000 μg g?1 dry weight) in its seeds without drastically affecting seed viability. As embryonic tissues are the most sensitive to Cd toxicity, the aim of this study was to investigate the Cd coordination and ligand environment in seeds of field collected T. praecox using extended X-ray absorption fine structure (EXAFS), and to compare the Cd ligand environment to that in the vegetative tissues of the plant. In intact seeds and isolated embryos, almost two thirds of the Cd ligands were thiol groups (Cd-S-C-). In addition, there was coordination to phosphate groups via bridging oxygens (Cd-O-P-), as for phytate, although this ligand was not observed in the vegetative organs and tissues. In roots and shoots up to 80% of the Cd ligands were oxygen ligands that are provided by the cell walls and by organic acids stored in vacuoles. In leaf epidermis only a slightly higher percentage of oxygen ligands was detected, as compared to the mesophyll, making vacuolar compartmentation and binding to the cell walls the main detoxification mechanisms in both of these leaf tissues.  相似文献   

12.
13.
Robust glandular appendages are reported in legumes of the Caesalpinieae tribe. Most studies only attempt to describe the external morphology of these structures, without providing a distinction between glandular trichomes and emergences. This study employed ontogeny to resolve the terminology of these structures present in flowers of two tropical woody legumes of Caesalpinieae, Erythrostemon gilliesii and Poincianella pluviosa, through surface, anatomical and ultrastructural analyses. Flowers of both species exhibit branched and non-branched glandular trichomes since these structures originate from a single protodermal cell. Non-branched glandular trichomes occur on the inflorescence axis, pedicel, sepals and ovary; in P. pluviosa, they also occur in the unguicle of wings and standard, filaments, anthers and style. This type of trichome shows a non-secretory multiseriate stalk and a secretory multicellular head. Branched glandular trichomes, with similar morphology but exhibiting non-secretory branches, occur in the inflorescence axis, pedicel and sepals; in P. pluviosa, they also occur in the unguicle of wings. During the secretory phase, the trichome head cells have large nuclei, cytoplasm rich in vacuoles, oleoplasts, mitochondria, rough endoplasmic reticulum and free ribosomes. The content is released in the intercellular spaces of the head in a merocrinous mechanism and reaches the surface through cuticle rupture. We emphasized the importance of ontogenetic studies to clarify the terminology of secretory structures. This type of study should be performed in other caesalpinoids so that such robust glandular appendages can be correctly interpreted and used with phylogenetic value in the group.  相似文献   

14.
A hydroponic experiment was carried out to study the physiological mechanisms of N-acetyl cysteine (NAC) in mitigating cadmium (Cd) toxicity in two barley (Hordeum vulgare L.) genotypes, Dong 17 (Cd-sensitive) and Weisuobuzhi (Cd-tolerant). Addition of 200 μM NAC to a culture medium containing 5 μM Cd (Cd + NAC) markedly alleviated Cd-induced growth inhibition and toxicity, maintained root cell viability, and dramatically depressed O 2 ·? and ·OH, and malondialdehyde accumulation, significantly reduced Cd concentration in leaves and roots, especially in the sensitive genotype Dong 17. External NAC counteracted Cd-induced alterations of certain antioxidant enzymes, e.g., brought root superoxide dismutase and glutathione reductase, leaf/root peroxidase and glutathione peroxidase activities of the both genotypes down towards the control level, but elevated Cd-stress-depressed leaf catalase in Dong 17 and root ascorbate peroxidase activities in both genotypes. NAC counteracted Cd-induced alterations in amino acids and microelement contents. Furthermore, NAC significantly reduced Cd-induced damage to leaf/root ultrastructure, e.g. the shape of chloroplasts in plants treated with Cd + NAC was relatively normal with well-structured thylakoid membranes and parallel pattern of lamellae but less osmiophilic plastoglobuli compared with Cd alone treatment; nuclei of root cells were better formed and chromatin distributed more uniformly in both genotypes. These results suggested that under Cd stress, NAC may protects barley seedlings against Cd-induced damage by directly and indirectly scavenging reactive oxygen species and by maintaining stability and integrity of the subcellular structure.  相似文献   

15.
Ficus carica L., a typical plant of the Mediterranean environment, presents leaves covered by an extensive indumentum, and a mesophyll full of solid inclusions. The morphology and ultrastructure of the trichomes, calcium carbonate cystoliths and silicified structures of leaves of F. carica cv Dottato were investigated with light, confocal, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. At the same time, histochemical reactions were also employed to analyse the indumentum composed by glandular and non-glandular trichomes by applying chemical reagents and fluorescence microscopy. Non-glandular and glandular trichomes, capitate, are described. Non-glandular trichomes are unicellular simple, spine-like and present different morphology and sizes. The capitate glandular trichomes are present on leaf adaxial and abaxial surface and consist of one-celled stalk and 3/4 cells spherical head. Histochemical characterisation of leaf hairs revealed the presence of flavonoids, while glandular trichome head cells showed a complex mixture of alkaloids, essential oil and flavonoids. Cu and Al were found in the constitutive structures, spike and dome, of the cystoliths. Several epidermal cells and non-glandular trichomes were silicified. Leaf hairs, trichomes secretions, solid inclusions and silicification of F. carica leaf have significant roles to play in relation to leaf protection from external factors, including high-intensity radiation, herbivores or pathogens.  相似文献   

16.
Trichomes of 37 taxa of the genus Stachys and one species of Sideritis (S. montana) were examined using light and scanning electron microscopy. The indumentum shows considerable variability among different species, but is constant among different populations of one species, and therefore, affords valuable characters in delimitation of sections and species. The characters of taxonomic interest were presence of glandular and non-glandular trichomes, thickness of the cell walls, number of cells (unicellular or multi-cellular), presence of branched (dendroid) trichomes, presence of vermiform trichomes, orientation of trichomes in relation to the epidermal surface, curviness of trichomes, and presence of papillae on trichome surface. Two basic types of trichomes can be distinguished: glandular and non-glandular trichomes. The glandular trichomes can in turn be subdivided into subtypes: stalked, subsessile, or sessile. The stalks of the glandular trichomes can be uni- or multi-cellular. Simple unbranched and branched trichomes constitute two subtypes of non-glandular trichomes. Our data do not provide any support for separation of Sideritis from Stachys. The following evolutionary trends are suggested here for Stachys: vermiform trichomes with stellate base are primitive against vermiform trichomes with tuberculate base, long vermiform trichomes are primitive against the short simple trichomes, appressed trichomes are advanced against spreading ones, and loss of glandular trichomes is advanced against their presence. Overall, trichome micromorphology is more useful in separation of species within sections rather than characterizing large natural groups known as sections, except for few cases.  相似文献   

17.
18.
The micromorphology of trichomes of the leaves of 17 taxa (including two varieties) of the genus Chelonopsis Miq. and of six species representing four additional genera (Bostrychanthera deflexa Benth., Colquhounia coccinea Wall. var. coccinea, Co. seguinii Vaniot. var. seguinii, Gomphostemma chinense Oliv. var. chinense, G. crinitum Wall. ex Benth. and Physostegia virginiana (L.) Benth.) was surveyed by light and scanning electron microscopy. Two basic types of trichomes can be identified: non-glandular and glandular trichomes. The non-glandular trichomes can be subdivided into two subtypes: simple unbranched and branched trichomes. Based on the cell number, simple unbranched trichomes are further divided into four shapes (unicellular, two-celled, three-celled, and more than three cells), whilst branched trichomes are separated into three shapes (biramous, stellate, and dendroid trichomes). The glandular trichomes can in turn be subdivided into four subtypes: subsessile, capitate, clavate, and sunken. Non-glandular trichomes with two cells (NGTW) and subsessile glandular trichomes (GSU) are most widespread in all taxa examined. The indumentum shows considerable variation among different sections or species. Consequently, trichome micromorphology and distribution have high taxonomic value for Chelonopsis at both infrageneric and interspecific levels. The presence of capitate glandular trichomes (GCA) provides an additional morphological character to clarify the boundaries between subgenus Chelonopsis and Aequidens Wu and Li. Within subgenus Aequidens, non-glandular trichomes with more than three cells (NGMT) and clavate glandular trichomes (GCL) are important characters for sectional division between sect. Aequidens Wu and Li and sect. Microphyllum Wu and Li. Again, three forms of three-celled trichomes can be used as a distinctive taxonomic character at specific level between C. albiflora Pax et K. Hoffm. ex Limpr., C. forrestii J. Anthony, and C. souliei (Bonati) Merr. in sect. Aequidens. This study supports Wu's delimitation of subgenus and sections and the subsequent review work by Xiang et al. Additionally, distribution of trichome types is correlated with the altitudinal distribution and habitats of some species in Chelonopsis.  相似文献   

19.
Metallothionein (MT) and cadmium (Cd) contents were determined in the subcellular fractions of the liver and kidneys of bank voles exposed for 6 weeks to elevated levels of dietary Cd-40 and 80 g g-1 dry weight. Hepatic and renal MT was detected exclusively in the cytosol, while Cd was found in the cytosol (73–79% of the total content), nuclei (14–18%) and particulates (4–9%). The concentration of MT in the cytosol as well as Cd content in the particular subcellular fractions appeared to be a dose-dependent. The absence of MT in the nuclear and particulate fractions implied that Cd present in these compartments was not bound to the protein that is considered to provide protection against the toxic metal. Therefore, it is assumed that this component of intracellular Cd could be responsible for the histopathological changes that occurred in the liver (granuloma and focal hepatocyte swelling) and kidneys (focal degeneration of proximal tubules) of bank voles exposed to the higher level of dietary Cd.  相似文献   

20.
Heavy-metal toxicity in soil is one of the major constraints for oilseed rape (Brassica napus L.) production. One of the best ways to overcome this constraint is the use of growth regulators to induce plant tolerance. Response to cadmium (Cd) toxicity in combination with a growth regulator, 5-aminolevulinic acid (ALA), was investigated in oilseed rape grown hydroponically in greenhouse conditions under three levels of Cd (0, 100, and 500 μM) and three levels of foliar application of ALA (0, 12.5, and 25 mg l?1). Cd decreased plant growth and the chlorophyll concentration in leaves. Foliar application of ALA improved plant growth and increased the chlorophyll concentration in the leaves of Cd-stressed plants. Significant reductions in photosynthetic parameters were observed by the addition of Cd alone. Application of ALA improved the net photosynthetic and gas exchange capacity of plants under Cd stress. ALA also reduced the Cd content in shoots and roots, which was elevated by high concentrations of Cd. The microscopic studies of leaf mesophyll cells under different Cd and ALA concentrations showed that foliar application of ALA significantly ameliorated the Cd effect and improved the structure of leaf mesophyll cells. However, the higher Cd concentration (500 μM) could totally damage leaf structure, and at this level the nucleus and intercellular spaces were not established as well; the cell membrane and cell wall were fused to each other. Chloroplasts were totally damaged and contained starch grains. However, foliar application of ALA improved cell structure under Cd stress and the visible cell structure had a nucleus, cell wall, and cell membrane. These results suggest that under 15-day Cd-induced stress, application of ALA helped improve plant growth, chlorophyll content, photosynthetic gas exchange capacity, and ultrastructural changes in leaf mesophyll cells of the rape plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号