首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the theory of how gene flow and genetic drift interact with local adaptation is well understood, few empirical studies have examined this process. Hämälä et al. (2018) present evidence that adaptive divergence between populations of Arabidopsis lyrata can persist in the face of relatively high levels of gene flow and drift. Maintaining divergence despite gene flow and drift has important implications for understanding adaptive responses of populations in response to human‐driven environmental change.  相似文献   

2.
Analysis of legumin-encoding cDNAs fromDioscorea caucasica Lipsky (Dioscoreaceae) and fromAsarum europaeum L. (Aristolochiaceae) shows that there is an especially methionine-rich legumin subfamily present in the lower angiosperm clades including the Monocotyledoneae. It is characterized by a methionine content of 3–4 mol% which is roughly triple the methionine proportion of most other legumins. These “MetR” legumins, if present, still have to be detected in the higher angiosperms including the important seed crops. Evolutionary analysis suggests that the MetR legumins are the result of a gene duplication allowing the differentiation of legumin genes according to their sulfur content. The duplication event must have taken place before the split into mono- and dicotyledonous plants but probably after the separation of angiosperms and gymnosperms. Correspondence to: H. Fischer  相似文献   

3.
Understanding which reproductive barriers contribute to speciation is essential to understanding the diversity of life on earth. Several contemporary examples of strong hybrid seed inviability (HSI) between recently diverged species suggest that HSI may play a fundamental role in plant speciation. Yet, a broader synthesis of HSI is needed to clarify its role in diversification. Here, I review the incidence and evolution of HSI. Hybrid seed inviability is common and evolves rapidly, suggesting that it may play an important role early in speciation. The developmental mechanisms that underlie HSI involve similar developmental trajectories in endosperm, even between evolutionarily deeply diverged incidents of HSI. In hybrid endosperm, HSI is often accompanied by whole-scale gene misexpression, including misexpression of imprinted genes which have a key role in endosperm development. I explore how an evolutionary perspective can clarify the repeated and rapid evolution of HSI. In particular, I evaluate the evidence for conflict between maternal and paternal interests in resource allocation to offspring (i.e., parental conflict). I highlight that parental conflict theory generates explicit predictions regarding the expected hybrid phenotypes and genes responsible for HSI. While much phenotypic evidence supports a role of parental conflict in the evolution of HSI, an understanding of the underlying molecular mechanisms of this barrier is essential to test parental conflict theory. Lastly, I explore what factors may influence the strength of parental conflict in natural plant populations as an explanation for why rates of HSI may differ between plant groups and the consequences of strong HSI in secondary contact.  相似文献   

4.
Flowers consist primarily of four basic organ types whose relative positions are universally conserved within the angiosperms. A model has been proposed to explain how a small number of regulatory genes, acting alone and in combination, specify floral organ identity. This model, known widely as the ABC model of flower development, is based on molecular generic experiments in two model organisms,Arabidopsis thaliana and Antirrhinum majus.Both of these species are considered to be eudicots, a clade within the angiosperms with a relatively conserved floral architecture. In this review, the application of the ABC model derived from studies of these typical eudicot species is considered with respect to angiosperms whose floral structure deviates from that of the eudicots. It is concluded that the model is universally applicable to the angiosperms as a whole, and the enormous diversity seen among angiosperms flowers is due to genetic pathways that are downstream, or independent, of the genetic programme that specifies floral organ identity.  相似文献   

5.
6.
Fertilization of the female gametophyte in angiosperm plants initiates a process of coordinated development of embryo, endosperm, and seed coat that ensures the production of a viable seed. Mutant analysis has suggested that communication between the endosperm and the seed coat is an important determinant in this process. In addition, cell groups within the embryo, derived from the apical and from the basal cell, respectively, after zygote division, concertedly establish a functional root meristem, and cells in the apical region of the embryo are hypothesized to repress cell divisions in the basal cell-derived suspensor. The available evidence for these interregional communication events mostly relies on the analysis of mutant phenotypes in Arabidopsis. To provide independent and direct evidence for communication events, we used conditional domain-specific expression of the diphtheria toxin A chain (DTA) in developing Arabidopsis seeds. By using a collection of cell- or tissue-type-specific promoters, we show that the mGAL4:VP16/UAS two-component gene expression allows reliable spatiotemporal and conditional expression of the GFP:GUS reporter and the DTA gene in the developing embryo and endosperm. Expression of DTA in the protoderm of the embryo proper led to excessive proliferation of suspensor cells, sometimes resulting in the formation of secondary embryos. Endosperm-specific expression of DTA caused complete cessation of seed growth, followed by pattern defects in the embryo and embryo arrest. Taken together, the results presented here substantiate the evidence for and underline the importance of interregional communication in embryo and seed development and demonstrate the usefulness of conditional toxin expression as a method complementary to phenotypic analysis of developmental mutants.  相似文献   

7.
Loss of acoustic habitat due to anthropogenic noise is a key environmental stressor for vocal amphibian species, a taxonomic group that is experiencing global population declines. The Pacific chorus frog (Pseudacris regilla) is the most common vocal species of the Pacific Northwest and can occupy human‐dominated habitat types, including agricultural and urban wetlands. This species is exposed to anthropogenic noise, which can interfere with vocalizations during the breeding season. We hypothesized that Pacific chorus frogs would alter the spatial and temporal structure of their breeding vocalizations in response to road noise, a widespread anthropogenic stressor. We compared Pacific chorus frog call structure and ambient road noise levels along a gradient of road noise exposures in the Willamette Valley, Oregon, USA. We used both passive acoustic monitoring and directional recordings to determine source level (i.e., amplitude or volume), dominant frequency (i.e., pitch), call duration, and call rate of individual frogs and to quantify ambient road noise levels. Pacific chorus frogs were unable to change their vocalizations to compensate for road noise. A model of the active space and time (“spatiotemporal communication”) over which a Pacific chorus frog vocalization could be heard revealed that in high‐noise habitats, spatiotemporal communication was drastically reduced for an individual. This may have implications for the reproductive success of this species, which relies on specific call repertoires to portray relative fitness and attract mates. Using the acoustic call parameters defined by this study (frequency, source level, call rate, and call duration), we developed a simplified model of acoustic communication space–time for this species. This model can be used in combination with models that determine the insertion loss for various acoustic barriers to define the impact of anthropogenic noise on the radius of communication in threatened species. Additionally, this model can be applied to other vocal taxonomic groups provided the necessary acoustic parameters are determined, including the frequency parameters and perception thresholds. Reduction in acoustic habitat by anthropogenic noise may emerge as a compounding environmental stressor for an already sensitive taxonomic group.  相似文献   

8.

Question

Anthropogenic edges caused by transport infrastructure such as dirt roads and trails (also known as Soft Linear Developments; SLD) are pervasive in almost every terrestrial ecosystem. Revegetating these edges may reduce some of their negative effects, such as their permeability to biological invasions and detrimental effects on wildlife, potentially becoming suitable habitat for a broad range of species. Selecting species with low post‐dispersal seed predation rates may improve the effectiveness of revegetation programmes.

Location

Mediterranean scrublands in SW Spain.

Methods

We made offerings of a total of 16,000 seeds of eight species of fleshy‐fruit shrubs both along SLD edges and scrubland interiors in two independent blocks in each of three distant locations. Using four types of selective enclosure, we assessed the relative contribution of three seed predator guilds (ants, rodents and birds) to seed predation rates both along SLD edges and scrubland interiors.

Results

The effects of anthropogenic edges on seed predation rates were species‐specific. The large and hard‐seeded species Chamaerops humilis was not predated at all. Juniperus phoenicea and Corema album seeds had higher predation rates in scrubland interiors than in edges. The small‐seeded Rubus ulmifolius experienced relatively low seed predation rates compared to the other species. Predation rates for this species were higher along SLD edges than in scrubland interiors. Ants were the main seed predators in the area, and showed marked preferences for J. macrocarpa and C. album seeds at both SLD edges and scrubland interiors.

Conclusions

Our results show the strong context‐dependency of seed predation rates in both SLD edges and scrubland interiors, and thus the importance of well spatially and temporally replicated studies. Species with large and hard seeds may be good candidates for roadside revegetation programmes. However, the relative suitability of plant species would depend on the seed predator community. Our findings confirm that studies on seed predation may help planning cost‐effective species selection for edge revegetation efforts worldwide.  相似文献   

9.
10.
In the last twenty-five years, young inflorescences, floral buds and individual floral organs of a number of species have been cultured in vitro. There is considerable variability in the requirement of plant growth regulators and nutritional factors for flower development of different species. This variability is compounded by the fact that the hormonal and nutritional requirements are different at various stages of organ and floral development. Experimental studies on normal and mutant flowers in vitro have provided insights into some of the regulatory processes in floral organogenesis. The potential use of the in vitro technique in elucidating the various mechanisms in flower development is stressed.  相似文献   

11.
Kalisz S  Kramer EM 《Heredity》2008,100(2):171-177
The goal of this short review is to consider the interrelated phenomena of phenotypic variation and genetic constraint with respect to plant diversity. The unique aspects of plants, including sessile habit, modular growth and diverse developmental programs expressed at the phytomer level, merit a specific examination of the genetic basis of their phenotypic variation, and how they experience and escape genetic constraint. Numerous QTL studies with wild and domesticated plants reveal that most phenotypic traits are polygenic but vary in the number and effect of the loci contributing, from a few loci of large effects to many with small effects. Further, somatic mutations, developmental plasticity and epigenetic variation, especially gene methylation, can contribute to increases in phenotypic variation. The flip side of these processes, genetic constraint, can similarly be the result of many factors, including pleiotropy, canalization and genetic redundancy. Genetic constraint is not only a mechanism to prevent change, however, it can also serve to direct evolution along certain paths. Ultimately, genetic constraint often comes full circle and is released through events such as hybridization, genome duplication and epigenetic remodeling. We are just beginning to understand how these processes can operate simultaneously during the evolution of ecologically important traits in plants.  相似文献   

12.
Phenotypic traits are products of two processes: evolution and development. But how do these processes combine to produce integrated phenotypes? Comparative studies identify consistent patterns of covariation, or allometries, between brain and body size, and between brain components, indicating the presence of significant constraints limiting independent evolution of separate parts. These constraints are poorly understood, but in principle could be either developmental or functional. The developmental constraints hypothesis suggests that individual components (brain and body size, or individual brain components) tend to evolve together because natural selection operates on relatively simple developmental mechanisms that affect the growth of all parts in a concerted manner. The functional constraints hypothesis suggests that correlated change reflects the action of selection on distributed functional systems connecting the different sub-components, predicting more complex patterns of mosaic change at the level of the functional systems and more complex genetic and developmental mechanisms. These hypotheses are not mutually exclusive but make different predictions. We review recent genetic and neurodevelopmental evidence, concluding that functional rather than developmental constraints are the main cause of the observed patterns.  相似文献   

13.
Comprehensive phylogenetic trees are essential tools to better understand evolutionary processes. For many groups of organisms or projects aiming to build the Tree of Life, comprehensive phylogenetic analysis implies sampling hundreds to thousands of taxa. For the tree of all life this task rises to a highly conservative 13 million. Here, we assessed the performances of methods to reconstruct large trees using Monte Carlo simulations with parameters inferred from four large angiosperm DNA matrices, containing between 141 and 567 taxa. For each data set, parameters of the HKY85+G model were estimated and used to simulate 20 new matrices for sequence lengths from 100 to 10,000 base pairs. Maximum parsimony and neighbor joining were used to analyze each simulated matrix. In our simulations, accuracy was measured by counting the number of nodes in the model tree that were correctly inferred. The accuracy of the two methods increased very quickly with the addition of characters before reaching a plateau around 1000 nucleotides for any sizes of trees simulated. An increase in the number of taxa from 141 to 567 did not significantly decrease the accuracy of the methods used, despite the increase in the complexity of tree space. Moreover, the distribution of branch lengths rather than the rate of evolution was found to be the most important factor for accurately inferring these large trees. Finally, a tree containing 13,000 taxa was created to represent a hypothetical tree of all angiosperm genera and the efficiency of phylogenetic reconstructions was tested with simulated matrices containing an increasing number of nucleotides up to a maximum of 30,000. Even with such a large tree, our simulations suggested that simple heuristic searches were able to infer up to 80% of the nodes correctly.  相似文献   

14.
Small changes in morphology can affect the performance and functions of organisms and hence their ecological success. In modular constructed plants, contrasting growth strategies may be realized by differences in the spatial arrangement and size of shoots. Such differences change the way in which meristems and resources are assigned to various functions during the lifespan of a plant. If such changes include the capacity to spread clonally, sexual reproduction may also be affected. I compare patterns in vegetative growth and sexual reproductive traits in four allopatric species ofEpilobium which are sometimes considered as subspecies of a single polymorphic taxon. The four species differ in the location of the buds which annually renew the aerial shoot system.E. dodonaei andE. steveni do not spread clonally and are characterized by a shrub-like habit.E. fleischeri, a species occurring only in the Alps, andE. colchicum, which occurs in the upper region of the Caucasus mountains, both produce buds on horizontal roots or plagiotropic shoots. Both alpine species exhibiting clonal growth have smaller shoots, fewer fruits and smaller seeds than the lowland species. An intraspecific trade-off between seed number per fruit and seed mass is realized. Both alpine species produce more seeds per fruit at the expense of seed mass. The morphological relationship between the four species and their geographical distribution suggest that clonal growth inE. fleischeri (restricted to the Alps) andE. colchicum (restricted to the Caucasus) is adaptively associated with the stressful conditions of alpine habitats. Our results suggest that clonal growth is not necessarily correlated with reduced reproduction by seeds. The success of plants which are already established may largely depend on clonal spread, but the colonization of new habitats depends on the production of a large number of small seeds with high dispersability.  相似文献   

15.
As sessile organisms, plants have evolved a multitude of developmental responses to cope with the ever-changing environmental conditions that challenge the plant throughout its life cycle. Of the many environmental cues that regulate plant development, light is probably the most important. From determining the developmental pattern of the emerging seedling, to influencing the organization of organelles to best maximize energy available for photosynthesis, light has dramatic effects on development during all stages of plant life. In plants, three classes of photoreceptors that mediate light perception have been characterized at the molecular level. The phytochromes recognize light in the red portion of the spectrum, while cryptochromes and phototropins perceive blue and UVA light. In this review, we discuss the different aspects of development that are regulated by these photoreceptors in the model plant species Arabidopsis thaliana and how the phytochromes, cryptochromes, and phototropins bring about changes in development seen in the growing plant.  相似文献   

16.
17.
18.
We previously provided evidence that seed coat-associated invertase is involved in controlling the carbohydrate state of developing seeds and, by this way, triggering developmental processes (Weber et al . (1995) Plant Cell , 7, 1835–1846). To verify our postulate, we compared seed development of two genotypes of Vicia faba differing in seed weight. The seed coat of the large-seeded genotype formed a higher number of parenchymatous cell layers and matured later. VfCWINV1 encoding a cell wall-bound invertase is expressed in the unloading zone of the seed coat. mRNA levels peaked later in 'large' coats and mRNA was present in more cell layers over a longer time period. Cell wall-bound invertase activity revealed a similar accumulation pattern, obviously generating the high hexose conditions present in the endospermal cavity bathing the premature cotyledons and thus controlling their carbohydrate state. High hexose conditions were correlated with an extended mitotic activity of the 'large' cotyledons. In 'large' and 'small' cotyledons, sucrose levels rose when hexoses decreased apparently terminating cell divisions and initiating differentiation and storage activities. This developmental switch was delayed in 'large' embryos. To prove the outlined relationship, sucrose was added in vitro to mitotically active cotyledons. This treatment favoured nuclear expansion and starch accumulation over cell division. In contrast, a hexose-based medium maintained cell divisions. We conclude that development of the embryo is coordinately regulated with that of the maternal seed coat which controls, by metabolic signals, the phase of cell division of the embryo and consequently also seed size.  相似文献   

19.
E. N. Pavlovski?'s concept of natural focality of diseases and the development of general knowledge about natural foci and their structural (components), functional (mechanisms of pathogen maintenance), and ecosystem-related organization (assortment and interrelations of ecosystems) are reviewed from principal (in authors' opinion) aspects. The 60-year history of this theory includes three stages at which its scope and contents differed. At the first stage, it concerned transmissible zoonoses. It had been assumed that structurally, natural foci necessarily include the pathogen-vector-host triad, and the functioning of the focus is provided for by only pathogen circulation in terrestrial ecosystems. At the second stage, it became clear that vector is not a necessary structural component of any focus (an example of nontransmissible diseases), although the functioning of foci remained to be unequivocally attributed to the continuous pathogen circulation among animals of terrestrial ecosystems. The third stage is characterized by an understanding that, in general, the presence of a warm-blooded host in the focus is also unnecessary for pathogen survival, and natural foci can be represented by soil and aquatic ecosystems. The only necessary and specific component of any natural focus is the pathogen population. In this context, modern views on natural focality of diseases are reviewed, and the essence of the terms "natural focus" and "epizootic process" is defined. It is proposed to distinguish the phases of pathogen reservation and epizootic spread (circulation) in ecosystems of any type. The current state of this concept provides evidence that, in general biological terms, studies on natural focality of diseases belong to one of the fields of symbiotology.  相似文献   

20.
Jasmonates are ubiquitously occurring lipid-derived signaling compounds active in plant development and plant responses to biotic and abiotic stresses. Upon environmental stimuli jasmonates are formed and accumulate transiently. During flower and seed development, jasmonic acid (JA) and a remarkable number of different metabolites accumulate organ- and tissue specifically. The accumulation is accompanied with expression of jasmonate-inducible genes. Among these genes there are defense genes and developmentally regulated genes. The profile of jasmonate compounds in flowers and seeds covers active signaling molecules such as JA, its precursor 12-oxophytodienoic acid (OPDA) and amino acid conjugates such as JA-Ile, but also inactive signaling molecules occur such as 12-hydroxy-JA and its sulfated derivative. These latter compounds can occur at several orders of magnitude higher level than JA. Metabolic conversion of JA and JA-Ile to hydroxylated compounds seems to inactivate JA signaling, but also specific functions of jasmonates in flower and seed development were detected. In tomato OPDA is involved in embryo development. Occurrence of jasmonates, expression of JA-inducible genes and JA-dependent processes in flower and seed development will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号