首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wallace HM  Niiranen K 《Amino acids》2007,33(2):261-265
Summary. The polyamines are growth factors in both normal and cancer cells. As the intracellular polyamine content correlates positively with the growth potential of that cell, the idea that depletion of polyamine content will result in inhibition of cell growth and, particularly tumour cell growth, has been developed over the last 15 years. The polyamine pathway is therefore a target for development of rationally designed, antiproliferative agents. Following the lessons from the single enzyme inhibitors (α-difluoromethylornithine DFMO), three generations of polyamine analogues have been synthesised and tested in vitro and in vivo. The analogues are multi-site inhibitors affecting multiple reactions in the pathway and thus prevent the up-regulation of compensatory reactions that have been the downfall of DFMO in anticancer chemotherapy. Although the initial concept was that the analogues may provide novel anticancer drugs, it now seems likely that the analogues will have wider applications in diseases involving hyperplasia.  相似文献   

2.
The development of targeted molecular therapies has provided remarkable advances into the treatment of human cancers. However, in most tumors the selective pressure triggered by anticancer agents encourages cancer cells to acquire resistance mechanisms. The generation of new rationally designed targeting agents acting on the oncogenic path(s) at multiple levels is a promising approach for molecular therapies. 2-phenylimidazo[2,1-b]benzothiazole derivatives have been highlighted for their properties of targeting oncogenic Met receptor tyrosine kinase (RTK) signaling. In this study, we evaluated the mechanism of action of one of the most active imidazo[2,1-b]benzothiazol-2-ylphenyl moiety-based agents, Triflorcas, on a panel of cancer cells with distinct features. We show that Triflorcas impairs in vitro and in vivo tumorigenesis of cancer cells carrying Met mutations. Moreover, Triflorcas hampers survival and anchorage-independent growth of cancer cells characterized by “RTK swapping” by interfering with PDGFRβ phosphorylation. A restrained effect of Triflorcas on metabolic genes correlates with the absence of major side effects in vivo. Mechanistically, in addition to targeting Met, Triflorcas alters phosphorylation levels of the PI3K-Akt pathway, mediating oncogenic dependency to Met, in addition to Retinoblastoma and nucleophosmin/B23, resulting in altered cell cycle progression and mitotic failure. Our findings show how the unusual binding plasticity of the Met active site towards structurally different inhibitors can be exploited to generate drugs able to target Met oncogenic dependency at distinct levels. Moreover, the disease-oriented NCI Anticancer Drug Screen revealed that Triflorcas elicits a unique profile of growth inhibitory-responses on cancer cell lines, indicating a novel mechanism of drug action. The anti-tumor activity elicited by 2-phenylimidazo[2,1-b]benzothiazole derivatives through combined inhibition of distinct effectors in cancer cells reveal them to be promising anticancer agents for further investigation.  相似文献   

3.
In March 2012, Nobel Prize winner James Watson gave a seminar at Yale University entitled “Driven by Ideas.” In his lecture, Watson discussed his personal vision for the future of science, specifically addressing how the scientific community should approach developing anticancer agents. He discussed the use of glycolytic inhibitors as anticancer agents due to the Warburg effect, as well as the benefits of metformin and anti-inflammatory drugs to help prevent cancer. He also compared drugs that target cell proliferation instead of targeting cell growth. Additionally, Watson commented on the mechanisms for how research should be conducted in the laboratory.  相似文献   

4.
Since initial discovery of the first HSP90 inhibitor over a decade and a half ago, tremendous progress has been made in developing potent and selective compounds with which to target this chaperone in the treatment of cancers. These compounds have been invaluable in dissecting how HSP90 supports the dramatic alterations in cellular physiology that constitute the malignant phenotype and give rise to the clinical manifestations of diverse cancers. Unfortunately, single agent activity for HSP90 inhibitors has been disappointingly modest against recurrent, refractory cancers in most of the clinical trials that have been reported to date. This problem could be due to pharmacological limitations of the first-generation inhibitors that have been most extensively studied. But we suggest it may well be intrinsic to the target itself. This review will focus on how the utilization of HSP90 by cancer cells might be targeted to enhance the activity of other anticancer drugs while at the same time limiting the ability of advanced cancers to adapt and evolve drug resistance; the net result being more durable disease control. A better understanding of these fundamental issues will surely make the ongoing clinical development of HSP90 inhibitors as anticancer drugs less empiric, more efficient and hopefully more successful. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).  相似文献   

5.
6.
Physiological cell conditions such as glucose deprivation and hypoxia play roles in the development of drug resistance in solid tumors. These tumor-specific conditions cause decreased expression of DNA topoisomerase IIalpha, rendering cells resistant to topo II target drugs such as etoposide. Thus, targeting tumor-specific conditions such as a low glucose environment may be a novel strategy in the development of anticancer drugs. On this basis, we established a novel screening program for anticancer agents with preferential cytotoxic activity in cancer cells under glucose-deprived conditions. We recently isolated an active compound, AA-98, from Streptomyces sp. AA030098 that can prevent stress-induced etoposide resistance in vitro. Furthermore, LC-MS and various NMR spectroscopic methods identified AA-98 as mithramycin, which belongs to the aureolic acid group of antitumor compounds. We found that mithramycin prevents the etoposide resistance that is induced by glucose deprivation. The etoposide-chemosensitive action of mithramycin was just dependent on strict low glucose conditions, and resulted in the selective cell death of etoposide-resistant HT-29 human colon cancer cells.  相似文献   

7.
Thioredoxin system plays an important role in regulation of intracellular redox balance and various signaling pathways. Thioredoxin reductase (TrxR) is overexpressed in many cancer cells and has been identified as a potential target of anticancer drugs. Auranofin (AF) is potent TrxR inhibitor with novel in vitro and in vivo anticancer activities. Selenocystine (SeC) is a nutritionally available selenoamino acid with selective anticancer effects through induction of apoptosis. In the present study, we demonstrated the synergistic effects and the underlying molecular mechanisms of SeC in combination with AF on MCF-7 human breast cancer cells. The results showed that SeC and AF synergistically inhibited the cancer cell growth through induction of ROS-dependent apoptosis with the involvement of mitochondrial dysfunction. DNA damage-mediated p53 phosphorylation and down-regulation of phosphorylated AKT and ERK also contributed to cell apoptosis. Moreover, we demonstrated the important role of TrxR activity in the synergistic action of SeC and AF. Taken together, our results suggest the strategy to use SeC and AF in combination could be a highly efficient way to achieve anticancer synergism by targeting TrxR.  相似文献   

8.
The strategy of clinically targeting cancerous cells at their most vulnerable state during mitosis has instigated numerous studies into the mitotic cell death (MCD) pathway. As the hallmark of cancer revolves around cell-cycle deregulation, it is not surprising that antimitotic therapies are effective against the abnormal proliferation of transformed cells. Moreover, these antimitotic drugs are also highly selective and sensitive. Despite the robust rate of discovery and the development of mitosis-selective inhibitors, the unpredictable complexities of the human body''s response to these drugs still herald the biggest challenge towards clinical success. Undoubtedly, the need to bridge the gap between promising preclinical trials and effective translational bedside treatment prompts further investigations towards mapping out the mechanistic pathways of MCD, understanding how these drugs work as medicine in the body and more comprehensive target validations. In this review, current antimitotic agents are summarized with particular emphasis on the evaluation of their clinical efficacy as well as their limitations. In addition, we discuss the basis behind the lack of activity of these inhibitors in human trials and the potential and future directions of mitotic anticancer strategies.  相似文献   

9.
This report reviews the current status of extensive efforts directed towards the interpretation of crosstalk between apoptosis and proteasome to understanding the molecular mechanism of anticancer agents targeting proteasome, with particular focus on MG132 and PS-341. The discovery that all cancer cells have retained the apoptotic death program has offered to the researchers new biochemical targets to design anticancer drugs. Moreover, the demonstration that proteasome inhibition induces apoptosis and sensitizes cancer cells to traditional tumoricidal agents has proposed the proteasome as an attractive target for development of new anticancer drugs. Since then, a number of both naturally occurring and synthetic inhibitors of the proteasome have been identified. The best characterized and most widely used inhibitors of the proteasome are the peptide aldehydes; among these MG132, due to its broad spectrum of action, low cost and rapid reversibility of action, still remains the first choice to study proteasome function in cell and tissue cultures. Recently, a very potent new class of selective and reversible proteasome inhibitors which contains an inhibitory boronate group has been described. PS-341 represent the first of this promising class of agents that could have application in cancer therapy and it is the only that has progressed to clinical trials.  相似文献   

10.
多胺代谢调控网络包括多胺的生物合成、分解代谢和膜转运,作为生物体重要而复杂的生化单元,广泛参与机体细胞的生长、增殖、凋亡和基因表达等活动。多胺代谢调控网络的失衡与多种疾病相关,例如肿瘤、炎症和心血管疾病等。2018年全球癌症统计数据预计,癌症将成为21世纪几乎每个国家或地区人口死亡的主要原因。因此,癌症的预防和治疗将越来越重要。鉴于多胺与肿瘤的发生发展密切相关,本文围绕多胺代谢调控网络,总结了该调控网络作为抗肿瘤治疗靶位的研究现状,同时列举几种代谢酶和转运蛋白质的小分子调节剂,并阐述其靶点作用方式和在肿瘤预防与治疗方面的应用,以期能为靶向多胺代谢调控网络的药物研发以及相关疾病的治疗提供参考。  相似文献   

11.
BackgroundIn past few decades, the research on engineered nanocarriers (NCs) has gained significant attention in cancer therapy due to selective delivery of drug molecules on the diseased cells thereby preventing unwanted uptake into healthy cells to cause toxicity.Scope of reviewThe applicability of enhanced permeability and retention (EPR) effect for the delivery of nanomedicines in cancer therapy has gained limited success due to poor accessibility of the drugs to the target cells where non-specific payload delivery to the off target region lack substantial reward over the conventional therapeutic systems.Major conclusionsIn spite of the fact, nanomedicines fabricated from the biocompatible nanocarriers have reduced targeting potential for meaningful clinical benefits. However, over expression of receptors on the tumor cells provides opportunity to design functional nanomedicine to bind substantially and deliver therapeutics to the cells or tissues of interest by alleviating the bio-toxicity and unwanted effects. This critique will give insight into the over expressed receptor in various tumor and targeting potential of functional nanomedicine as new therapeutic avenues for effective treatment.General significanceThis review shortly shed light on EPR-based drug targeting using nanomedicinal strategies, their limitation, and advances in therapeutic targeting to the tumor cells.  相似文献   

12.
Mammalian target of rapamycin (mTOR) is a protein kinase that controls cell growth, proliferation, and survival. mTOR signaling is often upregulated in cancer and there is great interest in developing drugs that target this enzyme. Rapamycin and its analogs bind to a domain separate from the catalytic site to block a subset of mTOR functions. These drugs are extremely selective for mTOR and are already in clinical use for treating cancers, but they could potentially activate an mTOR-dependent survival pathway that could lead to treatment failure. By contrast, small molecules that compete with ATP in the catalytic site would inhibit all of the kinase-dependent functions of mTOR without activating the survival pathway. Several non-selective mTOR kinase inhibitors have been described and here we review their chemical and cellular properties. Further development of selective mTOR kinase inhibitors holds the promise of yielding potent anticancer drugs with a novel mechanism of action.  相似文献   

13.
Despite the remarkable advancement in the health care sector, cancer remains the second most fatal disease globally. The existing conventional cancer treatments primarily include chemotherapy, which has been associated with little to severe side effects, and radiotherapy, which is usually expensive. To overcome these problems, target-specific nanocarriers have been explored for delivering chemo drugs. However, recent reports on using a few proteins having anticancer activity and further use of them as drug carriers have generated tremendous attention for furthering the research towards cancer therapy. Biomolecules, especially proteins, have emerged as suitable alternatives in cancer treatment due to multiple favourable properties including biocompatibility, biodegradability, and structural flexibility for easy surface functionalization. Several in vitro and in vivo studies have reported that various proteins derived from animal, plant, and bacterial species, demonstrated strong cytotoxic and antiproliferative properties against malignant cells in native and their different structural conformations. Moreover, surface tunable properties of these proteins help to bind a range of anticancer drugs and target ligands, thus making them efficient delivery agents in cancer therapy. Here, we discuss various proteins obtained from common exogenous sources and how they transform into effective anticancer agents. We also comprehensively discuss the tumor-killing mechanisms of different dietary proteins such as bovine α-lactalbumin, hen egg-white lysozyme, and their conjugates. We also articulate how protein nanostructures can be used as carriers for delivering cancer drugs and theranostics, and strategies to be adopted for improving their in vivo delivery and targeting. We further discuss the FDA-approved protein-based anticancer formulations along with those in different phases of clinical trials.  相似文献   

14.
Induction of cell death and inhibition of cell survival are the main principles of cancer therapy. Resistance to chemotherapeutic agents is a major problem in oncology, which limits the effectiveness of anticancer drugs. A variety of factors contribute to drug resistance, including host factors, specific genetic or epigenetic alterations in the cancer cells and so on. Although various mechanisms by which cancer cells become resistant to anticancer drugs in the microenvironment have been well elucidated, how to circumvent this resistance to improve anticancer efficacy remains to be defined. Autophagy, an important homeostatic cellular recycling mechanism, is now emerging as a crucial player in response to metabolic and therapeutic stresses, which attempts to maintain/restore metabolic homeostasis through the catabolic lysis of excessive or unnecessary proteins and injured or aged organelles. Recently, several studies have shown that autophagy constitutes a potential target for cancer therapy and the induction of autophagy in response to therapeutics can be viewed as having a prodeath or a prosurvival role, which contributes to the anticancer efficacy of these drugs as well as drug resistance. Thus, understanding the novel function of autophagy may allow us to develop a promising therapeutic strategy to enhance the effects of chemotherapy and improve clinical outcomes in the treatment of cancer patients.  相似文献   

15.
Polyamines: fundamental characters in chemistry and biology   总被引:1,自引:0,他引:1  
Polyamines are small cationic molecules required for cellular proliferation and are detected at higher concentrations in most tumour tissues, compared to normal tissues. Agmatine (AGM), a biogenic amine, is able to arrest proliferation in cell lines by depleting intracellular polyamine levels. It enters mammalian cells via the polyamine transport system. Agmatine is able to induce oxidative stress in mitochondria at low concentrations (10 or 100 μM), while at higher concentrations (e.g. 1–2 mM) it does not affect mitochondrial respiration and is ineffective in inducing any oxidative stress. As this effect is strictly correlated with the mitochondrial permeability transition induction and the triggering of the pro-apoptotic pathway, AGM may be considered as a regulator of this type of cell death. Furthermore, polyamine transport is positively correlated with the rate of cellular proliferation. By increasing the expression of antizyme, a protein that inhibits polyamine biosynthesis and transport, AGM also exhibits a regulatory effect on cell proliferation. Methylglyoxal bis(guanylhydrazone) (MGBG), a competitive inhibitor of S-adenosyl-l-methionine decarboxylase, displaying anticancer activity, is a structural analogue of the natural polyamine spermidine. MGBG has been extensively studied, preclinically as well as clinically, and its anticancer activity has been attributed to the inhibition of polyamine biosynthesis and also to its effect on mitochondrial function. Numerous findings have suggested that MGBG might be used as a chemotherapeutic agent against cancer.  相似文献   

16.
In cancer biology, mesenchymal stem cells (MSCs) display aspects that can appear contradictory. On one hand, these cells possess several features which give them the ability to specifically target and then sustain cancer cells in their ability to survive the multifaceted host response against cancer. On the other hand, due to this excellent aptitude to home-in on tumor tissues, regardless their location in the host's body, MSCs are considered to be extremely selective vehicles to reach cancer cells specifically. Recently, MSC sustainment of cancer cell growth is a hot research topic. Indeed, these cells are known to sustain tumor angiogenesis and metastasis formation, to create a microenvironment favorable for cancer cell growth and to down-modulate the immune system capabilities in the host organism. On the other hand, since scientists became able to take advantage of their extremely selective capability to target cancer cells, MSCs are now also thought of in a different light. Indeed, MSCs are now considered a promising vehicle for local expression or delivery of even particularly toxic anticancer agents, ranging from Herpes Simplex Virus to locally-acting antineoplastic drugs. On this basis, investigation is now focused on how to impair the pro-neoplastic features of MSCs on one hand whilst taking advantage of their specific tropism toward cancer cells, on the other. As with the two faces of Janus, this review will concisely explore the research activity in these two apparently conflicting fields.  相似文献   

17.
纳米金在抗肿瘤研究中的应用   总被引:1,自引:0,他引:1  
肿瘤的早期诊断依然是目前需要攻克的难关,现有的抗肿瘤药物因具有较大毒性和缺乏特异性而存在很大的局限性。纳米金能够被多种基团修饰从而获得对肿瘤细胞的靶向性,已成为当前抗肿瘤研究的热点。研究发现纳米金可以通过抑制血管生成、携带抗肿瘤药物以及光热效应等达到肿瘤治疗的目的,同时由于修饰后的纳米金对肿瘤细胞具有靶向性,在肿瘤的早期诊断方面也具有重要的意义。纳米金在体内的分布和代谢与其大小、形态及所带电荷有关,有关纳米金毒性和生物相容性性的评价,还有待于进一步研究。  相似文献   

18.
Many natural polysaccharides have significant anticancer activity with low toxicity, but the complex chemical structures make in-depth studies of the involved mechanisms extremely difficult. The purpose of this study was to investigate the effect of the marine bacterial exopolysaccharide (exopolysaccharide 11 [EPS11]) on liver cancer metastasis to explore the underlying target protein and molecular mechanism. We found that EPS11 significantly suppressed cell adhesion, migration, and invasion in liver cancer cells. Proteomic analysis showed that EPS11 induced downregulation of proteins related to the extracellular matrix–receptor interaction signaling pathway. In addition, the direct pharmacological target of EPS11 was identified as collagen I using cellular thermal shift assays. Surface plasmon resonance and pull-down assays further confirmed the specific binding of EPS11 to collagen I. Moreover, EPS11 was shown to inhibit tumor metastasis by directly modulating collagen I activity via the β1-integrin–mediated signaling pathway. Collectively, our study demonstrated for the first time that collagen I could be a direct pharmacological target of polysaccharide drugs. Moreover, directly targeting collagen I may be a promising strategy for finding novel carbohydrate-based drugs.  相似文献   

19.
Thymidine kinases (TKs) have been considered one of the potential targets for anticancer therapeutic because of their elevated expressions in cancer cells. However, nucleobase analogs targeting TKs have shown poor selective cytotoxicity in cancer cells despite effective antiviral activity. 3′-Deoxythymidine phenylquinoxaline conjugate (dT-QX) was designed as a novel nucleobase analog to target TKs in cancer cells and block cell replication via conjugated DNA intercalating quinoxaline moiety. In vitro cell screening showed that dT-QX selectively kills a variety of cancer cells including liver carcinoma, breast adenocarcinoma and brain glioma cells; whereas it had a low cytotoxicity in normal cells such as normal human liver cells. The anticancer activity of dT-QX was attributed to its selective inhibition of DNA synthesis resulting in extensive mitochondrial superoxide stress in cancer cells. We demonstrate that covalent linkage with 3′-deoxythymidine uniquely directed cytotoxic phenylquinoxaline moiety more toward cancer cells than normal cells. Preliminary mouse study with subcutaneous liver tumor model showed that dT-QX effectively inhibited the growth of tumors. dT-QX is the first molecule of its kind with highly amendable constituents that exhibits this selective cytotoxicity in cancer cells.  相似文献   

20.
The phosphatidilinositol 3-kinase/protein kinase B (PI3K-AKT) pathway presents an exciting new target for molecular therapeutics. While exhibiting great promise, additional preclinical and clinical studies will be required to determine how best to target this pathway to improve patient outcome. A number of questions need to be answered prior to the implementation into patient care practices. As described below, the PI3K-AKT pathway regulates a broad spectrum of cellular processes, some of which are necessary to maintain normal physiological functions, which potentially contribute to the toxicity of the drugs targeting the pathway. Elucidation of the precise function of the PI3K-AKT isoforms, could promote the development of isoform specific approaches to provide a selective action on tumor cells. However, whether this will be possible due to conservation of structural domains is not yet clear. Inhibition of the PI3K-AKT pathway at multiple sites or a combination with inhibitors of different signaling pathways may allow the development of an acceptable therapeutic index for cancer management. Further, inhibition of the PI3K-AKT pathway combined with conventional chemotherapy or radiation therapy may provide a more effective strategy to improve patient outcome. As molecular therapeutics target the underlying defects in patient tumors, molecular diagnostics are required to identify patients with particular genetic aberrations in the pathway. It will be critical to provide adequate therapeutic strategies tailored to each patient. In addition, patients with different genetic backgrounds or in different health conditions could respond adversely to particular therapeutics. Therefore, identification of patients for particular drugs based on the underlying genetic defects in the tumor as well as the characteristics of the host would be of benefit for improving patient outcome. Linking the targeted therapeutics to molecular imaging approaches will determine appropriate biologically relevant dose for patients. It will also define expected tumor responsiveness and eventually will improve efficacy and decrease toxicity. In this regard, personalized molecular medicine is likely to soon provide effective cancer treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号