首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two genes coding for cysteine peptidase inhibitors of the cystatin family (Om-cystatin 1 and 2) were isolated from a gut-specific cDNA library of the soft tick Ornithodoros moubata. Both cystatins were clearly down-regulated after a blood meal. Om-cystatin 1 is mainly expressed in the tick gut, while Om-cystatin 2 mRNA was also found in other tick tissues. Authentic Om-cystatin 2 was significantly more abundant than Om-cystatin 1 in the gut contents of fasting ticks and was associated with hemosome-derived residual bodies accumulated in the gut lumen. Om-cystatin 2 was also expressed by type 2 secretory cells in the salivary glands of unfed ticks. The inhibitory specificity of recombinant Om-cystatins 1 and 2 was tested with mammalian cysteine peptidases, as well as endogenous cysteine peptidases present in the tick gut. Both cystatins efficiently inhibited papain-like peptidases, including cathepsin B and H, but differed significantly in their affinity towards cathepsin C and failed to block asparaginyl endopeptidase. Our results suggest that the secreted cystatin isoinhibitors are involved in the regulation of multiple proteolytic targets in the tick digestive system and tick-host interaction.  相似文献   

2.
We have investigated the inhibition of the recently identified family C13 cysteine peptidase, pig legumain, by human cystatin C. The cystatin was seen to inhibit enzyme activity by stoichiometric 1:1 binding in competition with substrate. The Ki value for the interaction was 0.20 nM, i.e. cystatin C had an affinity for legumain similar to that for the papain-like family C1 cysteine peptidase, cathepsin B. However, cystatin C variants with alterations in the N-terminal region and the "second hairpin loop" that rendered the cystatin inactive against cathepsin B, still inhibited legumain with Ki values 0.2-0.3 nM. Complexes between cystatin C and papain inhibited legumain activity against benzoyl-Asn-NHPhNO2 as efficiently as did cystatin C alone. Conversely, cystatin C inhibited papain activity against benzoyl-Arg-NHPhNO2 whether or not the cystatin had been incubated with legumain, strongly indicating that the cystatin inhibited the two enzymes with non-overlapping sites. A ternary complex between legumain, cystatin C, and papain was demonstrated by gel filtration supported by immunoblotting. Screening of a panel of cystatin superfamily members showed that type 1 inhibitors (cystatins A and B) and low Mr kininogen (type 3) did not inhibit pig legumain. Of human type 2 cystatins, cystatin D was non-inhibitory, whereas cystatin E/M and cystatin F displayed strong (Ki 0.0016 nM) and relatively weak (Ki 10 nM) affinity for legumain, respectively. Sequence alignments and molecular modeling led to the suggestion that a loop located on the opposite side to the papain-binding surface, between the alpha-helix and the first strand of the main beta-pleated sheet of the cystatin structure, could be involved in legumain binding. This was corroborated by analysis of a cystatin C variant with substitution of the Asn39 residue in this loop (N39K-cystatin C); this variant showed a slight reduction in affinity for cathepsin B (Ki 1.5 nM) but >5,000-fold lower affinity for legumain (Ki >1,000 nM) than wild-type cystatin C.  相似文献   

3.
4.
Cystatin M/E is a high affinity inhibitor of the asparaginyl endopeptidase legumain, and we have previously reported that both proteins are likely to be involved in the regulation of stratum corneum formation in skin. Although cystatin M/E contains a predicted binding site for papain-like cysteine proteases, no high affinity binding for any member of this family has been demonstrated so far. We report that human cathepsin V (CTSV) and human cathepsin L (CTSL) are strongly inhibited by human cystatin M/E. Kinetic studies show that Ki values of cystatin M/E for the interaction with CTSV and CTSL are 0.47 and 1.78 nM, respectively. On the basis of the analogous sites in cystatin C, we used site-directed mutagenesis to identify the binding sites of these proteases in cystatin M/E. We found that the W135A mutant was rendered inactive against CTSV and CTSL but retained legumain-inhibiting activity. Conversely, the N64A mutant lost legumain-inhibiting activity but remained active against the papain-like cysteine proteases. We conclude that legumain and papain-like cysteine proteases are inhibited by two distinct non-overlapping sites. Using immunohistochemistry on normal human skin, we found that cystatin M/E co-localizes with CTSV and CTSL. In addition, we show that CTSL is the elusive enzyme that processes and activates epidermal transglutaminase 3. The identification of CTSV and CTSL as novel targets for cystatin M/E, their (co)-expression in the stratum granulosum of human skin, and the activity of CTSL toward transglutaminase 3 strongly imply an important role for these enzymes in the differentiation process of human epidermis.  相似文献   

5.
Of seven human cystatins investigated, none inhibited the cysteine proteases staphopain A and B secreted by the human pathogen Staphylococcus aureus. Rather, the extracellular cystatins C, D and E/M were hydrolyzed by both staphopains. Based on MALDI-TOF time-course experiments, staphopain A cleavage of cystatin C and D should be physiologically relevant and occur upon S. aureus infection. Staphopain A hydrolyzed the Gly11 bond of cystatin C and the Ala10 bond of cystatin D with similar Km values of approximately 33 and 32 microM, respectively. Such N-terminal truncation of cystatin C caused >300-fold lower inhibition of papain, cathepsin B, L and K, whereas the cathepsin H activity was compromised by a factor of ca. 10. Similarly, truncation of cystatin D caused alleviated inhibition of all endogenous target enzymes investigated. The normal activity of the cystatins is thus down-regulated, indicating that the bacterial enzymes can cause disturbance of the host protease-inhibitor balance. To illustrate the in vivo consequences, a mixed cystatin C assay showed release of cathepsin B activity in the presence of staphopain A. Results presented for the specificity of staphopains when interacting with cystatins as natural protein substrates could aid in the development of therapeutic agents directed toward these proteolytic virulence factors.  相似文献   

6.
The cDNA of a cystein peptidase inhibitor was isolated from sugarcane and expressed in Escherichia coli. The protein, named canecystatin, has previously been shown to exert antifungal activity on the filamentous fungus Trichoderma reesei. Herein, the inhibitory specificity of canecystatin was further characterized. It inhibits the cysteine peptidases from plant source papain (Ki =3.3nM) and baupain (Ki=2.1x10(-8)M), but no inhibitory effect was observed on ficin or bromelain. Canecystatin also inhibits lysosomal cysteine peptidases such as human cathepsin B (Ki=125nM), cathepsin K (Ki=0.76nM), cathepsin L (Ki=0.6nM), and cathepsin V (Ki=1.0nM), but not the aspartyl peptidase cathepsin D. The activity of serine peptidases such as trypsin, chymotrypsin, pancreatic, and neutrophil elastases, and human plasma kallikrein is not affected by the inhibitor, nor is the activity of the metallopeptidases angiotensin converting enzyme and neutral endopeptidase. This is the first report of inhibitory activity of a sugarcane cystatin on cysteine peptidases.  相似文献   

7.
Wex T  Wex H  Brömme D 《Biological chemistry》1999,380(12):1439-1442
Human cathepsin F is a novel papain-like cysteine protease of unknown function. Here, we describe the complete human cathepsin F (CTSF) gene which is composed of 13 exons. In addition to a previous report, two novel upstream located exons whose splice sites interrupted the propeptide of cathepsin F within the 'cystatin-like' domain, recently described by Nagler et al. (Biochem. Biophys. Res. Comm. 257, 313-318, 1999) were identified. A comparison of the genomic structures between this novel part of the cathepsin F gene and those of several cystatin genes revealed striking similarities, supporting the hypothesis that the cathepsin F gene resulted from a gene fusion between an ancestral cystatin and cathepsin gene.  相似文献   

8.
Cystatins   总被引:1,自引:0,他引:1  
Chicken egg white cystatin was first described in the late 1960s. Since then, our knowledge about a superfamily of similar proteins present in mammals, birds, fish, insects, plants and some protozoa has expanded, and their properties as potent peptidase inhibitors have been firmly established. Today, 12 functional chicken cystatin relatives are known in humans, but a few evolutionarily related gene products still remain to be characterized. The type 1 cystatins (A and B) are mainly intracellular, the type 2 cystatins (C, D, E/M, F, G, S, SN and SA) are extracellular, and the type 3 cystatins (L- and H-kininogens) are intravascular proteins. All true cystatins inhibit cysteine peptidases of the papain (C1) family, and some also inhibit legumain (C13) family enzymes. These peptidases play key roles in physiological processes, such as intracellular protein degradation (cathepsins B, H and L), are pivotal in the remodelling of bone (cathepsin K), and may be important in the control of antigen presentation (cathepsin S, mammalian legumain). Moreover, the activities of such peptidases are increased in pathophysiological conditions, such as cancer metastasis and inflammation. Additionally, such peptidases are essential for several pathogenic parasites and bacteria. Thus cystatins not only have capacity to regulate normal body processes and perhaps cause disease when down-regulated, but may also participate in the defence against microbial infections. In this chapter, we have aimed to summarize our present knowledge about the human cystatins.  相似文献   

9.
A balance between proteolytic activity and protease inhibition is crucial to the appropriate function of many biological processes. There is mounting evidence for the presence of both papain-like cysteine proteases and serpins with a corresponding inhibitory activity in the nucleus. Well characterized examples of cofactors fine tuning serpin activity in the extracellular milieu are known, but such modulation has not been studied for protease-serpin interactions within the cell. Accordingly, we present an investigation into the effect of a DNA-rich environment on the interaction between model serpins (MENT and SCCA-1), cysteine proteases (human cathepsin V and human cathepsin L), and cystatin A. DNA was indeed found to accelerate the rate at which MENT inhibited cathepsin V, a human orthologue of mammalian cathepsin L, up to 50-fold, but unexpectedly this effect was primarily effected via the protease and secondarily by the recruitment of the DNA as a "template" onto which cathepsin V and MENT are bound. Notably, the protease-mediated effect was found to correspond both with an altered substrate turnover and a conformational change within the protease. Consistent with this, cystatin inhibition, which relies on occlusion of the active site rather than the substrate-like behavior of serpins, was unaltered by DNA. This represents the first example of modulation of serpin inhibition of cysteine proteases by a co-factor and reveals a mechanism for differential regulation of cathepsin proteolytic activity in a DNA-rich environment.  相似文献   

10.
Helminth pathogens express papain-like cysteine peptidases, termed cathepsins, which have important roles in virulence, including host entry, tissue migration and the suppression of host immune responses. The liver fluke Fasciola hepatica, an emerging human pathogen, expresses the largest cathepsin L cysteine protease family yet described. Recent phylogenetic, biochemical and structural studies indicate that this family contains five separate clades, which exhibit overlapping but distinct substrate specificities created by a process of gene duplication followed by subtle residue divergence within the protease active site. The developmentally regulated expression of these proteases correlates with the passage of the parasite through host tissues and its encounters with different host macromolecules.  相似文献   

11.
Cystatin F is a recently discovered type II cystatin expressed almost exclusively in immune cells. It is present intracellularly in lysosome-like vesicles, which suggests a potential role in regulating papain-like cathepsins involved in antigen presentation. Therefore, interactions of cystatin F with several of its potential targets, cathepsins F, K, V, S, H, X and C, were studied in vitro. Cystatin F tightly inhibited cathepsins F, K and V with Ki values ranging from 0.17 nM to 0.35 nM, whereas cathepsins S and H were inhibited with 100-fold lower affinities (Ki approximately 30 nM). The exopeptidases, cathepsins C and X were not inhibited by cystatin F. In order to investigate the biological significance of the inhibition data, the intracellular localization of cystatin F and its potential targets, cathepsins B, H, L, S, C and K, were studied by confocal microscopy in U937 promonocyte cells. Although vesicular staining was observed for all the enzymes, only cathepsins H and X were found to be colocalized with the inhibitor. This suggests that cystatin F in U937 cells may function as a regulatory inhibitor of proteolytic activity of cathepsin H or, more likely, as a protection against cathepsins misdirected to specific cystatin F containing endosomal/lysosomal vesicles. The finding that cystatin F was not colocalized with cystatin C suggests distinct functions for these two cysteine protease inhibitors in U937 cells.  相似文献   

12.
Stefin B (cystatin B) is an inhibitor of lysosomal cysteine cathepsins and does not inhibit cathepsin D, E (aspartic) or cathepsin G (serine) proteinases. In this study, we have investigated apoptosis triggered by camptothecin, staurosporin (STS), and anti-CD95 monoclonal antibody in the thymocytes from the stefin B-deficient mice and wild-type mice. We have observed increased sensibility to STS-induced apoptosis in the thymocytes of stefin B-deficient mice. Pretreatment of cells with pan-caspase inhibitor z-Val-Ala-Asp(OMe)-fluoromethylketone completely inhibited phosphatidylserine externalization and caspase activation, while treatment with inhibitor of calpains- and papain-like cathepsins (2S,3S)-trans-epoxysuccinyl-leucylamido-3-methyl-butane ethyl ester did not prevent caspase activation nor phosphatidylserine exposure. We conclude that sensitization to apoptosis induced by STS in thymocytes of stefin B-deficient and wild-type mice is not dependent on cathepsin inhibition by stefin B.  相似文献   

13.
Lecaille F  Choe Y  Brandt W  Li Z  Craik CS  Brömme D 《Biochemistry》2002,41(26):8447-8454
The primary specificity of papain-like cysteine proteases (family C1, clan CA) is determined by S2-P2 interactions. Despite the high amino acid sequence identities and structural similarities between cathepsins K and L, only cathepsin K is capable of cleaving interstitial collagens in their triple helical domains. To investigate this specificity, we have engineered the S2 pocket of human cathepsin K into a cathepsin L-like subsite. Using combinatorial fluorogenic substrate libraries, the P1-P4 substrate specificity of the cathepsin K variant, Tyr67Leu/Leu205Ala, was determined and compared with those of cathepsins K and L. The introduction of the double mutation into the S2 subsite of cathepsin K rendered the unique S2 binding preference of the protease for proline and leucine residues into a cathepsin L-like preference for bulky aromatic residues. Homology modeling and docking calculations supported the experimental findings. The cathepsin L-like S2 specificity of the mutant protein and the integrity of its catalytic site were confirmed by kinetic analysis of synthetic di- and tripeptide substrates as well as pH stability and pH activity profile studies. The loss of the ability to accept proline in the S2 binding pocket by the mutant protease completely abolished the collagenolytic activity of cathepsin K whereas its overall gelatinolytic activity remained unaffected. These results indicate that Tyr67 and Leu205 play a key role in the binding of proline residues in the S2 pocket of cathepsin K and are required for its unique collagenase activity.  相似文献   

14.
Cathepsin B is a lysosomal cysteine protease exhibiting mainly dipeptidyl carboxypeptidase activity, which decreases dramatically above pH 5.5, when the enzyme starts acting as an endopeptidase. Since the common cathepsin B assays are performed at pH 6 and do not distinguish between these activities, we synthesized a series of peptide substrates specifically designed for the carboxydipeptidase activity of cathepsin B. The amino-acid sequences of the P(5)-P(1) part of these substrates were based on the binding fragments of cystatin C and cystatin SA, the natural reversible inhibitors of papain-like cysteine protease. The sequences of the P'(1)-P'(2) dipeptide fragments of the substrates were chosen on the basis of the specificity of the S'(1)-S'(2) sites of the cathepsin B catalytic cleft. The rates of hydrolysis by cathepsin B and papain, the archetypal cysteine protease, were monitored by a continuous fluorescence assay based on internal resonance energy transfer from an Edans to a Dabcyl group. The fluorescence energy donor and acceptor were attached to the C- and the N-terminal amino-acid residues, respectively. The kinetics of hydrolysis followed the Michaelis-Menten model. Out of all the examined peptides Dabcyl-R-L-V-G-F- E(Edans) turned out to be a very good substrate for both papain and cathepsin B at both pH 6 and pH 5. The replacement of Glu by Asp turned this peptide into an exclusive substrate for cathepsin B not hydrolyzed by papain. The substitution of Phe by Nal in the original substrate caused an increase of the specificity constant for cathepsin B at pH 5, and a significant decrease at pH 6. The results of kinetic studies also suggest that Arg in position P(4) is not important for the exopeptidase activity of cathepsin B, and that introducing Glu in place of Val in position P(2) causes an increase of the substrate preference towards this activity.  相似文献   

15.
Genes encoding novel murine cysteine peptidases of the papain family C1A and related genes were cloned and mapped to mouse chromosome 13, colocalizing with the previously assigned cathepsin J gene. We constructed a <460-kb phage artificial chromosome (PAC) contig and characterized a dense cluster comprising eight C1A cysteine peptidase genes, cathepsins J, M, Q, R, -1, -2, -3, and -6; three pseudogenes of cathepsins M, -1, and -2; and four genes encoding putative cysteine peptidase inhibitors related to the proregion of C1A peptidases (trophoblast-specific proteins alpha and beta and cytotoxic T-lymphocyte-associated proteins 2alpha and -beta). Because of sequence homologies of 61.9-72.0% between cathepsin J and the other seven putative cysteine peptidases of the cluster, these peptidases are classified as "cathepsin J-like". The absence of cathepsin J-like peptidases and related genes from the human genome suggests that the cathepsin J cluster arose by partial and complete gene duplication events after the divergence of primate and rodent lineages. The expression of cathepsin J-like peptidases and related genes in the cluster is restricted to the placenta only. Clustered genes are induced at specific time points, and their expression increases toward the end of gestation. The specific expression pattern and high expression level suggest an essential role of cathepsin J-like peptidases and related genes in formation and development of the murine placenta.  相似文献   

16.
The recombinant cysteine peptidases, cruzain from Trypanosoma cruzi and CPB2.8DeltaCTE from Leishmania mexicana, are cathepsin L-like and characteristically endopeptidases. In this study, we characterized the carboxydipeptidase activities of these enzymes and compared them with those of human recombinant cathepsin B and cathepsin L. The analysis used the internally quenched fluorescent peptide Abz-FRFK*-OH and some of its analogues, where Abz is ortho-aminobenzoic acid and K* is (2,4-dinitrophenyl)-epsilon-NH2-lysine. These peptides were demonstrated to be very sensitive substrates, due to the strong quenching effect of K* on the fluorescence of the Abz group. The carboxydipeptidase activity of cruzain was shown to be very similar to that of cathepsin B, while that of CPB2.8DeltaCTE is closer to the carboxydipeptidase activity of cathepsin L. The S2 subsite architecture of cruzain and the nature of the amino acid at the P2 position of the substrates determine its carboxydipeptidase activity and gives further and direct support to the notion that the carboxydipeptidase activity of the papain family cysteine peptidases rely on the S2-P2 interaction [N?gler D. K., Tam, W., Storer, A.C., Krupa, J.C., Mort, J.S. & Menard, R. (1999) Biochemistry38, 4868-4874]. Cruzain and CPB2.8DeltaCTE presented a broad pH-range for both the endo- and exo-peptidase activities, although the later is approximately one order of magnitude lower. This feature, that is not common in related mammalian cysteine peptidases, is consistent with the enzymes being exposed to different environmental conditions and having different locations during parasite development.  相似文献   

17.
The last decade has witnessed an effervescence of research interest in the development of potent inhibitors of various aspartic peptidases. As an enzyme family, aspartic peptidases are relatively a small group that has received enormous interest because of their significant roles in human diseases like involvement of renin in hypertension, cathepsin D in metastasis of breast cancer, beta-Secretase in Alzheimer's Disease, plasmepsins in malaria, HIV-1 peptidase in acquired immune deficiency syndrome, and secreted aspartic peptidases in candidal infections. There have been developments on clinically active inhibitors of HIV-1 peptidase, which have been licensed for the treatment of AIDS. The inhibitors of plasmepsins and renin are considered a viable therapeutic strategy for the treatment of malaria and hypertension. Relatively few inhibitors of cathepsin D have been reported, partly because of its uncertain role as a viable target for therapeutic intervention. The beta-secretase inhibitors OM99-2 and OM003 were designed based on the substrate specificity information. The present article is a comprehensive state-of-the-art review describing the aspartic peptidase inhibitors illustrating the recent developments in the area. In addition, the homologies between the reported inhibitor sequences have been analyzed. The understanding of the structure-function relationships of aspartic peptidases and inhibitors will have a direct impact on the design of new inhibitor drugs.  相似文献   

18.
19.
Adult Schistosoma mansoni blood flukes express two discrete cysteine proteinases, SmCL1 and SmCL2, both of which are related to the cathepsin L-like enzymes of the C1 family of peptidases. Our previous phylogenetic analysis indicated that SmCL1 is more closely related to cruzipain from the parasitic protozoa Trypanosoma cruzi than to human cathepsin L, whereas the converse situation applies with SmCL2. To characterize their catalytic subsites and substrate specificities, we have now developed three-dimensional (3D) homology models of SmCL1 and SmCL2 using the structure of cruzipain and cathepsin L. Eisenberg analysis of the 3D models revealed self-compatibility scores of 90.1 and 96.1 out of a possible score of 97.6 for SmCL1 and SmCL2, respectively, verifying the accuracy and utility of the models. Substrate preferences of recombinant SmCL1 and SmCL2 at positions P3, P2, and P1 conformed to the substrate specificity predicted by the models. In particular, SmCL1 and SmCL2 both exhibited high affinity (k(cat)/K(m)) for substrates with hydrophobic residues at P2 including Z-Leu-Arg-NHMec (773.4 and 548.5 mM(-1) s(-1), respectively), Boc-Val-Leu-Lys-NHMec (116.8 and 306.5 mM(-1) s(-1)), and Z-Phe-Arg-NHMec (38.9 and 113.4 mM(-1) s(-1)). SmCL1 exhibited only a low affinity for the cathepsin B diagnostic substrate Z-Arg-Arg-NHMec while SmCL2 failed to cleave this substrate. The substrate specificities of SmCL1 and SmCL2 were clearly differentiated with H-Leu-Val-Tyr-NHMec and Suc-Leu-Tyr-NHMec since SmCL1 cleaved both efficiently (k(cat)/K(m) values of 51.9 and 41.1 mM(-1) s(-1), respectively), whereas SmCL2 cleaved neither. The 3D models revealed that this difference in specificity was due to restrictions imposed on the S3 subsite of SmCL2 as a result of insertion of two amino acids vicinal to residue 60.  相似文献   

20.
It has been suggested that the lysosomal proteinases cathepsin B, L and D participate in tumour invasion and metastasis. Whereas for cathepsins B and L the role of active enzyme in invasion processes has been confirmed, cathepsin D was suggested to support tumour progression via its pro-peptide, rather than by its proteolytic activity. In this study we have compared the presence of active cathepsins B, L and D in ras-transformed human breast epithelial cells (MCF-10A neoT) with their ability to invade matrigel. In this cell line high expression of all three cathepsins was detected by immunofluorescence microscopy. The effect of proteolytic activity on cell invasion was studied by adding various natural and synthetic cysteine and aspartic proteinase inhibitors. The most effective compound was chicken cystatin, a general natural inhibitor of cysteine proteinases, (82.8+/-1.6% inhibition of cell invasion), followed by the synthetic inhibitor trans-epoxysuccinyl-L-leucylamido-(4-guanidino) butane (E-64). CLIK-148, a specific inhibitor of cathepsin L, showed a lower effect than chicken cystatin and E-64. Pepstatin A weakly inhibited invasion, whereas the same molar concentrations of squash aspartic proteinase (SQAPI)-like inhibitor, isolated from squash Cucurbita pepo, showed significant inhibition (65.7+/-1.8%). We conclude that both cysteine and aspartic proteinase activities are needed for invasion by MCF-10A neoT cells in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号