首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The methanothermal reactions of M(CO)6 (M = Mo, W) with Na2S2 gave a series of homonuclear clusters [{M(CO)4}n(MS4)]2− (M=Mo, W; N=1, 2), i.e. (Ph4P)2[(CO)4Mo(MoS4)] (I), (Ph4P)2[(CO)4W(WS4)] (II), (Ph4P)2[(CO)4Mo(MoS4)Mo(CO)4] (III) and (Ph4P)2[(CO)4W(WS4)W(CO)4] (IV). The two dimers, I and II, as well as the two trimers, III and IV, are isostructural to each other, respectively. All compounds crystallize in the triclinic space group with Z=2. The cell dimensions are: a=12.393(8), b=19.303(9), c=11.909(6) Å, =102.39(5), β=111.54(5), γ=73.61(5)°, V=2522(3) Å3 at T=23 °C for I; a=12.390(3), b=19.314(4), c=11.866(2) Å, =102.66(2), β=111.49(1), γ=73.40(2)°, V=2511(1) Å3 at T=23 °C for II; a=11.416(3), b=22.524(4), c=10.815(4) Å, =91.03(2), β=100.57(3), γ=88.96(2)°, V=2733(1) Å3 at T=−100 °C for III, a=11.498(1), b=22.600(4), c=10.864(3) Å, =90.92(2), β=100.85(1), γ=88.58(1)°, V=2771(2) Å3 at T=23 °C for IV. The dimers are each formed by the coordination of the tetrathiometalate as a bidentate chelating ligand to an M(CO)4 fragment while addition of another M(CO)4 fragment to the dimers results in the trimers. All compounds contain both tetrahedral and octahedral metal centers with the formal 6+ and 0 oxidation states, respectively.  相似文献   

2.
New mixed metal complexes SrCu2(O2CR)3(bdmap)3 (R = CF3 (1a), CH3 (1b)) and a new dinuclear bismuth complex Bi2(O2CCH3)4(bdmap)2(H2O) (2) have been synthesized. Their crystal structures have been determined by single-crystal X-ray diffraction analyses. Thermal decomposition behaviors of these complexes have been examined by TGA and X-ray powder diffraction analyses. While compound 1a decomposes to SrF2 and CuO at about 380°C, compound 1b decomposes to the corresponding oxides above 800°C. Compound 2 decomposes cleanly to Bi2O3 at 330°C. The magnetism of 1a was examined by the measurement of susceptibility from 5–300 K. Theoretical fitting for the susceptibility data revealed that 1a is an antiferromagnetically coupled system with g = 2.012(7), −2J = 34.0(8) cm−1. Crystal data for 1a: C27H51N6O9F9Cu2Sr/THF, monoclinic space group P21/m, A = 10.708(6), B = 15.20(1), C = 15.404(7) Å, β = 107.94(4)°, V = 2386(2) Å3, Z = 2; for 1b: C27H60N6O9Cu2Sr/THF, orthorhombic space group Pbcn, A = 19.164(9), B = 26.829(8), C = 17.240(9) Å, V = 8864(5) Å3, Z = 8; for 2: C22H48O11N4Bi2, monoclinic space group P21/c, A = 17.614(9), B = 10.741(3), C = 18.910(7) Å, β = 109.99(3)°, V = 3362(2) Å3, Z = 4.  相似文献   

3.
Treatment of the A-ring aromatic steroids estrone 3-methyl ether and β-estradiol 3, 17-dimethyl ether with Mn(CO)5+BF4 in CH2Cl2 yields the corresponding [(steroid)Mn(CO)3]BF4 salts 1 and 2 as mixtures of and β isomers. The X-ray structure of [(estrone 3-methyl ether)Mn(CO)3]BF4 · CH2Cl2 (1) having the Mn(CO)3 moiety on the side of the steroid is reported: space group P21 with a=10.3958(9), b=10.9020(6), c=12.6848(9) Å, β=111.857(6)°, Z=2, V=1334.3(2) Å3, calc=.481 cm−3, R=0.0508, and wR=0.0635. The molecule has the traditional ‘piano stool’ structure with a planar arene ring and linear Mn---C---O linkages. The nucleophiles NaBH4 and LiCH2C(O)CMe3 add to [(β-estradiol 3,17-dimethyl ether)Mn(CO)3]BF4 (2) in high yield to give the corresponding - and β-cyclohexadienyl manganese tricarbonyl complexes (3). The nucleophiles add meta to the arene -OMe substituent and exo to the metal. The and β isomers of 3 were separated by fractional crystallization and the X-ray structure of the β isomer with an exo-CH2C(O)CMe3 substituent is reported (complex 4): space group P212121 with a=7.5154(8), b=15.160(2), c=25.230(3) Å, Z=4, V=2874.4(5) Å3, calc=1.244 g cm−3, R=0.0529 and wR2=0.1176. The molecule 4 has a planar set of dienyl carbon atoms with the saturated C(1) carbon being 0.592 Å out of the plane away from the metal. The results suggest that the manganese-mediated functionalization of aromatic steroids is a viable synthetic procedure with a range of nucleophiles of varying strengths.  相似文献   

4.
Kinetic results are reported for intramolecular PPh3 substitution reactions of Mo(CO)21-L)(PPh3)2(SO2) to form Mo(CO)22-L)(PPh3)(SO2) (L = DMPE = (Me)2PC2H4P(Me)2 and dppe=Ph2PC2H4PPh2) in THF solvent, and for intermolecular SO2 substitutions in Mo(CO)32-L)(η2-SO2) (L = 2,2′-bipyridine, dppe) with phosphorus ligands in CH2Cl2 solvent. Activation parameters for intramolecular PPh3 substitution reactions: ΔH values are 12.3 kcal/mol for dmpe and 16.7 kcal/mol for dppe; ΔS values are −30.3 cal/mol K for dmpe and −16.4 cal/mol K for dppe. These results are consistent with an intramolecular associative mechanism. Substitutions of SO2 in MO(CO)32-L)(η2-SO2) complexes proceed by both dissociative and associative mechanisms. The facile associative pathways for the reactions are discussed in terms of the ability of SO2 to accept a pair of electrons from the metal, with its bonding transformations of η2-SO2 to η1-pyramidal SO2, maintaining a stable 18-e count for the complex in its reaction transition state. The structure of Mo(CO)2(dmpe)(PPh3)(SO2) was determined crystallographically: P21/c, A=9.311(1), B = 16.344(2), C = 18.830(2) Å, ß=91.04(1)°, V=2865.1(7) Å3, Z=4, R(F)=3.49%.  相似文献   

5.
An improved synthetic procedure for pentabenzylcyclopentadiene Bz5C5H was developed. Six new organomolybdenum and organotungsten halides η5-Bz5C5M(CO)3X(M = Mo, W; X = Cl, Br, I) were syntesized through the reaction of η5-Bz5C5M(CO)3Li (derived from Bz5C5H, n-BuLi and M(CO)6) with PCl3, PBr3 or I2 and characterized by elemental analysis, IR and 1H NMR spectroscopy. The structure of η5-Bz5C5Mo(CO)3I was determined by single-crystal X-ray diffraction techniques. It crystallized in the monoclinic space groupp P2/c with cell parameters a = 13.294(4), B = 15.147(4), C = 19.027(3) Å, β = 108.32(2)°, V = 3637(2) Å3, Z = 4 and Dx = 1.50 g cm−3. The final R value was 0.035 for 4564 observed reflections.  相似文献   

6.
The molecular structure of trans-[Pd(PhC(O)CHP(n-C4H9)3)2Cl2] has been determined via a single crystal X-ray diffraction study: triclinic,P1,a = 8.876(2),b = 10.908(3),c = 11.938(4)Å, = 97.06(2)°, β = 102.79(2)°, γ = 100.51(2)°,V= 1092.1(5)Å3,Z = 1 and R(F) = 4.61%. The phosphorus ylide molecules are bound to the palladium atom through their methine carbon atoms, the overall coordination geometry about the palladium being square planar. The protons in the ortho-positions of the two phenyl group are poised above and below the palladium atom, suggesting that the complex is a precursor of the ortho-metalated complex [Pd(μ-Cl)(C6H4C(O)CHP(n-C4H9)3)]2 synthesized earlier in our laboratory.  相似文献   

7.
Three new crystalline tin selenide salts have been prepared from the reactions of [PPh4]2[Sn(Se43] in supercritical solvents. The starting material pyrolyzes in supercritical acetonitrile to form [PPh4]4[Sn6Se21] (I), and it also reacts with SnSe in supercritical ammonia leading to a mixture of [PPh4]4[Sn3Se11]2 (II). and [PPh4]2[Sn(Se4)(Se6)2] (III). All three compounds have been characterized by single crystal X-ray diffraction. Crystallographic data: for I, C96H90P4Se21Sn6, space group triclinic, P-1, A = 18.763(3), B = 24.600(4), C = 13.137(1) Å, = 102.63(1), β = 93.66(1), γ = 108.72(1)°, V = 5544(1) Å3, Z = 2, R = 0.0350, RW = 0.0317: for II, C96H80P4Se22Sn6, space group monoclinic P21/c, A = 31.500(4), B = 16.572(3), C = 22.352(3) Å, β = 103.53(1)°, V = 11344(3) Å3, Z = 4, R = 0.0771, RW = 0.0664: for III, C48H40P2Se16Sn, space group monoclinic, C2/c, A = 25.381(2), B = 13.934(4), C = 19.465(3) Å, β = 121.587(8)°, V = 5867(2) Å3, Z = 4, R = 0.0807, RW = 0.0650. One of the compounds, [PPh4]2[Sn(Se4(Se62], is a molecular cluster while the other two complexes [PPh4]4[Sn3Se11]2 and [PPh4]4[Sn6Se21], are one dimensional tin selenide chains. The structures of the two chains are related and consits of tetrahedral and distorted trigonal bipyramidal tin(IV) centers bridged by Se2−, Se22− and Se32− chains.  相似文献   

8.
Complexes RuCl3(PPh3)L2 (L = MeIm (1a, Im (1b)) and [RuCl2(PPh3)2(bipy)]Cl·4H2O (2) have been synthesized via the ruthenium(III) precursor RuCl3(PPh3)2 (DMA), and characterized, including an X-ray structural analysis for 1a (MeIm = N-methylimidazole, Im = imidazole, bipy = 2,2′-bipyridyl, and DMA = N, N′-dimethylacetamide). Crystals of 1a are monoclinic, space group P21/n, A = 10.5491(5), B = 20.4934(9), C = 12.8285(4) Å, β = 90.166(4)°, Z = 4. The structure, which reveals a mer configuration for the chlorides, and cis-methylimidazoles, was solved by conventional heavy atom methods and was refined by full-matrix least-square procedures to R = 0.041 and Rw = 0.042 for 3328 reflections with I 3σ(I). From the RuCl2(PPh3)3 precursor, the ruthenium(II) complexes RuCl2(PPh3)2L2 and [RuCl(PPh3)L4]Cl have been made (L = Im or MeIm), while [RuCl(dppb)Im3]Cl has been made from [RuCl2(dppb)]2(μ-dppb) (dppb = Ph2P(CH2)4PPh2).  相似文献   

9.
Reaction of (NEt4)2MS4 (M = Mo, W) with CuCl and KSCN (or NH4SCN) in acetone or acetonitrile affords a new set of mixed metal–sulfur compounds: infinite anionic chains Cu4(NCS)5MS43− (1,2), (CuNCS)3WS42− (3) and two dimensional polymeric dianions (CuNCS)4MS42− (4,5). Crystal of 1 (M = W) and 3 are triclinic, space group P1(1:a = 10.356(2),b = 15.039(1),c = 17.356(2)Å, = 78.27(1)°, β = 88.89(2)° and γ = 88.60(1)°,Z = 2,R = 0.04 for 3915 independent data;3:a = 8.449(2),b = 14.622(4),c = 15.809(8)Å, = 61.84(3)°, β = 73.67(3)° and γ = 78.23(2)°,Z = 2,R = 0.029 for 6585 independent data). Crystals of 4 (M = W) and 5 (M = Mo) are monoclinic, space group P21/m,Z = 2 (4:a = 12.296(4),b = 14.794(4),c = 10.260(3)Åand β = 101.88(3)°,R = 0.034 for 4450 independent data;5:a = 12.306(2),b = 14.809(3),c = 10.257(2)Åand β = 101.99(3)°,R = 0.043 for 3078 independent data). The crystal structure determinations of 4 and 5 show that four edges of the tetrahedral MS42− core are coordinated by copper atoms forming WS4Cu4 aggregates linked by eight-membered Cu(NCS)2Cu rings. A two-dimensional network is thus formed in the diagonal (101) plane. The space between the anionic two-dimensional networks is filled with the NEt4+ cations. Additional NCS groups lead to the [Cu4(NCS)5WS4]3− (1) trianion connected by NCS bridges forming pseudo-dimers. These latter are held together by weak CuS(NCS) interactions giving rise to infinite chains along a direction parallel to [100]. In contrast complex3 develops infinite chains from WS4Cu3 aggregates with the same Cu(NCS)2Cu bridges as in 4 and 5. These chains are running along a direction parallel to [010]. The structural data of the different types of polymeric compounds containing MS42− and CuNCS have been used to interpret vibrational spectroscopic data of the thiocyanate groups.  相似文献   

10.
Two novel, weakly antiferromagnetically coupled, tetranuclear copper(II) complexes [Cu4(PAP)22-1,1-N3)22-1,3-N3)22-CH3OH)2(N3)4 (1) (PAP = 1,4-bis-(2′-pyridylamino)phthalazine) and [Cu4(PAP3Me)22-1,1-N3)22-1,3-N3)2(H2O)2(NO2)2]- (NO3)2 (2) (PAP3Me = 1,4-bis-(3′-methyl-2′-pyridyl)aminophthalazine) contain a unique structural with two μ2-1,1-azide intramolecular bridges, and two μ2-1,3-azide intermolecular bridges linking pairs of copper(II) centers. Four terminal azide groups complete the five-coordinate structures in 1, while two terminal waters and two nitrates complete the coordination spheres in 2. The dinuclear complexes [Cu2(PPD)(μ2-1,1-N3)(N3)2(CF3SO3)]CH3OH) (3) and [Cu2(PPD)(μ2-1,1-N3)(N3)2(H2O)(ClO4)] (4) (PPD = 3,6-bis-(1′-pyrazolyl)pyridazine) contain pairs of copper centers with intramolecular μ2-1,1-azid and pyridazine bridges, and exhibit strong antiferromagnetic coupling. A one-dimensional chain structure in 3 occurs through intermolecular μ2-1,1-azide bridging interactions. Intramolecular Cu-N3-Cu bridge angles in 1 and 2 are small (107.9 and 109.4°, respectively), but very large in 3 and 4 (122.5 and 123.2°, respectively), in keeping with the magnetic properties. 2 crystallizes in the monoclinic system, space group C2/c with a = 26.71(1), b = 13.51(3), c = 16.84(1) Å, β = 117.35(3)° and R = 0.070, Rw = 0.050. 3 crystallizes in the monoclinic system, space group P21/c with a = 8.42(1), b = 20.808(9), c = 12.615(4) Å, β = 102.95(5)° and R = 0.045, Rw = 0.039. 4crystallizes in the triclinic system, space group P1, with a = 10.253(3), b = 12.338(5), c = 8.072(4) Å, = 100.65(4), β = 101.93(3), γ = 87.82(3)° and R = 0.038, Rw = 0.036 . The magnetic properties of 1 and 2 indicate the presence of weak net antiferromagnetic exchange, as indicated by the presence of a low temperature maximum in χm (80 K (1), 65 K (2)), but the data do not fit the Bleaney-Bowers equation unless the exchange integral is treated as a temperature dependent term. A similar situation has been observed for other related compounds, and various approaches to the problem will be discussed. Magnetically 3 and 4 are well described by the Bleaney-Bowers equation, exhibiting very strong antiferromagnetic exchange (− 2J = 768(24) cm−1 (3); − 2J = 829(11) cm−1 (4)).  相似文献   

11.
The phosphinoalkenes Ph2P(CH2)nCH=CH2 (n= 1, 2, 3) and phosphinoalkynes Ph2P(CH2)n C≡CR (R = H, N = 2, 3; R = CH3, N = 1) have been prepared and reacted with the dirhodium complex (η−C5H5)2Rh2(μ−CO) (μ−η2−CF3C2CF3). Six new complexes of the type (ν−C5H5)2(Rh2(CO) (μ−η11−CF3C2CF3)L, where L is a P-coordinated phosphinoalkene, or phosphinoalkyne have been isolated and fully characterized; the carbonyl and phosphine ligands are predominantly trans on the Rh---Rh bond, but there is spectroscopic evidence that a small amount of the cis-isomer is formed also. Treatment of the dirhodium-phosphinoalkene complexes with (η−CH3C5H4)Mn(CO)2thf resulted in coordination of the manganese to the alkene function. The Rh2---Mn complex [(η−C5H5)2Rh2(CO) (μ−η11−CF3C2CF3) {Ph2P(CH2)3CH=CH2} (η−CH3C5H4)Mn(CO)2] was fully characterized. Simi treatment of the dirhodium-phosphinoalkyne complexes with Co2(CO)8 resulted in the coordination of Co2(CO)6 to the alkyne function. The Rh2---Co2 complex [(η−C5H5)2Rh2(CO) (μ−η11−CF3C2CF3) {Ph2PCH2C≡CCH3}Co2(CO)2], C37H25Co2F6O7PRh2, was fully characteriz spectroscopically, and the molecular structure of this complex was determined by a single crystal X-ray diffraction study. It is triclinic, space group (Ci1, No. 2) with a = 18.454(6), B = 11.418(3), C = 10.124(3) Å, = 112.16(2), β = 102.34(3), γ = 91.62(3)°, Z = 2. Conventional R on |F| was 0.052 fo observed (I > 3σ(I)) reflections. The Rh2 and Co2 parts of the molecule are distinct, the carbonyl and phosphine are mutually trans on the Rh---Rh bond, and the orientations of the alkynes are parallel for Rh2 and perpendicular for Co2. Attempts to induce Rh2Co2 cluster formation were unsuccessful.  相似文献   

12.
The synthesis and characterization of a ferrocenyl-derived tridentate ligand, ferrocenyltris((methylthio)methyl)borate (FcTtP), and its representative metal complexes, [(FcTt)Cu]4 and [FcTt]2M (M = Fe, Co and Ni), are reported. The M = Fe complex exhibits spin-crossover behavior with a μeff = 1.19 μB at 25°C. The low-spin Co(II) derivative (1.88 μB) exhibits a characteristic axial electron paramagnetic resonance (EPR) spectrum, gav = 2.13, A = 53 G and A¦ = 43 G. The [FcTt]2M complexes display reversible two-electron redox processes assigned to ligand-centered events about 200 mV negative of the ferrocene-ferrocenium couple. [(FcTt)Cu]4 and [FcTt]2Ni have been characterized by X-ray diffraction. X-ray data for [(FcTt)Cu]4: monoclinic space group C2/c, with a = 24.3747(3) Å, b = 20.0857(2) Å, c = 17.2747(4) Å, β = 95.843(1)°, V = 8413.5(3) Å3, and Z = 4; [FcTt]2Ni: monoclinic space group C2/c, with a = 12.6220(3) Å, b = 11.6002(3) Å, c = 25.0125(7) Å, β = 94.067(1)°, V = 3653.1(2) Å3, and Z = 4.  相似文献   

13.
Complexes of type A4[VO(tart)]2·nH2O, where A = Rb or Cs and tart =d,l-tartrate(4−) (n = 2) or d,d-tartrate(4−) (n = 2 for Rb and n = 3 for Cs), were prepared from an aqueous mixture of V2O5, AOH and H4tart. These complexes were studied by single-crystal X-ray diffraction methods: Rb4[VO(d,l-tart)]2·2H2O, space group P1 with a = 8.156(1),b = 8.246(1),c = 8.719(1)Å, = 66.09(1)°, β = 65.07(1)°, γ = 82.40(1)°,Z = 2, 1917 observed reflections, and final Rw = 0.035; Cs4[VO(d,l-tart)]2·2H2O, space group P21/c with a = 9.350(1),b = 13.728(2),c = 8.479(1)Å, β = 106.77(1)°,Z = 4, 2235 observed reflections, and final Rw = 0.054; Rb4[VO(d,d-tart)]2·2H2O, space group P4122 with a = 8.072(1),c = 32.006(3)Å,Z = 8, 1014 observed reflections and final Rw = 0.038; Cs4[VO(d,d-tart)]2·3H2O, space group P122 with a = 8.184(1),c = 33.680(5)Å,Z = 8, 1310 observed reflections, and final Rw = 0.063. Bulk magnetic susceptibility data (1.5–300 K) for these compounds and A4[VOl,l-tart)]2·nH2O (A = Rb, Cs) were obtained on polycrystalline samples. These data were analyzed in terms of a Van Vleck exchange coupled S = 1/2 model which was modified to include an interdimer exchange parameters Θ. Analysis of the low-temperature (1.5–20 K) susceptibility data gave 2J = +1.30 cm−1 and Θ = −1.86 K for Rb4[VO(d,l-tart)]2·2H2O, 2J = +1.16 cm−1 and Θ = −1.69 K for Cs4[VO(d,l-tart)]2·2H2O, 2J = +1.90 cm−1 and Θ = −0.82 K for Rb4[VO(d,d-tart)]2·2H2O, 2J = +2.04 cm−1 and Θ = −0.80 K for Rb4[VO(l,l-tart)]2·2H2O, 2J = +1.52 cm−1 and Θ = −0.25 K for Cs4[VO(d,d-tart)]2·3H2O, and 2J = +1.64 cm−1 and Θ = −0.31 K for Cs4[VO(l,l-tart)]2·3H2O. These results suggest the magnitudes of intradimer (ferromagnetic and interdimer (antiferromagnetic) exchange interactions are similar in these complexes, as observed for the analogous Na salts.  相似文献   

14.
The complex [Ru(SB12H11)(NH3)5]·2H2O has been prepared by the reaction of Cs2B12H11SH with [RuCl(NH3)5]Cl2 in aqueous solution. The complex represents the first reported example of the borocaptate anion acting as a ligand. The structure of the complex has been determined by single crystal X-ray diffraction analysis. The crystal parameters are monoclinic, space group P21/c, A = 8.056(1), B = 14.240(2), C = 15.172(2) Å, β=98.48° and Z = 4. The ruthenium atom has a distorted octahedral coordination. The distortion is probably due to the high (3) charge and the large bulk of the borocaptate ligand. These features can also be observed in the spectroscopic properties of the complex.  相似文献   

15.
In a search for novel analogues of β3-adrenoceptor (AR) agonists relaxing the bladder for treatment of urinary dysfunction, 2-[4-(2-{[(1S,2R)-2-hydroxy-2-(4-hydroxyphenyl)-1-methylethyl]amino}ethyl)phenoxy]-2-methylpropionic acids (1a–e), into which a fibrate-like structure had been incorporated, were synthesised. Compound 1a was found to be a selective β3-AR agonist in functional assays using the ferret detrusor (β3-AR), rat uterus (β2-AR), and rat atrium (β1-AR); β3: EC50=7.8 nM, β2: IC50=7,300 nM, β1: EC20=23,000 nM. The introduction of a chlorine atom or methyl substituent at the ortho-position on the phenyl ring of 1a further improved β3-AR selectivity. In an in vivo study, 1a lowered intrabladder pressure (ED50=31 μg/kg) in rats, without increasing heart rate, in keeping with the in vitro results. Consequently, it is proposed that 1a and its analogues (1b–e), possess β3-AR agonistic activity in the absence of undesirable β1- or β2-AR mediated actions, and may be useful for clinical treatment and pharmacological studies.  相似文献   

16.
The reaction of ReH92− with Mo(diglyme)(CO)3 leads to the formation of the mixed metal cluster trianion, ReMo3H4(CO)123−. This species has been characterized analytically, spectroscopically and through X-ray diffraction analysis. A pseudo-tetrahedral arrangement of M(CO)3 fragments is adopted, such that each set of three carbonyl ligands eclipses the adjacent three tetrahedral edges, an apparent result of the location of the hydride ligands on the tetrahedral faces. Variable temperature NMR studies revealed a fluctional process for some of the carbonyl ligands, but not for the hydrides. Crystal data for [Me4N]3[ReMo3H4(CO)12]·THF; space group P21/n, a = 12.157(2), B = 21.480(4), C = 15.964(3) Å, β = 98.26(1)°, Z = 4, R = 0.067 and Rw = 0.076.  相似文献   

17.
The molecular structure of the title complexes [Fe(H2O)4][Fe(Hedta)(H2O)]2 · 4H2O (I) and [Fe(H[2edta)(H2O)] · 2H2O (II) have been determined by single-crystal X-ray analyses. The crystal data are as follows: I: monoclinic, P21/n, A = 11.794(2), B = 15.990(2), C = 9.206(2) Å, β = 90.33(1)°, V = 1736.1(5) Å3, Z = 2 and R = 0.030; II: monoclinic, C2/c, A = 11.074(2), B = 9.856(2), C = 14.399(2) Å, β = 95.86(1)°, V = 1563.3(4) Å3, Z = 4 and R = 0.025. I is found to be isomorphous with the MnII analog reported earlier and to contain a seven-coordinate and approximately pentagonal-bipyramidal (PB) [FeII(Hedta)(H2O] unit in which Hedta acts as a hexadentate ligand. The [FeII(H2edta)(H2O)] unit in II has also a seven-coordinate PB structure with the two protonated equatorial glycine arms both remaining coordinated, and thus bears a structural resemblance to the seven-coordinate [CoII(H2edta)(H2O)] reported previously.  相似文献   

18.
Cobalt(III) complexes with a thiolate or thioether ligand, t-[Co(mp)(tren)]+ (2), t-[Co(mtp)(tren)]2+ (1Me) and t-[Co(mta)(tren)]2+ (2Me), (mp = 3-mercaptopropionate, MA = 3-(methylthio)propionate and MTA = 2-(methylthio)acetate) have been prepared in aqueous solutions. The crystal structures of 1, 2, 1Me and 2Me were determined by X-ray diffraction methods. The crystal data are as follows, t-[Co(mp)(tren)]ClO4 (1CIO4): monoclinic, P21/n, A = 10.877(8), B = 11.570(4), c = 12.173(7) Å, β = 92.20(5)°, V = 1531(1) Å3, Z = 4 and R = 0.060; t-[Co(ma)(tren)]Cl·3H2O (2Cl·3H2O): monoclinic, P21/n, a = 7.7688(8), B = 27.128(2), C = 7.858(1) Å, β = 100.63(1)°, V = 1627.7(3) Å3, Z = 4 and R = 0.066; (+)465CD-t-[Co(mtp)(tren)](ClO4)2 ((+)465CD-1Me(ClO4)2): orthorhombic, P212121, A = 10.6610(7), B = 11.746(1), C = 15.555(1) Å, V = 1947.9(3) Å3, Z = 4 and R = 0.068; (+)465CD-t-[Co(mta)(tren)](ClO4)2 ((+)465CD-2Me(ClO4)2): orthorhombic, P212121, a = 10.564(1), B = 11.375(1), C = 15.434(2) Å, V = 1854.7(4) Å3, Z = 4 and R = 0.047. All central Co(III) atoms have approximately octahedral geometry, coordinated by four N, one O, and one S atoms. All of the complexes are only isomer, of which the sulfur atom in the didentate-O,S ligands are located at the trans position to the tertiary amine nitrogen atom of tren. 1 and 1Me contain six-membered chelate ring, and 2 and 2Me do five-membered chelate ring in the didentate ligand. The chirality of the asymmetric sulfur donor atom in (+)465CD-1Me is the S configuration and that in (+)465CD-2Me is the R one. The 1H NMR, 13C NMR and electronic absorption spectral behaviors and electrochemical properties of the present complexes are discussed in relation to their stereochemistries.  相似文献   

19.
The labile cations [Cu(F-BF3)(PCy3)2] and [Cu(OTf)(PCy3)2] are versatile precursors for the formation of [Cu(X)(PCy3)2] (X = Br, I, SCN, N3) complexes by metathesis with NaX. The azide [Cu(N3)(PCy3)2] is triclinic, space group , a = 9.755(4), B = 22.78(1), C = 9.284(6) Å, = 96.76(3), β = 115.36(3), γ = 94.20(5)°, Z = 2.  相似文献   

20.
The reaction of N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (tpen) with VCl3 in CH3CN yields Cl3V(tpen)VCl3 which was hydrolyzed in water in the presence of oxygen affording [V2O2(μ-OH)2(tpen)]I2·2H2O, the crystal structure of which has been determined. Asyn-{OV(μ-OH)2VO}2+ core has been identified where the V(IV) centers are antiferromagnetically coupled (J = −150 cm−1;g = 1.80).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号