首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The addition of glucose to the medium of Tetrahymena thermophila results in a 7-fold repression of galactokinase (EC 2.7.1.6; ATP:D-galactose-1-phosphotransferase). The presence of millimolar amounts of the catecholamines dopa, dopamine, norepinephrine, and epinephrine or the hormone glucagon also results in the repression of galactokinase in the absence of glucose. The addition of millimolar amounts of adrenergic agonists (isoproterenol, tyramine, 2-amino-6,7-dihydroxytetrahydronaphthalene) results in significant repression of galactokinase in the absence of glucose; concentrations of 2-amino-6,7-dihydroxytetrahydronaphthalene less than or equal to 10(-4) M result in a derepression of galactokinase specific activity. Addition of adrenergic antagonists (propranolol, dichloroisoproterenol) have no effect on galactokinase activity at concentrations less than 10(-4) M but do arrest cell growth at greater concentrations. The addition of the cAMP analogs caffeine or theophylline in millimolar amounts results in repression of galactokinase activity; however, cell growth is greatly slowed or completely arrested at these concentrations. Analysis of the repression response of several mutants demonstrates that mutants deficient in catecholamine biosynthesis are altered in their regulation of galactokinase. Measurements of intracellular cAMP levels for 0-24 h following the addition of several of the above compounds to exponentially growing cells did not demonstrate any change over this period. Measurement of intracellular cAMP levels for 24 h following the addition of glucose or galactose to exponentially growing wild-type and mutant cell strains did not demonstrate any difference in cAMP concentrations over this period although a wide range of galactokinase activity was exhibited. Starvation of wild-type cells prior to the addition of glucose in minimal medium without added carbohydrate resulted in a significant increase in cAMP following the addition of glucose. This increase is demonstrated to be dependent upon the ability of the cells to resume division after the arrest of growth and is not correlated with galactokinase regulation. These results support the conclusion that cAMP is not involved in the repression of galactokinase gene expression initiated by glucose or hormone-like effectors and demonstrate the participation of an adrenergic control system in galactokinase regulation which is subordinate to the regulation by glucose. A possible model is discussed.  相似文献   

2.
We have isolated a mutant of Tetrahymena thermophila that is resistant to inhibition of growth by the glucose analog 2-deoxyglucose. The mutant exhibits a deficiency in a cytoplasmic glucokinase. This enzymatic defect and the attendant inability to convert 2-deoxyglucose to toxic phosphorylated derivatives is apparently the sole basis for the mutant phenotype since transport of glucose and 2-deoxyglucose is unimpaired; there is no elevation of glucose-6-phosphatase activity, which could decrease the level of toxic 2-deoxyglucose metabolites. Genetic analyses have shown that the mutant allele is recessive and inherited as a single Mendelian mutation. The glucokinase-deficient strain described here is useful for the selection of other mutants in this organism and for the investigation of various cellular processes initiated or modulated by glucose and its analogs. We have exploited the molecular defect in this strain to investigate the initial steps in the cyclic AMP-mediated repression of galactokinase gene expression which is caused by glucose.  相似文献   

3.
Intracellular concentrations of catecholamines were determined in wild-type and mutant Tetrahymena thermophila, using the highly sensitive techniques of high-performance liquid chromatography and electro-chemical detection. Catecholamines were determined in these cell strains grown under various steady-state conditions, including those which initiate and maintain repression of galactokinase gene expression. Wild-type cells grown in defined minimal medium supplemented with 1% glycerol, exhibiting derepressed galactokinase synthesis, were found to contain considerable quantities of dopa (3,4-dihydroxyphenylalanine) and dopamine, but no detectable levels of either norepinephrine or epinephrine. Analyses of wild-type cells revealed a strong positive correlation between the internal concentration of dopa and expression of the galactokinase gene, both of which are regulated by exogenous carbohydrates, catecholamine agonists, or dibutyryl-cAMP; an analogous relationship between intracellular dopamine concentrations and galactokinase activity was not found. In addition, a correlation between intracellular dopa content and the phenotypic expression of galactokinase in various mutants deficient in the catecholamine biosynthetic pathway or in glucokinase further confirms the role of dopa as a primary effector in the regulation of galactokinase gene expression.  相似文献   

4.
The synthesis of isocitrate lyase in Candida tropicalis, the growth of which was stimulated by exogenously added biotin, was released from repression by glucose under biotin-deficient conditions. Biotin deficiency reduced remarkably the levels of biotin-enzymes, pyruvate carboxylase and acetyl-Co A carboxylase, in the glucose-utilizing cells of this yeast. A marked increase in intracellular level of pyruvate was observed in the biotin-deficient cells. Acetyl-CoA-donating compounds, such as pyruvate, acetate and alkanes, stimulated the formation of isocitrate lyase in the yeast regardless of the presence or absence of biotin. On the other hand, malate and succinate did not affect the enzyme synthesis. The isocitrate lyase synthesis under biotin-sufficient conditions was repressed by not only glucose but also glucosamine and 2-deoxyglucose. This repression by glucose was not eliminated by cAMP. The stimulated synthesis of isocitrate lyase under biotin-deficient conditions was also observed in C. albicans and C. guilliermondii growing on glucose.  相似文献   

5.
Two glucose-phosphorylating enzymes, a hexokinase phosphorylating both glucose and fructose, and a glucose-specific glucokinase were electrophoretically separated in the methylotrophic yeastHansenula polymorpha. Hexokinase-negative mutants were isolated inH. polymorpha by using mutagenesis, selection and genetic crosses. Regulation of synthesis of the sugar-repressed alcohol oxidase, catalase and maltase was studied in different hexose kinase mutants. In the wild type and in mutants possessing either hexokinase or glucokinase, glucose repressed the synthesis of maltase, alcohol oxidase and catalase. Glucose repression of alcohol oxidase and catalase was abolished in mutants lacking both glucose-phosphorylating enzymes (i.e. in double kinase-negative mutants). Thus, glucose repression inH. polymorpha cells requires a glucose-phosphorylating enzyme, either hexokinase or glucokinase. The presence of fructose-phosphorylating hexokinase in the cell was specifically needed for fructose repression of alcohol oxidase, catalase and maltase. Hence, glucose or fructose has to be phosphorylated in order to cause repression of the synthesis of these enzymes inH. polymorpha suggesting that sugar repression in this yeast therefore relies on the catalytic activity of hexose kinases.  相似文献   

6.
Yeast cells with a nonsense adenylate cyclase mutation, cyr1-3, required cyclic AMP for growth. This phenotype was suppressed by the byc1 mutation; however, cyr1-3 bcy1 cells produced no detectable level of adenylate cyclase or cyclic AMP. On induction, the bcy1 and cyr1-3 bcy1 mutant cells produced the same levels of galactokinase and alpha-D-glucosidase as did the wild-type cells and fourfold-higher levels of invertase. Since galactokinase synthesis was severely repressed by glucose in the constitutive GAL81 mutants, irrespective of the cyr1-3 bcy1 genotype, cyclic AMP may not be involved in catabolite repression.  相似文献   

7.
Adenosine 3',5'-cyclic monophosphate (cyAMP) stimulates the rate of synthesis of galactokinase in glycerol-grown Escherichia coli both when production of the enzyme is induced by d-fucose and when it is repressed by glucose in the presence of inducer. cyAMP also stimulates the synthesis of galactokinase in constitutive strains B78A (R(-)) and R10 (O(c)), and overcomes the transient repression of galactokinase synthesis caused by glucose.  相似文献   

8.
Brevibacterium flavum mutants defective in the phosphoenolpyruvate (PEP)-dependent glucose phosphotransferase system (PTS) were selected with high frequency by 2-deoxyglucose-resistance. Most of them (DOGr) still had the fructose-PTS and grew not only on fructose but also on glucose like the wild-type strain. A mutant having 1 /8th the fructose-PTS activity of the wild strain but normal glucose-PTS activity was isolated as a xylitol-resistant mutant. It grew on glucose but not on fructose. The glucose-PTS was active on glucose, glucosamine, 2-deoxyglucose and mannose, and slightly on methyl-a-glucoside and N-acetylglucosamine, but not on fructose or xylitol. The fructose-PTS acted on fructose and xylitol, and to some extent on glucose but not on glucosamine or 2-deoxyglucose. Mutants unable to grow on glucose (DOGrGlc-) derived from a DOGr mutant were all defective in the fructose-PTS. All revertants able to grow on glucose derived from a DOGrGlc“ mutant had the fructose-PTS. The glucokinase activity was about 2/3rds the glucose activity of the fructose-PTS. All the DOGrGlc- mutants had normal levels of glucokinase. One of these mutants grew on maltose and sucrose, which were hydrolyzed to glucose. Thus, glucokinase seems to contribute to the phosphorylation of glucose liberated inside the cell. The fructose-PTS was induced by fructose and repressed by glucose. The glucose repression was not observed in a mutant defective in the glucose-PTS.  相似文献   

9.
10.
We studied the general mechanism for regulation of beta-amylase synthesis in Clostridium thermosulfurogenes. beta-Amylase was expressed at high levels only when the organism was grown on maltose or other carbohydrates containing maltose units. Three kinds of mutants altered in beta-amylase production were isolated by using nitrosoguanidine treatment, enrichment on 2-deoxyglucose, and selection of colonies with large clear zones on iodine-stained starch-glucose agar plates. beta-Amylase was produced only when maltose was added to cells growing on sucrose in wild-type and catabolite repression-resistant mutant strains, but the differential rate of enzyme synthesis in constitutive mutants was constant regardless of the presence of maltose. In carbon-limited chemostats of wild-type and catabolite repression-resistant mutant stains, beta-amylase was expressed on maltose but not on glucose or sucrose. beta-Amylase synthesis was immediately repressed by the addition of glucose. Therefore, we concluded that beta-amylase synthesis in C. thermosulfurogenes was inducible and subject to catabolite repression. The addition of cAMP did not eliminate the repressive effect of glucose. The mutants were generally characterized in terms of beta-amylase production, growth properties, fermentation product formation, and alterations in glucose isomerase and glucoamylase activities. A hyperproductive mutant produced eightfold more beta-amylase on starch medium than the wild type and more rapidly fermented starch to ethanol.  相似文献   

11.
Abstract β-Glucosidase in Aspergillus nídulans was found to be both intracellular and extracellular. The intracellular β-glucosidase was synthesized after the exhaustion of carbon source in the medium. The extracellular enzyme appeared with autolysis of the mycelium. Biosynthesis of β-glucosidase was not induced by various carbohydrates but repressed to varying extents in the presence of glucose, glycerol, and 2-deoxyglucose. This repression was not relieved by addition of cAMP. The repression was relieved much more by mutations in the creA gene than by one in the creC gene. Thus, β-glucosidase synthesis in A. nidulans is subject to carbon catabolite repression.  相似文献   

12.
13.
Studies indicated that prior growth of Staphylococcus aureus 196E on glycerol or maltose led to cells with repressed ability to produce staphylococcal enterotoxin A (SEA). A PTS- mutant (196E-MA) lacking the phosphoenolpyruvate phosphotransferase system (PTS), derived from strain 196E, showed considerably less repression of SEA synthesis when cells were grown in glycerol or maltose. Since SEA synthesis is not repressed in the PTS- mutant, repression of toxin synthesis by glycerol, maltose or glucose in S. aureus 196E appears to be related to the presence of a functional PTS irrespective of whether the carbohydrate requires the PTS for cell entry. With lactose as an inducer, glucose, glycerol, maltose or 2-deoxyglucose repressed the synthesis of beta-galactosidase in S. aureus 196E. It is postulated that these compounds repress enzyme synthesis by an inducer exclusion mechanism involving phosphorylated sugar intermediates. However, inducer exclusion probably does not explain the mechanism of repression of SEA synthesis by carbohydrates.  相似文献   

14.
15.
H Seto  Y Nagata    B Maruo 《Journal of bacteriology》1975,122(2):660-668
A membrane fraction obtained from an osmotic lysate of Escherichia coli spheroplasts retains capability to synthesize beta-galactosidase. The system also retains cellular regulatory functions, one of which is known as catabolite repression. Two types of repression of beta-galactosidase synthesis were observed in this membrane system: one was caused by the addition of 2-deoxyglucose or glucose at a low concentration (3 times 10- minus 4 M), and the other was caused by glucose-6-phosphate or glucose at a high concentration (3 times 10- minus 2 M). In the presence of cyclic adenosine 3',5'-monophosphate (10 mM), repression caused by the former was completely reversed, whereas repression by the latter was only partially reversed. Conditions in intact cells causing transient and permanent repression were also investigated. Upon addition of 2-deoxyglucose or glucose at a low concentration to intact cells, only transient repression of beta-galactosidase synthesis was observed. Glucose at a high concentration caused both transient and subsequent permanent repression, and intensity of permanent repression depended upon glucose concentration, whereas duration and intensity of transient repression were independent of glucose concentration. Mutants deficient in phosphoenolpyruvate-phosphotransferase system (Hpr minus and enzyme I minus) showed transient repression but failed to show permanent repression. In mutants deficient in glucose catabolism beyond glucose-6-phosphate, both transient and permanent repression were observed. Correlation between the observations in the membrane system and in intact cells is discussed. The results obtained here strongly suggest that transient repression is caused by glucose itself, and that permanent repression is caused by glucose-6-phosphate of high intracellular levels of glucose.  相似文献   

16.
We studied the general mechanism for regulation of glucoamylase and pullulanase synthesis in Clostridium thermohydrosulfuricum. These amylases were expressed only when the organism was grown on maltose or other carbohydrates containing maltose units. Amylase synthesis was more severely repressed by glucose than by xylose. Catabolite repression-resistant mutants were isolated by using nitrosoguanidine treatment, enrichment on 2-deoxyglucose, and selection of colonies with large clear zones on iodine-stained glucose-starch agar plates. Amylases were produced in both wild-type and mutant strains when starch was added to cells growing on xylose but not when starch was added to cells growing on glucose. In both wild-type and mutant strains, glucoamylase and pullulanase were produced at high levels in starch-limited chemostats but not in glucose- or xylose-limited chemostats. Therefore, we concluded that amylase synthesis in C. thermohydrosulfuricum was inducible and subject to catabolite repression. The mutants produced about twofold more glucoamylase and pullulanase, and they were catabolite repression resistant for production of glucose isomerase, lactase, and isomaltase. The mutants displayed improved starch metabolism features in terms of enhanced rates of growth, ethanol production, and starch consumption.  相似文献   

17.
Addition of glucose to derepressed cells of the yeast Saccharomyces cerevisiae induces a transient, specific cAMP signal. Intracellular acidification in these cells, as caused by addition of protonophores like 2,4-dinitrophenol (DNP) causes a large, lasting increase in the cAMP level. The effect of glucose and DNP was investigated in glucose-repressed wild type cells and in cells of two mutants which are deficient in derepression of glucose-repressible proteins, cat1 and cat3. Addition of glucose to cells of the cat3 mutant caused a transient increase in the cAMP level whereas cells of the cat1 mutant and in most cases also repressed wild type cells did not respond to glucose addition with a cAMP increase. The glucose-induced cAMP increase in cat3 cells and the cAMP increase occasionally present in repressed wild type cells however could be prevented completely by addition of a very low level of glucose in advance. In derepressed wild type cells this does not prevent the specific glucose-induced cAMP signal at all. These results indicate that repressed cells do not show a true glucose-induced cAMP signal. When DNP was added to glucose-repressed wild type cells or to cells of the cat1 and cat3 mutants no cAMP increase was observed. Addition of a very low level of glucose before the DNP restored the cAMP increase which points to lack of ATP as the cause for the absence of the DNP effect. These data show that intracellular acidification is able to enhance the cAMP level in repressed cells. The glucose-induced artefactual increase occasionally observed in repressed cells is probably caused by the fact that their low intracellular pH is only restored after the ATP level has increased to such an extent that it is no longer limiting for cAMP synthesis. It is unclear why the artefactual increases are not always observed. Measurement of glucose- and DNP-induced activation of trehalase confirmed the physiological validity of the changes observed in the cAMP level. Our results are consistent with the idea that the glucose-induced signaling pathway contains a glucose-repressible protein and that the protein is located before the point where intracellular acidification triggers activation of the pathway.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - DNP 2,4-dinitrophenol - Mes 4-morpholineethanesulfonic acid  相似文献   

18.
A decreased intracellular concentration of cAMP is insufficient to account for catabolite repression in Escherichia coli. We show that glucose lowers the amount of cAMP receptor protein (CRP) in cells. A correlation exists between CRP and β-galactosidase levels in cells growing under various conditions. Exogenous cAMP completely eliminates catabolite repression in CRP-overproducing cells, while it does not fully reverse the effect of glucose on β-galactosidase expression in wild-type cells. When the CRP concentration is reduced by manipulating the crp gene, β-galactosidase expression decreases in proportion to the concentration of CRP. These findings indicate that the lowered concentration of CRP caused by glucose is one of the major factors for catabolite repression. We propose that glucose causes catabolite repression by lowering the intracellular levels of both CRP and cAMP.  相似文献   

19.
Enzymes of the Embden-Meyerhof-Parnas and Entner-Doudoroff pathways were detected in strains ofRhizobium andBradyrhizobium cultured on glucose. The enzymes, except glyceraldehyde-3-phosphate dehydrogenase, were present only in trace amounts in succinategrown cells. The enzymes of the pentose phosphate pathway, being absent inBradyrhizobium, were detected only in glucose-grown cells ofRhizobium. The presence of the glucose-catabolic enzymes in cells only during growth on glucose suggests that they are inducible in nature. Succinate repressed the glucose catabolic enzymes, and the repression appeared to be similar to catabolite repression. Exogenous addition of cAMP caused no change in the activity of these enzymes, demonstrating that the repression was unlikely to be mediated via cAMP.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号