首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L-type Ca2+ current (I(Ca)) is reduced in myocytes from cardiac-specific Na+-Ca2+ exchanger (NCX) knockout (KO) mice. This is an important adaptation to prevent Ca2+ overload in the absence of NCX. However, Ca2+ channel expression is unchanged, suggesting that regulatory processes reduce I(Ca). We tested the hypothesis that an elevation in local Ca2+ reduces I(Ca) in KO myocytes. In patch-clamped myocytes from NCX KO mice, peak I(Ca) was reduced by 50%, and inactivation kinetics were accelerated as compared to wild-type (WT) myocytes. To assess the effects of cytosolic Ca2+ concentration on I(Ca), we used Ba2+ instead of Ca2+ as the charge carrier and simultaneously depleted sarcoplasmic reticular Ca2+ with thapsigargin and ryanodine. Under these conditions, we observed no significant difference in Ba2+ current between WT and KO myocytes. Also, dialysis with the fast Ca2+ chelator BAPTA eliminated differences in both I(Ca) amplitude and decay kinetics between KO and WT myocytes. We conclude that, in NCX KO myocytes, Ca2+-dependent inactivation of I(Ca) reduces I(Ca) amplitude and accelerates current decay kinetics. We hypothesize that the elevated subsarcolemmal Ca2+ that results from the absence of NCX activity inactivates some L-type Ca2+ channels. Modulation of subsarcolemmal Ca2+ by the Na+-Ca2+ exchanger may be an important regulator of excitation-contraction coupling.  相似文献   

2.
We used Na(+)-Ca(2+) exchanger (NCX) knockout mice to evaluate the effects of NCX in cardiac function and the infarct size after ischemia/reperfusion injury. The contractile function in NCX KO mice hearts was significantly better than that in wild type (WT) mice hearts after ischemia/reperfusion and the infarct size was significantly small in NCX KO mice hearts compared with that in WT mice hearts. NCX is critically involved in the development of ischemia/reperfusion-induced myocardial injury and therefore the inhibition of NCX function may contribute to cardioprotection against ischemia/reperfusion injury.  相似文献   

3.
We have used a series of monoclonal antibodies (mAbs) to determine the degree of microscopic structural homology between the retinal Na+-Ca2+, K+ and the cardiac Na+-Ca2+ exchange proteins. Sets of mAbs were raised separately to partially purified preparations of either the retinal or the recombinant myocardial exchanger. Each panel of mAbs was then screened for crossreactivity with the respective heterologous exchanger using enzyme-linked immunoassay and immunoblotting techniques. Out of 43 anti-retinal exchanger mAbs, we found 3 detecting the cardiac exchanger on immunoblots, while 4 out of 36 anti-cardiac exchanger mAbs reacted with the retinal exchanger. The strength of the crossreactions was generally weak and suggested that only low affinity epitopes were available on the heterologous proteins. For two crossreacting anti-retinal mAbs the apparent binding affinities to the cardiac exchanger were lower by more than two orders of magnitude. The overall low degree of epitope sharing among the two sets of mAbs confirms that in spite of their obvious functional and topological similarities, microscopic structural homologies between the two proteins are scarce.  相似文献   

4.
5.
The protein moiety responsible for Na+-Ca2+ exchange activity was identified in synaptic plasma membranes (SPM). This was done by raising polyclonal antibodies in rabbits against each one of the detectable proteins present in the purified preparation containing the enriched specific transport activity. Two of the antibody preparations bound specifically to native SPM: antibodies which were raised against the 70,000-Da protein (the most prominent species consistently present in the purified preparation) and antibodies raised against a 33,000-Da protein (inconsistently present in variable amounts in the purified preparation). Both antibodies bound exclusively to a protein of 70,000 Da in native SPM. When, however, the purified 33,000- and 70,000-Da proteins were used as antigens, each one of the antibody preparations bound to both proteins. In addition, both antibody preparations immunoprecipitated Na+ gradient-dependent Ca2+ transport activity from detergent-solubilized SPM. This was obtained by incubation of solubilized SPM with a complex containing antibodies bound to Protein A-Sepharose beads, reconstitution of the material excluded from the beads, and determination of the residual transport activity. The decrease in Na+ gradient-dependent Ca2+ transport activity paralleled the amount of antibody bound to Protein A-Sepharose beads and could reach 82% as compared to the activity remaining in control experiments using preimmune sera. In comparison, ATP-dependent Ca2+ transport activity was unimpaired. These results indicate that the 70,000-Da protein in SPM contains the catalytic Na+-Ca2+ antiport activity. The presence of the 33,000-Da protein in some preparations and its properties may be explained by its being either a degradation product or a subunit of the 70,000-Da protein.  相似文献   

6.
In previous studies, regional variations in the expression of the Na+-Ca2+ exchanger (NCX) have been examined qualitatively in human heart using the C2C12 monoclonal antibody [Wang, J., Schwinger, R.H., Frank, K., Muller-Ehmsen, J., Martin-Vasallo, P., Pressley, T.A., Xiang, A., Erdmann, E. & McDonough, A.A. (1996) J. Clin. Invest. 98, 1650-1658]. Although NCX expression was found to be significantly lower in the atria compared to the septum, no significant differences were found between atrial and ventricular tissue. NCX has been located in the general sarcolemma and t-tubules of ventricular muscle and as t-tubules are sparse in atrial tissue compared to ventricular tissue, it is surprising that NCX expression was found to be similar in both atria and ventricles [Wang et al. (1996)]. To reinvestigate this, we have used SDS/PAGE and a quantitative Western blotting technique to determine the pattern of expression of NCX in guinea-pig heart in tissue samples from left atrium, right atrium, septum, left ventricle and right ventricle. NCX protein expression was 17.5 +/- 3.9 pmol.mg-1 of protein in the left atrium and 29.2 +/- 6.1 pmol.mg-1 of protein in the right atrium, which were both significantly lower (P < 0.05) than NCX expression in the septum, left ventricle and right ventricle (64.7 +/- 15.2, 76.8 +/- 19.5 and 69.4 +/- 14.1 pmol.mg-1 of protein, respectively, n = 7). These differences in NCX expression may reflect variations in the cellular location of NCX protein in these regions. To study this, we used confocal immunofluorescence of single isolated myocytes to examine differences in the proportion of fluorescent staining on the general surface membrane compared with the interior of the cell (which presumably reflects a t-tubular location). We found that the general membrane staining was 79.0 +/- 1.2% in cells from the atria which was significantly higher (P < 0. 001) than that seen in cells from the septum, left ventricle and right ventricle, with 48.1 +/- 1.1%, 48.2 +/- 1.8% and 45.6 +/- 1.3%, respectively (n = 20). These results illustrate a similar pattern of NCX expression in guinea-pig and human, with expression in atrial tissue significantly lower than in ventricular tissue. However, the cellular location of NCX differs regionally; in atrial tissue, the majority of the NCX protein is located in the general sarcolemma whereas in ventricular and septal tissue, approximately 50% of NCX protein is located within the cell (presumably at the level of the t-tubules).  相似文献   

7.
Xenopus oocytes were injected with total mRNA isolated from hearts of 1-day-old chicks. After 5 days of incubation the follicular cell layers were removed and the oocytes were loaded with Na+ by incubation in hypertonic EGTA solution at 37 degrees C. The Na+-loaded oocytes accumulated 45Ca2+ from a Na+-free medium at a 3-18-fold higher rate than noninjected oocytes or oocytes injected with control solution containing no mRNA. Oocytes not subjected to the Na+-loading procedure showed no mRNA-dependent 45Ca2+ uptake. Size fractionation of the mRNA using sucrose density gradient centrifugation under denaturing conditions led to the identification of a 25 S fraction competent for induction of the Na+-Ca2+ exchange system.  相似文献   

8.
Proteins with Na+-Ca2+ exchange activity from the soluble fraction of crayfish striated muscle were inserted into asolectin proteoliposomes. A pH dependent calcium uptake with an optimum at the alkaline side and inhibition in the presence of sodium or strontium ions in the external medium was observed. When expressed per tissue wet weight the capacity for Na+-Ca2+ exchange of proteoliposomes with inserted soluble proteins was by one half higher than that of the membrane fraction and more than twice higher in comparison with the reconstituted membrane bound exchanger. Using polyacrylamide gel electrophoresis two most prominent proteins with Mr over 200 and 43 kDa could be detected in proteoliposomes with the highest Na+-Ca2+ exchange. It is assumed that protein(s) with Mr 43 kDa could represent the soluble Na+-Ca2+ exchanger in crayfish striated muscle soluble fraction.  相似文献   

9.
The Na(+)-Ca2+ exchanger from Drosophila was expressed in Xenopus and characterized electrophysiologically using the giant excised patch technique. This protein, termed Calx, shares 49% amino acid identity to the canine cardiac Na(+)-Ca2+ exchanger, NCX1. Calx exhibits properties similar to previously characterized Na(+)-Ca2+ exchangers including intracellular Na+ affinities, current-voltage relationships, and sensitivity to the peptide inhibitor, XIP. However, the Drosophila Na(+)-Ca2+ exchanger shows a completely opposite response to cytoplasmic Ca2+. Previously cloned Na(+)-Ca2+ exchangers (NCX1 and NCX2) are stimulated by cytoplasmic Ca2+ in the micromolar range (0.1- 10 microM). This stimulation of exchange current is mediated by occupancy of a regulatory Ca2+ binding site separate from the Ca2+ transport site. In contrast, Calx is inhibited by cytoplasmic Ca2+ over this same concentration range. The inhibition of exchange current is evident for both forward and reverse modes of transport. The characteristics of the inhibition are consistent with the binding of Ca2+ at a regulatory site distinct from the transport site. These data provide a rational basis for subsequent structure-function studies targeting the intracellular Ca2+ regulatory mechanism.  相似文献   

10.
Roles of mitochondrial Na+-Ca2+ exchanger, NCLX, were studied in B lymphocytes such as heterozygous NCLX knockout DT40 cells, NCLX knockdown A20 cells, and native mouse spleen B lymphocytes treated with a NCLX blocker, CGP-37157. Cytosolic Ca2+ response to B cell receptor stimulation was impaired in these B lymphocytes, demonstrating importance of mitochondria-ER Ca2+ recycling via NCLX and sarco/endoplasmic reticulum Ca2+-ATPase SERCA, and interaction with store-operated Ca2+ entry. NCLX was also associated with motility and chemotaxis of B lymphocyte. Contrary to B lymphocytes, contribution of NCLX in mouse spleen T lymphocytes was minor.  相似文献   

11.
12.
Ren X  Nicoll DA  Galang G  Philipson KD 《Biochemistry》2008,47(22):6081-6087
The cardiac Na (+)-Ca (2+) exchanger (NCX1) is modeled to contain nine transmembrane segments (TMS) with a pair of oppositely oriented, conserved sequences called the alpha-repeats that are important in ion transport. Residue 122 in the alpha-1 repeat is in proximity to residue 768 in TMS 6, and the two residues can be cross-linked . During studies on the substrate specificity of this intramolecular cross-link, we found evidence that NCX1 can form dimers. At 37 degrees C in the absence of extracellular Na (+), copper phenanthroline catalyzes disulfide bond formation between cysteines at position 122 in adjacent NCX1 proteins. Dimerization was confirmed by histidine tag pull-down experiments that demonstrate the association of untagged NCX1 with histidine-tagged NCX1. Dimerization occurs along a face of the protein that includes parts of the alpha-1 and alpha-2 repeats as well as parts of TMS 1 and TMS 2. We do not see cross-linking between residues in TMS 5, TMS 6, or TMS 7. These data provide the first evidence for dimer formation by the Na (+)-Ca (2+) exchanger.  相似文献   

13.
Dan P  Lin E  Huang J  Biln P  Tibbits GF 《Biophysical journal》2007,93(7):2504-2518
Mechanisms of cardiac excitation-contraction coupling in neonates are still not clearly defined. Previous work in neonates shows reverse-mode Na(+)-Ca(2+) exchange to be the primary route of Ca(2+) entry during systole and the neonatal sarcoplasmic reticulum to have similar capability as that of adult in storing and releasing Ca(2+). We investigated Na(+)-Ca(2+) exchanger (NCX) and ryanodine receptor (RyR) distribution in developing ventricular myocytes using immunofluorescence, confocal microscopy, and digital image analysis. In neonates, both NCX and RyR clusters on the surface of the cell displayed a short longitudinal periodicity of approximately 0.7 microm. However, by adulthood, both proteins were also found in the interior. In the adult, clusters of NCX on the surface of the cell retained the approximately 0.7-microm periodicity whereas clusters of RyR adopted a longer longitudinal periodicity of approximately 2.0 microm. This suggests that neonatal myocytes also have a peri-M-line RyR distribution that is absent in adult myocytes. NCX and RyR colocalized voxel density was maximal in neonates and declined significantly with ontogeny. We conclude in newborns, Ca(2+) influx via NCX could potentially activate the dense network of peripheral Ca(2+) stores via peripheral couplings, evoking Ca(2+)-induced Ca(2+) release.  相似文献   

14.
Two alpha-isoforms of the Na+-K+-ATPase are expressed in vascular smooth muscle cells (VSMCs). The alpha 1-isoform is proposed to serve a cytosolic housekeeping role, whereas the alpha 2-isoform modulates Ca2+ storage via coupling to the Na+-Ca2+ exchanger (NCX) in a subsarcolemmal compartment. To evaluate the ramifications of this proposed interaction, Ca2+-store load and the contributions of the primary Ca2+ transporters to Ca2+ clearance were studied in aortic VSMCs from embryonic wild-type (WT) and Na+-K+-ATPase alpha 2-isoform gene-ablated, homozygous null knockout (alpha 2-KO) mice. Ca2+ stores were unloaded by inhibiting the sarco(endo)plasmic reticulum Ca2+-ATPase with cyclopiazonic acid (CPA) in Ca2+-free media to limit Ca2+ influx. Ca2+ clearance by the plasma membrane Ca2+-ATPase (PMCA), NCX, or mitochondria was selectively inhibited. In WT VSMCs, NCX accounted for 90% of the Ca2+ efflux. In alpha 2-KO VSMCs, preferential clearance of store-released Ca2+ by NCX was lost, whereas PMCA activity was increased. Selective inhibition of the alpha 2-isoform (0.5 microM ouabain for 20 min), before treatment with CPA enhanced the store load in VSMCs from WT, but not alpha 2-KO mice. A subsequent analysis of capacitative Ca2+ entry (CCE) indicated that the magnitude of Ca2+ influx was significantly greater in alpha 2-KO cells. Our findings support the concept of a subsarcolemmal space where the alpha 2-isoform coupled with NCX modulates Ca2+-store function and, thereby, CCE.  相似文献   

15.
16.
17.
18.
A high affinity Ca2+-binding domain which is located in a middle portion of the large intracellular loop of the Na+-Ca2+ exchanger contains two highly acidic sequences, each characterized by three consecutive aspartic acid residues (Levitsky DO, Nicoll DA, and Philipson KD (1994) J Biol Chem 269: 22847–22852). This portion of the protein provides secondary Ca2+ regulation of the exchanger activity. To determine number of Ca2+ binding sites participating in formation of the high affinity domain, we isolated polypeptides of different lengths encompassing the domain and measured 45Ca2+ binding. The fusion proteins containing the high affinity domain were obtained in a Ca2+-bound form and as evidenced by shifts in there mobility in SDS-polyacrylamide gels after EGTA treatment. The Ca2+ binding curves obtained after equilibrium dialysis reached saturation at 1 M free Ca2+, Kd value being approx. 0.4 M. The Ca2+ binding occured in a highly cooperative manner. Upon saturation, the amount of Ca2+ ion bound varied from 1.3–2.1 mot per mot protein. Proteins with an aspartate in each acidic sequence mutated lacked the positive cooperativity, had lower Ca2+ affinity and bound two to three times less Ca2+. Na+-Ca2+ exchangers of tissues other than heart though different from the cardiac exchanger by molecular weight most likely possess a similar Ca2+ binding site. It is concluded that, by analogy with Ca2+ binding proteins of EF-type, the high Ca2+-affinity domain of the Na+-Ca2+ exchanger is comprised of at least two binding sites interacting cooperatively.  相似文献   

19.
20.
Na+-Ca2+ exchange in human neutrophils   总被引:4,自引:0,他引:4  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号